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ABSTRACT

This study deals with the second-order analysis of
unbraced, single story, gabled frames with singly or doublv
symmetrical tapered members and hinged supports. Only in-plane
pehavior is considered with adeguate bracing to prevent ocut-of-
plane deflections. Two methods of analysis were developed: a
modified stiffness method procedure in the form of a computer
program and a manual trial and error method. The trial and
error procedure is based on the slope deflection method and
moment area principles. Numerical integration was used for com-
putation of the stiffiness matrix elements and slope deflection
stiffness and carry-over factors. In both procedures, P=-A
effects are taken into account by formulating the egquilibrium
egquations on the deformed structure. Effects of residual stress-
es are studied by assuming a residual stress pattern at all
cross-sections. The yielded portions of members due to combined
affects of residual stresses and applied normal stresses are
eliminated during the incremental loading process. Reinforcement
affect of rigid connections is considered by assuming that a
hinge cannot form on members adjacent to reinforced connections
within a distance equal to depth of the member from the connec-
tion. Loading is incremental and countinues until the failure of
the frame.

Using the modified stiffness and trial and error methods,
the maximum lcad capacity of several example frames was calculated.
Comparison of load-deflection relationships from the two proce-
dures showed good agreement. Comparison with analytical and ex-
perimental results found in the literature also showed good agree-
ment. Results for a frame constructed of double symmetric H=-
shaped cross-sections and constant tapering angle in all members
were compared to the maximum load computed by the AISC design
vrovisions for similar frames. The maximum load computed by this
procedure was slightly less than the maximum load carrying capacity
estimated by the proposed procedures.

xiv



CHAPTER I

1.1 ZIntroduction

1.1.1 Nature of Tapered Members

In 1952 Amirikian (1) first proposed the use of
tapered members or wedge-beams. The suggestion was made
“or better and more efficient uéé of materials. Today,
tapered members are used in gabled frames with one or more
bays, single-story framed structures, cantilevered elements
of structures, and sometimes end portions of beams in low-
rise structures to increase their resistance to bending
moment and shear at connections.

The frames .containing this type of members are
called tapered frames. Tavered frames are widely used in
pre-engineered metal building industry. Typically, the
analysis of tapered frames is first order using design cri-
terion of American Institute of Steel Construction, which is
based on empirical formulas of Column Research Counsel, and
no inelastic buckling studv was considered. Here the effect
of some factors on behavior and load capability of tapered

frames are attempted to study. These factors are: P-A

1
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effect, residual stresses, and the reinforcement effect of
rigid connections.

The flexural behavior of a prismatic element with
rigid or simple end connections does not follow a consistent
form due to variation of moment along the element. The
location of maximum bending moment and the variation of the
moment along the beam depends on type, location and com~-
position of loads, and for rigid frames it is related to
relative stiffness of the member.

It is possible to shape an element to »nroduce uni-
Form maximum stress over its entire length, but economically
it is not feasible because of labor cost in fabrication and
manufacturing. IHowever, efficient use of material can be
attained through the use of tarering. For exami:le, if the
Prismatic rafter of a rigid frame is increased in cross-
section near the suppcrts, the bending moment under verti-
cal or lateral loads will increase also near the supports
and decrease toward the middle. If£ the increase of the
cross—section at the ends is accomganied by a decrease of
the cross-section at the mid-span . the change of shape of
the bending moment diagram becomes more apparent. %With an
appreciable change of a prismatic to a tapered shape, the
bending moment diagram of the rafter may change from reverse
flexure to sincle flexure (like two hinced cantilever beams).
This change of shape can be translated into a practical and

suitable pattern of cross-sections, which provides a near



consistant stress pattern and consequently better use of
material along the member.

Tapered members are also used for columns in frames
for the same advantages. Because of low bending moment cap-
sbility at the narrow end of a tapered elerent, the joint
at this end can be considered hinged or sometimes partially
hinged. The other end, which has higher bending moment

capacity, is used in rigid connections.

1.1.2 Types of Tapered Members

In general, a tapered member can be defined as a
member composed of wedge-shaped elements arranged for better
stress distribution and better éontrol of stress along the
member. A tapered member may be made of steel, wood, or
concrete. In the case of steel the member is constructed
by welding all elements to each other. The cross-section
can be constructed in any desirable shape. Some of the
shaves that are widely used aré H-shaped sections, channel
sections, box sections, and rectangular sections, Figure 1.1.
A tapered member may be single tapered, which means cnly the ‘

web or only the flanges of the member is tapered or double-

tapered where both web and flanges are tapered.

1.1.3 Analysis

In the design of steel structures, a major concern
is assessment of the overall stability of the structure.

When the analysis used by the designer to determine the



distribution of forces and moments throughout the structure
is first order, stability effects are not included and the
results must be adjusted to reflect the reduction in strength
of the structure due to stability effects. In the lorth
American steel desicgn épecification, this adjustment is
accomplished through the use of interaction equations for

the design of beam-columns.

In braced frames, the resistance to lateral loads
imposed on a structure is provided by Zlexural action,
diagonal bracing shear walls, claddings, etc. When shear
walls and diagonal bracinc are not used and the effects of
cladding are necgligikle, the frame of such a structure is
called "unbraced." The lateral stiffness of an unbraced
frame must be supwolied by £flexural action of beams and
columns and the rigiditv of their connections.

The behavior of unbraced frames has been the subject
of many studies in the last few decades. Some of the recent
studies deal with second order analysis of this type of
frame. In second order analysis, the equilibrium ecquations
are formulated considering the deformed structure. In other
words, the seccndary moments of the structure, resulting
from eccentricity of axial loads due to transverse displace-
ments of members, are accounted for in the analvsis. The
consideration of these secondarv bending moments is commonly

referred to as including "P-A effects.”



The behavior of an unbraced :lane frame with rigid
joints can be studied under gravity, lateral and comiined
gravity and lateral loadings. Under gravity loadings; at a
certain critical load a btifurcation of eguilibrium is possi-
ble, and failure occurs as the column buckle, Figure 1.2.
Under lateral loads, as the bending moments increase, hinges
form at or bhetween the rigid joints, Figure 1.3. After the
formation of sufficient number of hinges to define mechanism,
the frame becomes instable and failure occurs. Under com-
bined lateral and gravity loads, which is the most general
type of loading, horizontal deflection is present £rom the
beginning, Figure 1.4. The failure of a frame under com-
bined loading may occur due to sidesway buckling or plastic
mechanism.

The purvose of this studv is to invegtigate nonlinear
behavior of targered frames. This nonlinearitv can be caused
by several factors: P-A effects, residual stresses, rigid-
ity of joints, etc. 1In this study the effects ¢f the first
three factors on the behavior of tapered frames are con-

sidered.

1.2 Review of Literature

1.2.1 Classical Methods

A basic approach to analvze tapered frames was first
introducted by Amirikian (l). This procedure starts with
the assumotion that a hinge is placed at the narrow end of

all tapered elements. The structure is then a series of.
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statistically determinate frames called simple frames. A
simple frame is composed of one, two, or more subassemblacges,
each of which is formed by two or three tapered members rigid-
ly jointed at their deep end, Figure 1.5. It is assumed
that, because of adequate bracing out-of-plane lateral de-
flection and twist are not a factor in this study and buck-
ling is not considered. Because of these assumptions,
analysis of two legged, three hinged £frames is very simple.
In practice, the joints at the narrow ends are not hinged,
therefore, the proposed method by Amirikian underestimates
the load capacity of tapered frames, and some of the frames
currently in use are multiple tapered to which Amirikian's
method is not applicable, Figure 1.6.

Theoretical analvsis of tapered members used as
columns or beams in frames has been studied by several
authors. Fogel and Ketter (7) studied the effect of a com-
bination of axial compression load, bending moment, and
slenderness of elastic nonprismatic members pinned at both
ends. In their study, the in-plane behavior of two types
of member was considered: (a) members with I cross~-sections
and taper web; and (b) members with rectangular cross-
sections and variable depth. They concluded that the inter-
action among axial load, bending moment, and slenderness is
dependent on variation of cross-section along the member and
the loadings and provided formulas to locate cross-sections

where yielding occurs and their interaction ecuation, for
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Figure 1.6 Multiple Tapered Beam Gabled Frames
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both types of elements.

Moses, F. (3) presented a numerical iterative method
suitable for digital computers to solve the stability prob-
lenm associated with sidesway buckling of inelastic frames.
In his procedure, which is called the "fixed deflection
method," a deflected shape or a buckled mode is assumed and
the load associated with the assumed deflected shape com-
puted by first analyzing each member of the frame subjected
to end moments, axial forces, and transverse loads and then
applying equilibrium equations, compatibility, and boundary
conditions to solve for the applied loads. Since the com-
outations are based on the deflected shape of the frame,
this is a second order method. In computing the load for an
assumed deflected shape, the method cannot be used for as a
neutral ecuilibrium criteria for buckling, but it can be
conveniently used for numerical computation by computer.

For the stability analysis of rigid frames, Wang
(10) used a trial and error method to make the determinant
of the stability stiffness matrix equal to zero. For each
value of the standard stability angle (¢ = L/P ), a value
of the determinant can be computed. The lowegi value of
the stability angle for which the determinant is zero is the
critical standard stability angle, from which the buckling
load is computed. For frames with nonprismatic members,
Wang suggests that each member be divided into small elements

assuming average proverties at the two ends as properties
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of the element. With this procedure the size of stiffness
matrix increases proportionally with the number of elements
in the frame and, therefore, more computer time and storage
is required.

Wang used an iterative procedure £for second order
analysis. 1In the first cycle of iteration, the computations
are based on the geometry of the frame using the joint dis-
placements from the first order analysis. In the second
cycle, the computations are based on the geometry of the
frame at the end of the first cvcle of iteration. This pro-
cedure is repeated to any desired degree of accuracy.

Galambos (5), using the slope deflection method,
formulated equilibrium equations for the analysis of frames.
In his procedure, the equilibrium equations are formulated
on the undeformed frame for first order analysis. For
second-order elastic analvsis, the equilibrium equations are
formulated on the deformed structure. The moments in the
members are magnified by the product of the axial force and
the deflection, which results an increase in deformations.
These deformations become quite large when the load approach
the buckling load of the frame. For rigid plastic analysis
Galamkbos assumed that no deformation occurs until plastic
moment is reached at sufficient locations in the frame to
develop a mechanism. At this point the load is called

plastic collapse load or plastic failure load.
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1.2.2 Design Methods

Lee, Morrell and Ketter (2,9) conducted a comprehen-
sive study of the stabilitv and design of tapered frames.
This study was concerned with the analysis of frames with
members having linearly tapered webs and doubly symmetric
H-shaped cross-sections. To develop a design procedure,v
they suggested the use of design formulas for prismatic mem-
bers but with modification factors. The result of this study
was the development of a set of curves for several typves of
frames from which the effective length of tapered column
with or without sidesway can be computed. These results are
contained in the 1978 American Institute of Steel Construction
specification as Appendix D (4). The application of this
design procedure is given in Reference 8. The procedure is
based on finding an imaginary prismatic beam-column with
cross-section of the small end of ﬁhe tapered member and
with a length equal to effective length factor times the
length of the tapered member. The provisions for prismatic
members are used to determine allowable stresses of the mem-
bers. The maxirum load of the frame is the load where the
stress at a location on the frame is at the allowable stress

for that member.

1.3 Effects of Residual Stresses

Since tapered members are normally fabricated from
flame cut or hot rolled flat plates or rolled sections,

significant residual stresses are to be expected. Because
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of these residual stresses, a frame constructed of tapered
members may exhibit a lower capacity than a £rame constructed
with initially stress-free section.

Extensive investigations by Frost and Schilling (7)
Nagarajarao, Marek, and Tall (16), Dwight and Maxham (21),
and Nethercot (18,19) on the magnitude of residual stresses
in hybrid H~-shaped test beams and stub columns, shows that
tension residual stresses near the weld area and flame cut
edges may be as high as the yield stress of the material,
and that compressive residual stresses in the remainder of
the cross-sectional area balancing the tension stresses.

In an elasto-plastic analysis, residual stresses do not have
a direct effect on the load capacity of tapered frames. In
other words, the residual stresses do not reduce the plastic
moment capacity of cross-sections, however, the presence of
residual stresses does increase frame flexibilitv, which,

in turn, causes a reduction of load capacity due to second

order effects.

1.4 Present Analvsis

1.4.1 Elasto-Plastic Stiffness Analysis of Tapered Frames

In this studv a computer program was developed to
analyze the elasto-plastic behavior of tapered frames under
vertical and horizontal loads applied in one or two stages.
The computer program is a general program and considers non-

linear behavior of frames due both to material properties
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and P-A effects. Residual stresses are considered by
assuming the same pattern at every cross-section. The
effect of reinforcement of a connection (11,12) is consider-
ed by assuming that a hinge does not form within a distance
equal to the depth of member from the center of connection.

A frame may be loaded by two sets of loads, in two
stages. In the first stage the loads are applied to the
frame in one cycle, and in the second stage the loads are
applied incrementally. In both stages, an iterative proce-
dure is used to include P-A effects in the analysis. %hen
it is desired to load the frame with only one load set, the
loads of the second set are taken equal to zero.

The stiffness method is used for analysis. Using
the momeﬁt area principle and numerical integration on small
elements of members, .the stiffness matrices for members are
computed. The structure stiffness matrix is then assumbled
and solution for a given load obtained by multiplying the
inverse of frame stiffness matrix bv load matrix. At the
end of each loading, stresses resulted from axial froce
and bending moment are combined with residual stresses in
every cross-sections and yielded portions of all cross-
sections are eliminated. Elimination of the yielded portions
causes change in member stiffness, therefore, new properties
for the member elements are computed for the next loading.
If all segments at a cross-section are eliminated, e.g.,
when the bending moment reaches the plastic moment capacity of
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the cross~section including the effect of axial load, a
hinge has formed at that location. Subsequent analysis is
made with a real hinge inserted at that location on the
frame. The analysis is continued by further loading the
frame until sufficient hinges are found to form a »nlastic

mechanism or sidesway buckling of the frame occurs.

1.4.2 Trial and Error lethod of Analysis

The purpose of this part of study is to develop an
alternative to the stiffness method to analyze a plane
frame.

Here a manual trial and error technique is presented
to estimate the load-deflection relaﬁionship for tapered
gable frame hinged at the supports. This technigue takes
into account in-plane behavior of the frame, and the slope-
deflection method is used for the analysis.

The analysis of the frame by this technique contains
two stages of incremental loading as follows:

1. 1In the first stage, the frame is indeterminate
and the equilibrium equations are formulated on
deformed structure including P-A effects. The
computation for an increment of load starts by
assuming a value for the horizontal reaction at
one of the supports. With this assumed value,
the remaining reactions and the horizontal

deflection at one end of the rafter with respect
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to other end are calculated. The horizontal
deflection is calculated in two different ways,
if the two computed wvalues are egual or within
an acceptable range, the assumed value is
accepted and all other deflections computed;
otherwise, the procedure is repeated until con-
vergence. The loading in this stage continues
until a hinged forms on the frame.

2. In the second stage, the frame is determinate
and the reactions and deflections for an incre-
ment of load are computed directly from equili-
brium equations, iterated for the effect of
deformations on reactions. This stage of load-
ing continues until a piastic mechanism occurs

or the frame fails due to sideway buckling.

1.5 Summary

Although previous studies have produced a variety
of methods to analyze tapered frames, almost all of these
methods are in the elastic range. The cverall concept of
inelastic behavior of frames is dependent on P-A effect (or
secondary moments due to deflections and axial forces),
residual stresses, true stress-strain relations, joint
rigidity, and, £finally, strain reversal in fibers. It is
difficult and sometimes impossible to consider all of these
factors in the solution. EHowever, an attempt has been made

to develop a method of solution for the analysis of tapered
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frames in the plastic as well as elastic range including
some of these factors. Two different analysis methods were
developed and results compared. The effect of residual
stress is considered in the form of a pattern of stress at
cross~sections of all members. It is assumed all joints ex-
cept supports are rigid, and the secondary effect of axial
force due to transverse deflection of a member is considered

for each loading and iterated until convergence occurs.



CHAPTER II
COMPUTER ANALYSIS OF TAPERED FRAMES
2.1 General

This chapter is a discussion of a computer program
for the elastro-plastic analysis of planar frames. The pro-
gram analyzes nonlinear behavior of a plane frame caused by
P-A effects and considers effects caused by partial yield-

ing of the cross-sections due to residual stresses.

2.2 Assumptions

The members of the frame are assumed to be web
tapered only and with constant tapering angle. The flunges
have constant width and thickness, and with minor adjustment
the program can be used for variable flunge dimensions. It
is also assumed that the locaticn of the centroidal axis of
a member varies linearly and that it lies in the plane of
the frame. Therefore, whenever the location of the centroidal
axis varies significantly £rom the assumptions, that section
is considered as a separate member, Figure 2.l1l. The connec-

tions between the member can be assumed either rigid or

19
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pinned. The positive direction of joint forces, joint
displacements, member end forces, and member end displace-
ments are as shown in Figure 2.2. The loads are assumed
concenterated at joints or uniformly distributed along a
member and are assumed to be applied in the plane of the
frame.

All deflections and deformations are assumed to
occur in the plane of the frame. The out-of-plane behavior,
inciuding biaxial bending, local, and.torsional buckling are
assumed not to occur in this study.

Sidesway of the frame is not prevented and the re-
sistance to sidesway is assumed to be provided by stiffness
of the members and rigidity of the connections.

All members are assumed to be built-up from plates
and/or hot-rolled sections and assembled by welding. The
cross—-sections of the members considered in this study are
limited to two types, as shown iﬁ Figure 2.3. The cross-
section of the type shown in Figure 2.3(b) is commonly used
for columns.

The joints of the frame are assumed to be located at
the ends of the members where the centroidal axes of the
adjacent members intersect. However, a shorﬁ stiff member
is assumed to exist immediately adjacent to all rafter to
column connections to account for the reinforcement effect
of the knee area. This increased stiffness forces the for-

mation of the plastic hinges some distance away from the
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connection. Later in this chapter the reinforcement effect

will be discussed in more detail.

2.3 Solution Method

The method of analysis presented here is a stiffness
method (13), modified to account for P-A and inelastic
effects caused by residual stress and local yielding.

Since section properties vary along the length of a
member, elements of the member stiffness matrix cannot be
computed by the standard methods used for prismatic members.
It is convenient to use the moment area principle (22), to
calculate the elements of the member stiffness matrix.

Figure 2.4 shows a typical tapered member. From the moment
area principle, carrv-over factors and stiffness coefficients

for this member are:

B xzdx
T
C.. = A % (2.1)

J/. 24 J/,A (2.2)
1 (L-%,)x,dx
—_ C 1’71771
1y AB Jp I,
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(a) (b)

Figure 2.3 Types of Cross-Sectiouns
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where CAB = the ratio of moment at B to the moment at A,

and KAB = the stiffness at A. By the same procedure CBA

and KBA are:
A A 2
xldxl ) X ldxl
I I
' L B X B X
Cga = B2 (2.3)
1771
Ix
B
% = £ (2.4)
BA B x2dx +C B (L-x) xdx
I BA I
X X
A A

The moment of inertia along a tapered member is

variable, and the relationship between the coordinate of

the location where the moment of inertia is desired, and the
moment of inertia is complicated for some tvpes of tapered
members. Furthermore, it is not possible to establish a
relationship between the location and moment of inertia for
cross-sections which are partially vielded. Numerical in-
tegration is used in this study by dividing the member into
a number of small segments and using the average properties
at the two ends of each element as the properties of the

element. Thus, it is assumed that the member is stepped
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(i.e., each element is prismatic), and integration is
performed along the stepped member. The accuracy of solu-
tion depends on two factors: 1. the number of element in
the members, the larger the number of elements, the more
accurate the results obtained from the calculation; and 2.
the tapering angle of the member. As the tapering angle
increases the variation of moment of inertia along the mem-
ber also increases. The increase of tapering angle may
increase the depth of the member drastically, so the deep
beam effect becomes a factor in stress distribution in deep
cross-sections, but this study is not concerned with this
effect. For accurate results, the number of elements along
a member must be increased with increased tapering angle.
However, the size of computer and computer time economics

limits the practical number of the elements.

2.4 P-A Effects

Transverse displacement of one end of a member with
respect to the other end causes an eccentricitv of the axial
load which creates an additional moment along the member.
This moment is termed the P-~A effect.

The analysis of a structure considering this effect
ié called a "second order" analysis. In a second order
analvsis, the shear equilibrium eguations are £formulated on
a deformed structure and, thus, the secondary moments pro-
duced by eccentricity of axial loads in all members are con-

sidered in the analysis.
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2.4.1 Pormulation for P-A Effects

Consider the column of Figure 2.5(a) under a vertical
load Pand horizontal load Q. The column is pinned at the
support and restrained by the girder, which is replaced by
a rotational spring at the top. Figure 2.5(b) shows the
deflected shape of the column and the moment at the top of

the column is:

M = Qh + PA (2.5)

The moment M consists of two parts: 9Qh, a first
order moment due to the horizontal'load, and PA, the second
order moment caused by the deformation A and the axial load
P. This moment can be repléced by a pair of transverse

loads at the ends of the column. From

PA = hVv (2.6)

the transverse loads can be written as:
VvV = -T'l— (2.7)

where V is an imaginary load which is placed at both ends
of the column to create a moment equivalent to PA, see
Figure 2.5(c).

Starting with a load increment acting on the frame,

values of V for all members are computed for known P and A.
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In the first iteration the values of V are used as a new set
of loads for the frame, and the displacements, moments and
axial forces introduced by these loads are computed and add-
ed to the existing displacements, moments and axial forces.
In other iterations, in each cvcle the deflections and axial
forces introduced by the imaginary load of the previous
iteration are used to compute the values of V which are used
as the new set of loads. The cycles of iterations continues
until all of the computed values of V drop to less than a
specified value, which in this study is assumed to be equal

to 0.001 kips.

2.5 Residual Stresses

Residual stresses in the plates and rolled shapes
have been the subject of a number of investigations which
have resulted in a better understanding of the behavior and
load capacity of structural elements. Residual stresses are
introduced in a structural members during the following pro-
cesses: welding, flame cutting, hot-rolling, cold bending
and cambering. Tapered members are usually fabricated from
rolled plates cut to the desired size by a flame torch or
mechanical plate shear. However, rolled shapes are sometimes
used to construct tapered members, for example, a hot rolled
channel may be used as a compression flange of a column. 1In
either case, the elements are assembled by welding which in-
troduces residual stresses in the member. Residual stresses

caused by welding and flame cutting in built-up members are
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the only types of residual stresses considered in this
study.

The unresisted thermal expansion of steel for each
100°¢ is approximately equal to the strain of mild steel at
yield (21). The temperature of steel around a welded area
or near a flame cut edge rises to about 1200°c. This
localized increase in temperature causes a change in the
physical properties of the cross-section after cooling. The
residual stresses in these areas may reach as high as the
yield stress of the base material. The residual stresses
immediately adjacent to the weld or flame cut are usually
tensile and are balanced by lower compressive residual
stresses spread over a larger portion of the cross-section.

The pattern of residual stresses in a rolled section
depends on the rate of cooling and rolling process.
Bjorhovde, et al., (20) investigated and measured residual
stresses in hot rolled thick plates before and after flame
cutting. It was found that the maximum compressive residual
stress increases with increased plate size and that varia-
tion of residual stress through the thickness is negligible
in plates thinner than about one inch. Figure 2.6 shows
that the isostress diagram of a 12 in. by 3% in. universal
mill plate, which indicates the wvariation of the residual
stress through the thickness of the plate.

The residual stresses of several hybrid H shaped

test beams have been measured (17). The results of these
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tests confirm the yielding of the area around the weld and
the flame cut edges, and show similar patterns in all cross-
sections.

Nagarajarao, Marek and Tall (16) measured residual
stresses in five hybrid H shaped specimens. The specimens
were three feet iong and fabricated from cut plates and
universal-mill plates and were not subjected to cold bending
or straightening. The specimens were not straightened or
coid—bent or trimmed after welding. The results of residual
stress measurement for two specimens are shown in Figure 2.7.
The flanges of the specimen shown in Figure 2.7(a) are uni-
versal-mill plates; the flanges of the specimen shown in
Figure 2.7(b) are flame cut plates. The shape of the resi-
dual stress distributions are very similar to the stress
distribution in homogeneous shapes. The tensile residual
stress at the flame cut flange tips ranges from 30 ksi to
70 ksi and is about 25 ksi at the welds. The compressive
residual stress is about 20 ksi. The web has high tensile
residual stress in the area close to the weld and a com-
pressive residual stress of acout 10 ksi in the remaining
area.

To analyze the effect of residual sfresses in frames,
a simple geometrical pattern is needed to approximate the
residual stress pattern found from experimental investiga-

tion.
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Figure 2.5 A Column Deflected under Vertical and Horizontal Loads
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Dwight and Maxham (21) have used the rectangular
residual stress pattern shown in Figure 2.8(a) for box
sections, and later Nethercot (18, 19) adapted the same
pattérn‘for hybrid I sections, Figure 2.8(b). In this type
of pattern, the area around the weld is in tension at the
yield stress level, and the rest of the cross-section is in
compression, thus balancing the tensile residual stresses.

Theoretical investigations at Cambridge by Dwight
and Maxham (21), supported by test results, produced a simple
procedure to compute the width of the tension block. The

procedure computes the shrinkage force of a weld by:

waQw/n (2.8)

<}
]

ox

F=C,xA (2.9)

where F = the shrinkage force of the weld, Hw = a constant
estimatd to be about 0.13 (18), ™h = the heat input for
a unit l¢ ~=h of the weld, Cy = a constant, approximately

equal to 87v kips/in% (18), and finally A = the added area

of the weld in square inches which can be computed by:

A=0.6x W (2.10)

in which W,= weld size.
The width of the vielded tension block is calculated
by:
= e (2.11)
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where It = summation of thickness of the plates welded
together. When the weld is not located in the edge of a
plate, like in flanges of an I section, twice the plate
thickness is included in computing It.

When the plates used for the flanges of the I sec-
tion are flame cut, a portion of the plates at the edges is
also assumed to be yielded in tension. Dwight suggested
that the width of the tension block induced by flame cutting

and due to shrinkage to be

_ 28.783vt
£ Ty (2.12)

where t = thickness of the plate in inches, oy = yield stress
in ksi and Ce = the width of the tension block. Figure 2.8(c)
shows the residual stress pattern in the flame cut flange of
an I section.

Tall and Yu,in a study on stub column test results
at Lehigh University (33), used triangular residual stress
pattern for H shape cross-section, Figure 2.9. The H shapes
were built-up from mild steel plates flame cut and universal
mill. The residual stress in the tips of flame cut £flanges
was approximately 75% of the yield stress.

The buckling curves of beams based on this type of
residual stress pattern is very similar in most of their
range to the curves obtained by an analysis based on rectan-
gular patterns, for the same values of the compressive resi=-

dual stress (19).
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Nethercot (19) mentioned that Dwight recently
suggested to modify the rectangular tension block of the
residual stress into the trapezoidal shape for columns, see
Figure 2.10. He used welding data together with the
Cambridge approach (Equations 2.8, 2.9, 2.10, 2.11). The
theoretical beam buckling cuxrves based on this type of
pattern, and curves by experimental results of two sections,
were in substatial agreement.

The purpose of this study is not to establish a
definitive residual stress pattern for welded sections, but
to consider several possible patterns and study their effects
on the behavior of tapered gabled frames. For this purpose,
three procedures are included in the computer program, so
that frames can be ana;yzed for any of the three patterns

shown in Figures 2.8, 2.9, 2.10.

2.6 Elimination of Yielded Portions f£from Cross-Sections

After loading the frame with both real and imaginary
loads, caused by P-A effects in a cycle of loading, the
total end actions of members are computed by adding the end
actions resulting from that cycle to the end actions due to
previous load increments. Using the total end actions,
member loads and standard static formulas, the moment dia-
gram and the axial force along a member are determined.
These are used to establish normal stress distribution of

cross-sections along the member. Boley (6), using a series
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solution and the Bernoulli-Euler theory for tapered
rectangular beams, found that for tapered angles of less
than 150, the error on normal stress computed by the general
method was less than a few percent. Since the tapering
angle of the members used in this study is considerably less
than 15°, the.Bernoulli-Euler theory is used to compute
stresses due to bending moment and axial loads.

For elimination of yielded portions, the cross-
section is divided into small segments. To reduce computer
core usage and computing time, the stress at the center of
gravity of a segment is considered to be the stress along
the length of the segment.

According to Bernoulli-Euler theory the normal .
stresses due to bending moment and axial load in any loca-

tion of a cross~section are:

_ MY
°m = f’-‘— (2.12)

X

.2
9, = x (2.13)

where Mx = the bending moment, y = the distance from the
centroidal x axis of the cross-section to the center of
gravity of the segment, and » = the axial load. The total

stress at each point is then:

g, = 0_+0_+ 0 (2.14)

where 0. = the residual stress of the segment. After
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computation of ¢ those segments having a o, larger than

t’ t
the yield stress are replaced by a fictitious force and
rmoment. The magnitude of this force is equal to area of the
yielded segment times the yield stress. The moment:arm of
this force is defined at the distance from the center of
gravity of the yielded portion to the neutral axis as cal-
culated for the non-yielded parts of the cross-section. The
next step is to combine all fictitious forces and moments
with the axial force and bending moment on the cross-section.
Based on this new moment and axial force, the stresses in
the rest of segments are computed. The process of eliminat-
ing the yielded segments continues until only segments with
stress less than the yield stress are left. At this point
the cycle of computation for a real or imaginary loading is
completed. For the next cycle of computation, new proper-
ties of all cross-section must be computed.

A typical cross-section used in this study is divided
into 28 areas, see Figure 2.11. The center portion of the
flanges which are closest to the weld areas are assumed to
be in tension due to residual stresses. The remaining
portion of the flange area are compressed to balance the
tension forces of the center portion. The compresses por-
tions of the flange are in two separate parts, but the
stresses in the identical horizontal layers of these portions
are the same. Therefore these two separate portions are

treated as one compressed block.
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Each flange is divided into four horizontal layers
and the flanges of the channel section, located in the lower
part of Figure 2.1l], are divided into two segments. The web
of the cross-section is divided into eight segments. The
lower and upper segments of the web are in tension because
they are closest to the weld area, and the rest of the web
area is in compression, balancing the residual stresses of
the other two segments which are in tension. By assigning a
zero value to the width of flanges of channel in Figure 2.11,
the cross-section is transformed into a HE-shaped section.

If all or some of the tension blocks of cross-sections of
any or all members of a frame are equated to zero, the frame
will be analyzed partially or totally free of residual stress-—

es.

2.7 Reinforcement Effect of Rigid Connections

In classical plastic analyvsis of rigid frames, it is
usually assumed that a hinge can form at the center of all
connections. Laboratory tests have shown that when two mem-
bers (usually a column and a rafter) are framed together by
a reinforced connection, the plastic hinge will form at a
distance from the face of the connection in the weaker mem-
ber (32). This phenomenon is caused by the increased strength
of the portion of member adjacent to the connection, and to
the combined stress condition at the face of the connection.
This effect tends to increase the stiffness of the frame,

which in turn results in an increase of the ultimate load
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capacity of the frame. One approach to consider this effect
in analysis is to introduce a short, stiff member between
the column or the rafter and the reinforced connection.

This short member behaves elastically during the loading
process and, therefore, a hinge cannot form in the member.

A full scale frame with prismatic members was tested at
Lehigh University to study this effect (1l1). A theoretical
analysis using the fictitipus member concept produced results
very close to those found experimenéally when the location
of hinge formation was moved to a location with a distance
equal to depth of column or girder from the face of the con-
nection. The use of this type of fictitious member is con-

sidered in this study.

2.8 Computer Program

A computer program for this study was written for an
IBM 370/158 computer with the 08/VS2 JCL system. The lan-
guage of the program is FORTRAN-IV Level M and double pre-
cision was used in all computations.

The following assumptions are made in the develop-

ment of the program:

1. All members of the frame are straight in their
original position, i.e., no crookedness due to
fabrication is considered.

2. Plane cross-sections remain plane after deforma-

tion.
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3. Bernoulli-Euler law for stress distribution of
~all cross-sections is applicable.

4., Deformations are small and shear deformations
are negligible.

5. Due to adequate bracing, the possibility of
lateral buckling and out-of-plane deformation
does not exist.

Linear analysis of the frame by the matrix method is
incorporated with elimination of yielded portions of the
frame members, the presence of residual stresses, and the
P-A effects. These refinements are incorporated to analyze
nonlinear inelastic behavior of the tapered frames. The
sign conventions for joint forces, joint displacements, end
actions and forces.are shown in Figure 2.2. The input for-
mat for cross-section data, material properties,; load infor=-
mation, joint coordinates, and boundarv conditions are
explained in Appendix A.

The computer program operates in the following
stages:

Step 1.

Cross—-section properties along the members are com-
puted, and the member stiffness matrices in local coordinates
are assembled. All member stiffness matrices are then trans-
formed to global coordinates and the stiffness matrix of the
frame is assembled. The ISML library routine LINV2F

(31) is used to invert the stiffness matrix.
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Step 2.

[oosisiont N

The following equations, which are based on the
moment-area principles, are used to compute fixed end actions
of a member. Figure 2.12 shows a loaded fixed ended member

and its equivalent moment diagram.

B_2 B 2
x"dx (I-x)xdx = WL Tex)x"dx _
M f =t M f e+ Zf x) =0 (2.15)
A A A

A 2

A2 - A 2

M (L-x3) x3dx] . X791 L VL (L-X]_)xldxl—o 2.16

B X MP Ix 2 Ix (2.16)

B B B

Ra = -2 M (2.17)
T

Rg= S+ "a " M3 (2.18)
L

The load matrix is formed from the applied joint loads, and
equivalent joint forces are computed by Equations (2.15) to
(2.18). The solution of the equations so generated gives

joint rotations and displacements.

Step 3.

The P-A effect is accounted for by computing the
transverse deflection of one end of a member with respect to
the other end, and using this deflection and the axial force

in the number, a pair of imaginary loads are computed. These
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loads are located at the ends of the member and replace the
moment created by the eccentricity of axial load due to
transverse deflection of the member. After every cvcle of
loading by a load increment or imaginary loads, the pair of
imaginary loads for all members are computed and are includ-
ed in the set of loads for next cycle. This iterative pro-
ceés was found to converge very fast since the computed
imaginary loads are very small compared with the loads of
the previous cycle of loading. The iteration stops when the
summation of absolute values of imaginarv loads of all mem-

bers is less than 0.001 kips.

Step 4.

Multiplication of the member stiffness matrix and
the member displacement matrix converted to the local co-
ordinate svstems gives the member end actions £for the loading
increment. These actions are added to the end actions of the
previous increments to obtain the total end action. Using
the total end actions and total member loads the bending
moment and axial force at each cross-section of all members
are computed for each loading or at each iteration. With
the bending moment and axial force of a cross-section known,
stresses in cross-section segments are calculated and yielded
portions eliminated. New properties of all cross-sections
are then computed for the next increment of loading or itera-

tion.
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Step 5.

If all the segments of a cross-section are eliminated,
a hinge has formed at that location, e.g., the bending moment has
reached the plastic moment capacity of the cross-section in
the presence of axial force. If the formation of the hinge
occurs because of a real load increment, computed values re-
lated to this increment of loading are deleted, and a smaller
increment is used to ensure a more accurate result.

The magnitude of the hinge forming load is considered
to be determined with adequate accuracy if the hinge forms
during application of a small load increment or during itera-
tion for P-A effects. If the number of hinges is not suffi-
cient to define a mechanism, the analysis proéess continues
until a mechanism is found.

The above process for determining the collapse load
is a lower bound procedure. The existence of a mechanism
is an upper bound solution, hence, the solution is unique,
and the maximum load computed is the ultimate load of the

frame.

2.9 Computer Program Capability

The program has the capability for analyzing a one
story tapered or prismatic gable frame in both the elastic
and plastic ranges with consideration of P-A effects,

residual stresses and localized yielding.
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The frame may be lcaded by two load sets. Loads in
the first set are applied to the frame in one cyvcle of load-
ing followed by iteration for P-A effects. The second set
may then be applied incrementallv. If either of the two
sets is not required, zero loads are used £for that set. The

flow chart of the computer program is shown in Figure 2.13.

2.10 Computer Analyvsis Results

Several frames were analyzed to verify the analysis
technique and the results are summarized as follows:

Number of elements in members

Three frames with maximum tapering angles of less
than 4° were analvzed with different element patterns in the
members. For each analysis the loading remaiﬁed thé same
but the number of elementé in each member was varied.

Tigure 2.14 shows the results of the analysis of one of the
frames. The results for the other two frames are similar.
This figure shows that the centerline deflection increases
with the increasing number of elements, but that the rate of
increase is much smaller when the number of elements per
member 1s between 15 and 25. It also shows that there is
little change when the number of elements is increased from
20 to 25. Taking computer storage limitation into consider-
ation, the optimum number of slements seems to be 20 and this
number was used for all members of frames analyzed in this

study.
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Figure 2.13 Flow Chart of the Computer Program




Vamax.

46

R5X0.188°

| M tw'-o. l57'
-J

T - RS5X0.188"
Section B~B

1.00 - R o
S = ,

. . 3 [ ]
0.99 ; i : . E
! ' ' . H
1 ] t [ ' ‘
0.93 | ' . H ) . '
. ] ' . M .
L ! : "
0.97 ' vood ! : ' '
1 1] ' [ ! . ]
[} [ L] . [ M .
H Voo : ' :
0.96 1 : ( P : ' '
, A T : ;
0.95 | [ : : .
5 8 10 12 15 20 25

Figure 2.14

Number of Elements

Variation of Midspan Deflectjon Versus Number
of Member Elements



P-A Effects

Figure 2.15 shows a single story frame subjected to
horizontal and vertical loads. Also shown are load-deflection
curves for the frame. The upper broken line is from a first
order analysis and the solid line is from a second crder
analysis. The load-deflection curves show that the second
order effect decreases the ultimate load capacity of the
frame and increases the deflections.

Comparison of first and second order analysis results
for several frames showed that the behavior of a frame, under
either gravity or combined gravity and lateral loads, cannot
be adequately predicted by a first order analysis. This is
especially true when the axial load in a member is signifi-
cant. Fiéure 2.16 shows a frame loaded by lateral load only.
Because of the absence of gravity loads, the axial force in
the members is not significant and the load-deflection
curves from first and second order analyses do not vary

significantly.

Residual Stress Effects

To study the effect of residual stress block width,
four frames were analyzed, with five different residual
stress patterns. The basic pattern was assumed to be rec-
tangular, Figure 2.8(b), and the ratio of tension block width
to flange width varied. The results of the analyses were
similar for all frames. Figures 2.17 and 2. 18 show the load-

deflection relation of two of the frames. As the tension
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block width increases, the stiffness of the members decreases
which, in turn, causes an increase in deflection. This
effect, however, does not significantly lower maximum load
carrying capacity of the frame. When thewidth of the tension
block increases to about 25% of the flange width, the maximum
load capacity decreased by onlv 2.5% in two of the frames and
was unchanged in the other two frames. The decrease is
attributed to the increase of the second order moments due to
increased deflections after the first hince forms.

In order to study the effect of different types of
residual stress patterns on load-deflection curves, the same
frames were analyzed using the other two residual stress
patterns, Figures 2.9 and 2.10. The results of these anal-
yses show that the defiections for the trapezoidal pattern
are less than the deflections which resulted in the frames
with rectangular pattern, Figure 2.19. In both cases the
léads were the same, and the deflections for the triangular
pattern were less than the other cases for the same loads.
Figure 2.19 shows the load-deflection curves for the three
patterns which have the same ratio of the tension block to
flange width. The maximum load capacity of the frame with
rectangular residual pattern decreased by 2% over the same
frame with the same ratio but with triangular pattern. This
is because of increased deflections of the first case over

the second case after the formation of first hinge.
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Effect of Connection Reinforcement

The frame tested at Lehigh University (11) was also
analyzed in this study. Assuming that no hinge can form
closer than a distance equal to the depth of the column
(5.12 inches) on the column to the center of reinforced con-
nections (connection of column to beam) the maximum load was
found to be 16.8 kips. In Ref. 11, for a slightly shorter
distance (5 inches) , the maximum lateral load was 16.9 kips,
and in Ref. (12), the maximum lateral load was computed to
be 16.75 kips for a distance of 5.225 inches. When the
connection reinforcement effect was not considered, the
maximum load computed by the computer program was 15 kips.
The results of the computer analysis and the results of
theoretical and experimental analysis of Ref. (l1) are

plotted in Figure 2.20 .
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CHAPTER III
TRIAL AND ERROR ANALYSIS OF TAPERED FRAMES

3.1 General

Manual techniques to estimate the load-deflection
relationship of tapered gabled frames have not been exten-
sively studied. Howvever, Cheong-Siat-Moy (23,24,25,26,27,28)
has thoroughly investigated inelastic sway buckling, secon-
Gary effects, and sidesway deflection of unbraced multi-
story prismatic frames, and Le=Wu=Lu (29), and Liapunov (30)
have studied the ultimate strength of orimatic steel frames.
Procedures discussed in Chapter II, for consideration of
residual stresses and elimination of yielded portions of
cross sections, incorporated with methods used in the above
references, are adapted here to develop a manual technique
for the analysis of single bay tapered gabled frames with
hinged supports. In the proposed method, slope deflection
egquations are used to develop formulas for computation of

deflections using a trial and error procedure.

56
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3.2 Basic Concepts

As in the previous method (Chapter II), the moment
area principle is employed for computation of member stiff-
ness. Integration along members is performed using small-
elements of the member which are assumed prismatic with con-
stant moment of inertia. The loading is considered in two
stages and incrementally increased, until the frame fails
due to formation of a plastic mechanism or sidesway buckling.

For each increment of loading, end actions of all
members are computed and the stress distribution at all
cross~-sections obtained. With consideration of residual
stresses, the yielded portions of all cross-sections are
eliminated and new properties calculated. These properties
are then used for reanalysis with the same load increment.
The iteration continues until the variation of properties
converge. The process of eliminating yvielded portions is

discussed in Chapter II.

3.3 Development of the Analysis Method

3.3.1 First Stage Loading

The frame CBADE of Figure 3.1, with the following
definitons, is used for the analysis:

D.,D, = Inclination of columns

L'°R
e = Rise of beam from the center of connection
of beam and column to the ridge line (pitch

of roof)
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h = Height of column
H = Distance from the center of support to midspan

L = Length of column

Lb = Length of beams

8 = Slope of beams.

The frame is loaded with a concenterated horizontal
load QTl at B, a pair of concenterated vertical loads Ptl'

at B and D, and a uniform load W on the beams, It is

Tl
assumed that the frame is hinged at both supports and all

other connections are rigid. The column and beam lengths

are:

L = /h2+DL (3.1)

[
|

= /(H—DL)2+ e? (3.2)

Figure 3.2 shows the deflected shape of the frame;

horizontal deflection ABTl and ADTl at B and D and vertical

deflection V

AT1 at A.

The vertical reactions P at C and E, con-

cri’ Tl

sidering the effect of deflections, are:

=Py (D ~Agn) = By (Op-bp) = 2Ly (Bdyr) = Oph
Fory = 70 (3.3)

PETl = -2am_7 2leLb - PCTl (3.4)
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h = Height of column
H = Distance from the center of support to midspan

L = Length of column

Lb = Length of beams

6 = Slope of beams.

The frame is loaded with a concenterated horizontal
load QTl at B, a pair of concenterated vertical loads Ptl’
at B and D, and a uniform load WTl on the beams. It is
assumed that the frame is hinged at both supports and all
other connections are rigid. The column and beam lengths

are:

L_ = /h2+D (3.1)

c L

[
|

b = /(H—DL)2+ e? (3.2)

Figure 3.2 shows the deflected shape of the frame;

horizontal deflection ABTl and ADTl at B and D and wvertical
deflection VATl at A.

The wvertical reactions PCTl’ PETl at C and E, con-

sidering the effect of deflections, are:

p_ o 11 Drtem) 7 Foy Bgrbyn) 7 Fmby Bdagy) ~ S
CT1 2H '
P

grl - ~Fr T 2rily - Pem (3.4)
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where

Bppy = (Bgpit Appy)/2 (3.5)

The subscript Tl denotes total load, reaction, or
deflection from the start of loading of stage one; subscript
1l indicates the additional loads, reactions, or deflections
caused by the last increment of loads.

Since the frame is indeterminate, ch and QEl are
computed by trial and error: first a value is assumed for

ch and then QEl is computed from
QEl = -Ql - Ocl (3-6)

The end column and beam moments are then

Mpe = “Pe1lPr ~Femlpy * b (3.7)
Mo, = My (3.8)
Map = Po1BEHtPrpy8p17Q0; (hte+Vy ) +P, (H-Dp -
A A wiL
BT "p71 1*b
— )" @ (Vg )+ 5— (H-D -
Aoy =
T2 P, (3.9)
Map = Mpp (3.10)
Mpg = PgiPr = QP * Pgppilpg (3.11)

Mpa = Mpg (3.12)
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The above moments are positive when the inside flange is in
compression, otherwise, they are negative.

Based on an assumed value of ch, the horizontal

deflection of B, with respect to D, is computed by two
different procedures, which will be discussed later, and the
results compared. If the computed values are equal or are
sufficiently close, the assumed value of ch is taken as the
actual horizontal reaction at c¢ due to additional load in-
crement, otherwise another iteration is reguired. Once con-
vergence is obtained final deflections, reactions, and end
actions are computed. Using these end actions, bending mo-
ments and axial force of all cross-sections are found and the
stress distribution at all cross-sections obtained. Combin-
ing these stresses with residual stresses, yielded portions
are eliminated, and new properties of all cross-sections
calculated. If no change of properties occurred due to
addition of the last lcad increment, the loading of the
frame continues with the next load increment, otherwise, the
deflections, moments, and axial forces for the load increment
are computed using new properties. The stage of loading ends
when all segments at a cross—-section are vielded. A hinge is
then assumed at the location of this cross section.

The procedures for computing the horizontal deflectic

of B with respect to D (Figure 3.2) are as follows:
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a) The frame is divided into two subassemblages.
A freebody diagram of the deflected shape of left sub-
assemblage is shown in Figure 3.3. The deflection and ro-

tations of this subassemblage are: Vpl vertical deflection

at A, ABl horizontal deflection at B, eBC' eBA rotations of

BA and BC at their end B. The rotation of column BC due to

A is

Bl

A v
Bl _ .5 -g__- AL
- ®ec™®maTE-p, (3.13)

where eBcand eBAare found from

o
@]

o, = =S B x2ax (3.14)
BC ELZ T
C C X
and
8 - MBA ~//ﬁB xzdx + MAB B(Lb-x)xdx
BA ELb2 a IX ELbz A ————T;——— +
wlcose B (Lb—x)xzdx 5
o — (3.15)
b A ZIx

substituting fpcand fgp into equation 3.13 results in:

‘Bl _ - Ymo B yPax _ Mgy /BXde_MA_i/B
h- T EL I = I, 2
/e Ik EZ/A x T2 a

(Lb—x)xdx ) w lcose

B (n0xfax _ vy (3.16)

I EL, A T, F-D,
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Substituting MBC and MBA from equations 3.7, 3.8, and 3.9

into equation 3.16 yields:

A
‘%l = (Pe1Dr*Pep1fp179c P .//aB x2dx
c

2 I
EL, X

+

(PoyDp*Pagpyfp1 =90 h) J/ﬂB x2dx
A

EL, 2 I

Mag .J/ﬁB (Ly-x)xdx  w,Cos® J/PB
ELb2 A I, ELy, A

2
(Ly-x)x7dx Vp, (3.17)
2IX H—DL

Rearranging this equation gives

bpy PCTlABl.J/pB x%ax _ Ferilei J/ﬁB x2dx _
h EL 2 C I EL, 2 7N I

c b
(P3P0 ) ./PB x’ax , Pe1Pr-9%1?) J/PB x%dx _
7 T ) T
EL, c Ix EL,, A x

M B -
. J/ﬁ (Ly-x) xdx ) W,Cos® ) B (Lb-x)xzdx
EL A IX EL A B

b 2Ix

i (3.18)
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Defining

B 2
a
o =£ x_dx (3.19)
X
B 2
4
8 =K === (3.20)
X
B
8 =/A (Ly, X)xéx (3.21)
IX

B 2
L, -
0 =4//‘ (L,-x)x"dx (3.22)
A 21

X

Equation 3.18 can be written in a more simple form as

\Y

Al
\ - (PCl r: QClh) ulb +I3L )h—hL 5MAB EL Lb h(H DL) owl o Ichse
B 2, 2_
EL,“L . CTlh(ocL +BLC ) (3.23)

The Freebody diagram of the right subassemblage is
shown in Figure 3.4. Using the above procedure the horizontal

deflection ADl is given by:

_ (-P ?fQE )(ocLb +BL )h+hL GMAD+ Lb h Al +pwl o LbCose
Dl

EL. Lb - Eﬂ(alb +BLC ) (3.24)

Since the axial force in the beams is small and the
maximum deflection of beams, compared to their length and

depth are small, their second order effects are negligible,
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and the value of VATl can be computed from

_ 2_ 2H-D_-D F& . -A
Vapp = 7Lp2- 20X DL2 DT1°BTL, _ (3.25)
The difference between values of Var1 before and after appli-

cation of the last load increment is the same as VAl' which

is used in egquations3.23 and 3.24

or

VAl = VATl after _VATl before (3.26)
where VATl after = the total deflection of midspan
computed after application of the
last load inerement, and
VATl before = the total deflection of midspan
computed before application‘of the

last load increment.

Equations 3.23, 3.24 and 3.25 are dependent on each other,

and the computation of VAl, ABl and ADl is iterative. First,

an approximate value is assumed for Vai in equations 3.23 and

3.24, then the computed values of ADl and ABl are used to

compute vAl by equation 3.25. If this second value of Vle is -

equal or within an acceptable range of difference of the value

of VAl used in equations 3.23 and 3.24, the iteration is com-

pleted, otherwise, a new value for VAl is assumed and the
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process continues until convergence. The procedure for
selecting values of VAl is explained in section 3.4.

The horizontal deflection of B with respect to D is

then computed by:

Al = A - ABl (3.27)

which is used to compare with the result of the next proce-

dure.

b) Girder BAD is separated from the frame, as shown
in Figure 3.5. Using the slope deflection method and moment
area principle, transverse deflections at B of member AE

with respect to A and D of member AB with respect to A are:

on = BB f Aryoxdx Mg f A xPax  w Coso f A (g 0 x7dx
Tpds 7T YEo B E B oI,

(3.28)

and

o = DB / Proxax M / B x%ax | w Cos6 / A (1, ) xPax
oo o T, tE, b E D 2T

(3.29)

Integrations of the above equations are performed on small
elements along the beams as in the previous method (Chapter
II).

Using EB” and DD” computed by equations 3.28 and

3.29, the horizontal deflection of B with respect to D is:
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Figure 3.3 Deflected Shape of Left Subassemblage

Figure 3.4 Deflected Shape of Rigit Subassemblage

Figure 3.5 Freebody Diagram of Rafter BAD
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Al =-(DD” + BB”) sin 9 (3.30)

The wvalue of Al computed by equations 3.27 and 3.30
are compared. If the difference of these two values is
within an acceptable range the computed values of deflections
are correct, otherwise, a new value for reactions are assumed
and the process repeated. The procedure for selecting values

of horizontal reaction is explained in section 3.4.

3.3.2 Second Stage Loadinc

In this stage of loading, the frame is determinate
because of the additional hinge formed at the end of the
first stage. Figure 3.6 shows the frame in second stage of
loading with an assumed hinge at point 0. The length of the

portion of the beam between 0 and A is

_ T2
Lop = /QOA +y2 (3.31)

where Xon and Yop 2are the horizontal and vertical projections
of OA in the original position cf the frame. Summation of
rnoments produced by the loads in the second stage at point 0

is egual to zero, therefore, for subassemblage CRO,

Qpa (hte-yoa+Vgq) =Pry (H=Xqa +850) +Q, (@=y 2 +Vgp) =Py (H=X4,=Dp +

H—XOA-DL+AOT—ABT) +Q v -p
2 CT1°02 "CT1

. A=A
Qr1Vo02 PTl(Aoz'ABz""Tl(Lb"LOA)(—O—g--i’-?-) =0 (3.32)

Bop=Bpp) =Wy (Iyy=Lga) ¢

A02+
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and for subassemblages OADE

Qg (h+e=y (2 +Vop) +Pgy (B+xgp=8gp) #Py (H+Xoa~Dp-=A4p+Apg) +

H+X5a=Dp=dgp+ipy

WA (L, +1L -
277b ) Y+Qpp1Vo~Prp1l02 = O- (3.33)

oal (

From summation of wvertical forces

PC2+PE2+2P2+2wa2 = 0 (3.34)

From summation of horizontal forces

QC2+QE2+Q2 =0 (3.35)

Where VOT and AOT are the total vertical and horizontal

deflections at point 0, ABm is the total horizontal defleqtion

at B and PZ'QZ' Wy QCZ' QEZ’ PCZ and PE2 are the loads and

reactions introducted in the second stage, and, finally,
AOZ' ABZ’ V02 are the deflections at 0 and 3 for the second

stage of loading. Since the change of geometry due to bowing
of Beam AB is negligible, it is assumed to be straight at the
end of the first stage. Therefore, the vertical and horizon-
tal deflections at 0 can ke computed by proportioning the
deflections at A and B from the end of the first stage, and
adding the deflections of the second stage. Solving equations

3.32 to 3.35 reactions, QCZ’ QEZ, PCZ and PE2 are computed.
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Figure 3.7 shows the deflected shape of frame CBOADE
including the two subassemblages, CBO and OADE. Figure 3.8
shows the deflected shape of beam BO of subassemblage CBA
fixed at B in order to compute the deflections at 0 without
consideration of the rotation of joint B. The deflections

are

Bop = *850(e=¥op) (3.37)

where V0 and A are deflections at point 0, when joiht B

A 0A

is fixed, and eBO is the rotation of B with respect to 0°.

The rotation 6, is computed from

- / B xlax | Wp00sS f B (1, L% % ax
B0 T E(MLo)? Jo Ik Eylod) o T (3.38)

X

and moment Moo is computed from
Mpg = =Pop (Dp+lgp) + Qooh=Pamilp, (3.39)

Figure 3.9 shows the deflected shape of rafter 0AD of sub-
assemblage OADE fixed at D to compute the deflections at ©
without the consideration of the rotation of Joint A.

The deflections are:

v =V" + V" + Vv (40)

0D
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Figure 3.7 Deflected Shape Under Stage II Loading



Figure 3.8 Deflected Shape of Member BO without Consideration
of Joint Rotation at B

Figure 3.9 Deflected Shave of Member DAO without Consideration
of Joint Rotation at D
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AOD = A"+ A + A (41)
where

A" =48, (e-y,,) (3.42)

A= “eADYOA (3.43)

A =-eA0tOA (3.44)
Therefore

Sop = ®pale=¥ga) — %ap¥on ~ %ao¥on (3.45)
and

Vi= —GDA(H~DR+XOA) : (3.46)

v = -eAOXOA (3.48)
Therefore

Vop = ~Opa (B-Dptxga) = (9pp+0,0) %5 (3.49)
where A”,A"", A7, v7, v°7, V777,86 8 8 are deflections

"Y0A" "AD’ A0
and rotations, as shown in Figure 3.9, caused by second stage

loading. These rotations are given by
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o - .pa /D x?ax , Map /D (L,,~x) xdx
a7 B2 L, By i

w,Cosf D 2
2 — / (L, -%) x7dx (3.50)
o) A ZIX
where
MDA = -QE2n - PEZ(DR—ADT) + PETlAD2 (3.51)
WHL A A
My = Qn, (R+e+V ) - P (H-A, ) - 2B “ar-"pr
AD B2 AT E2 AT (—7—— (B DR ——)
Qer1Vaz ~ PE'I{J.AAZ (3.32)
and
. .
6. = Mpa v//ﬁA(wax)xdx M0 d//“A x2dx N
= _bTR/ReR . _AD X Gx
AD ELb2 D I, ELbZ D IX
w,COsH y\ 2
2 (L, ~x)x"dx
2 / i 9% (3.53)
b D e
o _ Mag A 2.,  W,Cos® Ao —x)xzdx
0= B F + BT 20 (3.54)
AO o) X =02 0 2T

where

MAO = MAD (3.53)
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The vertical and horizontal deflections of O in the

subassemblage CBO, figure 3.7, are:

A

Vo2 = Vop = (5 * ) (B = XopDp=dam*igm) (3.56)
Ap3
Doz =852 = bog T (A7 * Spc) (e = vou *Vapy) (3.57)
and the vertical and horizontal deflection of O in the
subassemblage OADE, Figure 3. 7, are:
)
Vo2 = Vop * (g = Bpg) H + Xy = Dp + Ay = Agpg) (3.58)
8p2
Bpa = Bgy = 8gp = (= = Bpglle = vou + Vg (3.59)

Summation of Equations 3.57 and 3.59 gives the
horizontal deflection of B with respect to D in the second

stage, A, where

A
By = Bpy = 8gy = 8gp thp + (7= + Opc) (= ¥yt Vo)

- (= - 8pg) (e = vou * Vopy) (3.60)



Since vertical deflections of both subassemblages
are equal, at point O, ecuations 3.56 and 3.58 are equated,

hence

p* F - g (H *+ Xoa - Dg * 4pr1 ~ Ao71) (3.61)

Upon rearrangement of equation 3.60, ABZ is

Bopt pth = Bt Op0) (@ = yop + Vopydh

32 © (6 = ¥on * Vopp * D)

>

+ A

D2 (3.62)

Using ABZ from equation 3.62 and substiuting into ecuation

3.61 and solving for AD2’ results in

. oy Voplh :
\D2 - -
(2H-Dy -Dp=B8pmy ~8pp1 28007 )
(H-xa~ Dp*éppit OTl)h oy s
(2H=Dy ~Dp=Lpmy - ADT1+2AOT1)<e Yoa*tVop1th)
(Htxqp=Dp=dppy* OTl)h 5+
(2H=Dp-D; =Apmy =8gp*284p;) DE
Opg (H=Xga=Dp~App1+8gpy) (€=Yop+Vopy th) N
(2H=Dy =Dp=Lpmy ~8pp1+28gp;) (e-¥op*+Vopy +h)
(H=xp=D; - AB'rl Bopy) (Boptloplh (3.63)
(2H-Dg-D, -8 ) (e~ )
L™%er1pr1+286y) (e YoatVory+h)
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where eDE and GBC are computed by

s . "DE J/FD x°dx (3.64)
bE~ ELz f I,

98¢ = EEC J/PB xidx (3.65)
c2 C X

When e is small, equations 3.57 and 3.58 give

and

by = Lpy (5.66)
and
AOB = AOD =0 (3.67)

Therefore values computed by Equations 3.62 and 3.63 are

equal:
- - Vop = Vop'h
52 7 002 T e S R
1. Pr™%BT17?DT1 %071
(H=x 5 =Dy -0 )h6,,
oA sr1P0r1

+
(28D = DR pr1~%pr1”28 OTl)(e‘Y0A+V0T1+Ej
(B=%5a~2pp1+8071) ®pE .
(2H=Dp=Dy =8pn1~8pp1 201!
(H'XOA‘DLT BTl+ OTl)(e YonVor | Mepg 3.68
2F=D.-D -68)

R "L “BTl DTl OTl)(e+V or1~Yo +h)
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If the first hinge forms in one of the columns, the
vertical displacement at the top of the column is equal to
the axial deformation of the lower portion of the column
which is negligible, Figure 3.10. Also, the shear at 0 in

the second stage is equal to zero because Q

Qp o is equal to

zero, therefore, the moment at D is equal to zero and the
left subassemblage can be identified as shown in Figure 3.11.
Figure 3.12 shows the deflected shape of girder BAD without

consideration of rotation at Joint B, and vertical deflection DD” is

bp* = 8 (H-D

BA + (8pp+0

The following equation can be written for horizontal

deflection at B.

A -
B2 -~ DD
—_ 4 8 = E (3-70)
h BC 2H DR DL
orx
o o p L CBA(ETDL* (6aptonu o) (BoDR) —
B2 BC 2H- DL DR :

where eBC, eBA’ and SAD are computed by Equations 3.14, 3.15,

3.53, and eAB is computed by:
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Figure 3.10 Deflected Shape with Hinge in Column DE

Figure 3.11 Idialized Subassemblage CBAD

Figure 3.12 Deflected Shape of Rafter when Joint B is Fixed



BAB==EIb2

w,Cos® A (Lb—x)xzdx
—ﬁ— (3.72)
b B 21,

The vertical deflection at A in second stage loading is

o _ (eAB+eAD) y (2H-DRDL) (3.73)
A2 2 2 *
and the total horizontal deflection of B with respect to
D is
= 2 - - - 2 _
By + A= 2002 = (e = Vyp= V)2 - 8) (3.74)

In the second stage of loading, computation of
deflections is iterative because the computation of moments
is based on the deformed frame. In the first cycle the end
moments are computed assuming deflections in the second
stage equal to zero. In the remaining cycles, the deflec-
tions computed in one cycle are used for computation of end
moments of the next cycle. This iteration process continues
until convergence occurs with an acceptable tolerance.

In the second stage loads can be applied increment-
ally. At the end of computations for deflections in a
particular load increment, stresses of all segments of cross-

sections are checked and yielded segments are eliminated and,
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as in the first stage, new properties are computed. If the
new properties do not change significantly, the computation
proceeds to the next increment of loads, otherwise, new pro-
perties are computed and the process repeated for the same
load increment. The load is increased until an additional
hinge'forms on the frame. At this point the frame is con-

sidered to have failed.

3.4 Approximation of Horizontal Reactions and Deflections

To start the computation for the initial analysis in
the first stage, approximate values are needed for one of
the horizontal reactions and the vertical displacement at the
ridge of the frame. These approximate values must be within
a reasonable range of the actual reaction and displacement,
otherwise, the iteration hay require a long and tedious com-
putation to converge. Results of a first order analysis of
the frame loaded with the first load increment are very useful
for this purpose. Subsequent trial values of horizontal re-
action in the first stage of loading must also be chosen
carefully, if the horizontal deflection of one end of the
rafter with respect to other end as computed by methods (a)
and (b) of Section 3.3 are to converge in successive trials.
For example, if in a trial with an increase ofﬁhorizontal re-
action over the previous trial, the difference between the two
calculated values of Al becomes smaller, then the selection of
the trial value is in the right direction, otherwise, the

trial value must be decreased. If the sign of the difference
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between the two values changes in two successive trials,
the rate of increase or decrease of the trial value for the
reaction must be reduced.

The starting trial value for midspan deflection of
the first increment can be the deflection from a first order
analysis. For other load increments, the deflection calcu-
lated for the previous load increment can be used as the
starting value. Convergence is very dependent on the trial
values and with the use of proper values convergence will
occur much faster.

In the trial and error method, the computation of
ABl and ADl for an assumed value of horizontal reaction is
iterative. The iteration is for the value of vertical de-
flection of midspan. The iteration process continues until
the value computed by Equations 3.23 and 3.24 are equal or
within an acceptable range of the value used in these equa-
tions. For this purpose, in the first two cycles of iteration,
the rate of variation of computed vertical deflection with a
change of the wvalue used in Equations 3.23 and 3.24 can be
obtained and, using this knowledge, proper values can be found
and used in computations until convergence occurs.

In this study the computer program described in Chapter
II was used without consideration of P-A effects or elimination
of the yielded portions. Using this approach for the frames
analyzed in the study, the maximum difference between starting
and final values of the horizontal reaction was about 3% for

the first increment.



CHAPTER IV
SUMMARY AND CONCLUSIONS

The purpose of this study was to investigate the
elastic and inelastic behavior of unbraced single span gabled
frames constructed using tapered members. Because of adequate
lateral bracing it was assumed that no out of plane deforma-
tion occurs. The investigation included the effects of resid-
val stresses, and P-A effects on the load-deflection relation-
ship of this type of frame. A literature survey was conducted
to determine the scope of investigations by other authors. It
was found that most suggested solutions concerning the analysis
of gabled frames with tapered members were limited to elastic
and first order analysis. An approximate solution to deter-
mine the allowable stresses in frames with tapered members was
found which is based on effective length factor curves and
also design provisions for prismatic members. The solution
is limited to frames with members having doubly symmetrical
cross—-sections with flange dimensions, web thickness, and tap-
ering angle of columns and rafters constant.

Two approaches were used in this study to analyze
tapered frames: (a) a general approach based on the stiffness

83
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method and, (b) a manual technique based on the slope deflection
method. These methods were selected because of their suit-
ability, especially the adaptability of the stiffness method
to the computer. Both methods have a broad potential for the
analysis of tapered frames. The stiffness method, which is
used as a tool of research, was incorporated with P-A effects,
property changes of the frame members during loading process,
and residual stresses. A computer program was developed based
on this method. The program treats every straight element of
the frame with constant flange dimensions, web thickness, and
tapering angle of columns and rafters as an individual member,
therefore, it can handle change of slope and cross-section
along the frame members. In both methods, the equilibrium
equations are formulated on the deformed structure and residual
stresses at a cross-section and partial yielding of the members
are considered in the loading process. Also, the effects of
connection reinforcement are considered, by assuming that a
hinge cannot form on a member adjacent to a reinforced connec-
tion within a distance equal to the depth of the member. Both
methods are iterative and the loads are applied incrementally,
and are increased until failure of the frame occurs due to
sidesway buckling or a plastic mechanism.

Results obtained from the second order analysis of
several tapered frames by the two procedures show very good
agreement. A frame with double symmetric H-shaped cross-

sections and constant flange dimensions, web thickness, and
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tapering angle along columns and rafters was analyzed. The
ultimate load obtained by the computer analysis and trial and
error method was about 2.7% higher than ultimate load computed
by the procedure using the effective length factor curves and
AISC design provisions for the same type of loading. A pris-
matic frame analyzed both experimentally and theoretically at
Lehigh University was also analyzed using the proposed methods
and the results of the two studies were very close.

From the analyses conducted in this study, it was
learned that: 1) the effect of residual stresses is limited
to an increase in deflection which, in turn, causes an increase
in secondary member end moments which slightly effects the max-
imum load capacity of the frame; 2) the rate of this increase
changes with the type of residual stress pattern. For the
three types of patterns examined here, the rate was the highest
when the pattern was rectangular, and the lowest when the
pattern was triangular. A design practice which ignores the
P-A effects, overestimates the load carrying capacity of the
structure; 3) connection reinforcement increases the stiffness

of the ham which increases its load carrying capacity.
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COMPUTER PROGRAM

A.l Description of Computer Program

The computer program developed in this study is based on
the stiffness method of analysis. The program contains a main
program and four subroutines as follows:

Main--Reads and prints the input data; computes joint deflec-
tions and member end actions and adds to previous deflec-
tions and end actions; calculates a set of imaginary
loads, to replace moments in the members form P-A effects;
modifies the stiffness matrix of the frame using proper-
ties at cross-sections computed including the effects of
previous loadings; assembles the load matrix for imaginary
loads; computes deflections for imaginary loads; iterates
until the summation of the absolute values of the set of
imaginary loads is less than or equal to a specified
value, taken as 0.001 Kip in this study. If a hinge forms
on the frame due to application of a load increment before
iterating for P-A effects, deletes the hinge, deflections
and member end actions due to this load increment and re-
analyzes using smaller load increments to obtain a more
accurate value of load which causes the formation of the
hinge. If a hinge forms on the frame due to application
of the smaller load increment or while iterating for P-A

effects, further loading of the frame continues considering
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the new hinge location; when the number of hinges reaches
the number required for the failure of the frame, the
final deflections, member end forces and reactions are
printed.

Inrtia~~Computes moment of inertia, area, and determines the
location of center of gravity of all cross~-sections.

RESREC--For rectangular residual stress patterns, combines
stresses due to loading with the residual stress of ele-
ments aﬁ all cross-sections; eliminates yielded portions.

RESTRI--The same as RESREC for when the residual stress pattern
is triangular.

RESTRP--The same as RESREC for when the residual stress pattern

is trapezoidal.
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A.2 Input Data Format

Type 1 General Parameters (one card)

Cols. 1-5 LNP Number of frames to be analyzed.
6-10 LTP A code number for the type of residual stress

patterns as follows:

1 = rectangular pattern
2 = triangular pattern
3 = trapezoidal pattern

Data card set for a frame

Type 2 Frame Parameters (one card per frame)
Col. 1-5 NP 'Number of degrees of freedom of frame
6-10 NM Number of members in frame
11-15 JN Number of joints in frame

16~-20 NLF Number of larger load increments

21-25 IL Number of smaller load increments
26-30 JH Number of hinges at supports
31-35 LC Number of connections where connection rein-

forcement is to be considered

Type 3 Number of Elements (maximum of 16 per card)

Cols. 1-80 MN(K) Number of elements in each member; five spaces
for each number; limited to the number of
members



Type 4

Cols. 1-25 JCN(I)

Type 5

Col. 1-10 XO(I)

11-20 YO(I)

Type 6
Cols. 1-8 TFL(K)

9-16 WL (K)
17-24 TF2(K)
25-32 W2 (K)

33-40 WCF(K)

41-48 TCF(K)

© 49-56 TW(K)
57-64 HA(K,1)

65-72 HA(K,N)

Type 7

Cols. 1-10 ¥YST(K)

11-24 E(K)
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Location of Reinforced Connections (maximum of

16 per card)

Joint numbers where connection reinforcement
is to be considered, five spaces for each
number, joint numbering sequence is shown in
Figure A.l; limited to 5 joints.

Joint Coordinates (one card per joint)

Horizontal coordinate of joint, inches.

Vertical coordinate of joint, inches.

Member Properties (one card per member)

Outside flange width, inches.

Outside flange thickness, inches.

Inside flange width, inches.

Inside flange thickness, inches.

Width of channel section flanges not including
web thickness, if used, otherwise leave blank,

inches.

Thickness of channel section flanges, if used,
otherwise leave blank, inches.

Thickness of the web, inches.
Depth of web at the start end, inches

Depth of web at the end end, inches.

Material Properties (one card per member)

Yield stress of steel, KSI.

Modulus of elasticity of steel, KSI
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Type 8

Cols. 1-8 WF1l(K)
9-16 WW1(K)
17-24 WF2(K)

25-32 WW2 (K)
Type 9

Cols. 1-80 PBASE(K)

Type 10
Cols. 1-10 CIVLB(K)

11-20 CTHLB (K)

Type 11

Cols. 1-25 JH(N)

Type 12

Cols. 1-80 PBASE(K)
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Width of Tension Block Due to Residual Stresses

(one card per member)

Width of tension block in outside flange,
inches.

Width of tension block in outside portion of
the web, inches.

Width of tension block in inside flange,
inches.

Width of tension block in inside portion of the
web, inches.

First Set of Joint Loads (one per each degree

of freedom and eight per card)

Joint loads, according to degrees of freedom
numbering sequence of Figure A.l, KIPS; limited
to the number of degrees of freedom.

First Set of Member Loads (one card per member)

Vertical member load, KIPS per inch of member
length, in order of the member number,
Figure A.l; limited to the number of members.

Horizontal member load, KIPS per inch of member

length, in order of the member number, Figure A;
limited to the number of members.

Location of Deflections and Loads for Printout

(five spaces for each location)

Degrees of freedom numbers where the deflections
and loads are needed to be printed out, Figure
A.l; limited to five joints.

Second Set of Joint Loads (one per each degree

0f freedom and 8 per caxd)

Joint loads, according to degrees of freedom
numbering sequence of Figure A.l, KIPS, limited
to the number of degrees of freedom.



Type 13

Cols. 1-10 CTVLB(K)

11-20 CTHLB(K)
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Second Set of Member Loads (one card per member)

Vertical member load, KIPS per inch of member
length, in order of the member number, Figure
A.l; limited to the number of members.

Horizontal member load, KIPS per inch of member
length, in order of the member number, Figure
A.l; limited to the number of members.
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@( D Member Number : ®< —

(:) Joint Number
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Figure A.1 Degree of Freedom, Member and Joint Numbering
Systems
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3(12)'lr2(1:-)' we(12)yn 1 (12),w2012)eA0 12,

TCF(’..‘Z)’-'JCF(I.?.)vYST(lc)-L(la)’:57(12'31v35)

A(33933 )0 AINY(ZZ4 2300k {1id2),CTV0LIILZ)

STVL(12)sCTIt{12) oCTVLI{LI2) v CTHLA(L2)

CTALLICLZ) yCWLT(L12) oCHLT(LZ2) s SV 18) oCRL(L12)

Cl{12)sC2(2Z2)sC2(1Z2)sC3112)+C0(12)0Cm( 13
T7{L12) s CRK(I2) o CLEL1Z)+T3(12)sSNIL2)e Il (12)

NI2(L2) 3w ISCL2)awIS(L2) I3 (L2)ywlc(ld)

NIZ7C012620 )0 0F 1 (12) 00l (l2) v E2012)svw2(12)

SUPLIO) 935uPZ(E)21EP(23)+SPL(Z2) s THH123)

» e AR ZA TF CRZS3-SECTIdwN

2y o JIRZICTICN CISIHES CF MIwm2iER

v s ACOULIS CF ZLASTICITY LFf STESL

2o YIZELD 3TRISS J STY¥ZC

s 2 UEPTH TF ¥23

e T HICKNESS CF ZUTSITT 4AM0 THH3ICET FLAMGES
oWMIDTH CF 2J4TSIDE AND 18SITT FLANGES

e o TRHICKNZESS .F WE&EDL

ee W [OTH OF FLANSZI CF CJiHamnZh 3ECTICM HOT
INCLUODING wE- THICKNIESS

e o THICKNISS ZF FLANCE oF CHAMNTL SZUTIUON

e s DIMINSIINS CF TRCES=SICTION SZ3HEMT

» o PCRTIZIN CF CUTSICE NS INSIOZT FLANMGES IN
TINSIIN OJZ T2 RESIIOUAL BTRESE

» oPIUATISONS OfF wEs IN TENMSICKK JUE TC RESICuS
STRZI33Z3

e e PESIOUAL ST=RZESS

e o ATMBIR LEI93TH

s s JLINT CUCRILIATES

v HCIRIZINT AL AND VERTLICAL PRICJECTICN Foeevs

e oMIMENT CF IMNERTIA

28 D=GFEE _JF FRIZOCN NJMRERS
-oﬂ'«:l\. LoD

VIRT ICAL UNITSR4
HCRI «SMT

LSAC
Al UNIFORM LTAD

20 SASIC
23831IC
Zogal TC

THE CIMIN3I

LNPRyLTR

CC 400 LPANSLLNS

Vol

Z) e XL
W S% ) 9?2 (30 ) 0P
23 ) WPL2(12468) 3y JIN(S) ¢ 4F(3)
12)ePHBA{LZ) s FZM{LEZ L)W FEMG(1Z40)
TT{D WG ) e TTT(3 302
sE)sOTL(1Z08) DT 2)

P{1Z)
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)
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AAINT 5028
IF(LTP ECs1) PRINT 210
IF(LTP.SCs2) 2PRINT 322
IF(LTPL,2Q«Z) PRInT 372
CMRITE(ARLS78) P
REACT(343902) NPaNMiadiveNLF IL o Jria LT
M= T RIM
REAC(S+E0E) (MN(IK)IR=LeNY)
IF(LCeZCed) €L 7O 38
READ(S+558) (JTH{I)»I=L1sLC)
CCNT INUE
FZAD(S5+320Q) (RC{I)aYE(L) ISt vdii)
O3 33 K= 1sNM
MLIKI=NN(K)+]
READ(3931E) TRI(K)YenllRm) s TF2(K) vw2{K) s 8TF(R)YTLF(L),
ITH(K)srHA(Ks L) s HA(Ky NI (KD}
FZAD(S9S74) (YST{X) +Z(K) »K=1 04}
REW(S5,52%) (WP LK) s# dl{K ) aF2{(F) sw a2 (K) sK=1,N)
FISST 3T CF LCADS
SZA0(SeSI4) (BPBASZ(I)sI=1 NP}
READ(S5:520) (CTVLEBIK) »CTrLo{kK)s&K=1,NM)
READ(S+5€0) JF1 s JHZ2 9 JR3Ty JHS
NUMBER IMG TwE DOIGREZS CF FRIZDuM
NPE(ly1)=s¥M=2
NPZ(1le2)=1
NPE(L,3)=MA
NEZ(L94)=3
NPE(Ly3)=MM=1
NBZ(1l .8
OC 42 K
NPE(KS L
MPZ(K.2)
NPZ(nys 3)=Z%K~C
NPT (K4 )=2#K
NPIZ(K,Z) =ZkK=3
MPZ(K»S)=Z%K~-1
CCNTINUE
PRINT 522
PRINT 532
WRITE(G93%4 ) (K TFL(K) sl (K)sTFI2(KH) 9w 2I(K)»2CF (K )
ITCRUR) o TU(K) oA (K1) obtA (R MNI(K) ) YSTIK) o Z{K) 9s<=1 sM )
FRINT 530
PRINT 514
PRINT S18
KEITZ(S 51 2) (Ky (NPT (KeJd)sJ=L 40 ) s AC(RK) s YT (K )2 XCK+3 )y
LYO({K+1) oK=1yiNd)
PRINT 334
FRINT 3323
PRINT 546
WEITZS(E+8598) (KedFL{K) aaal (KIWF2(K)sn42(K) =1y 0V)
FRINT 5320
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APRINT 320
ARINT 532
GRITE(E+812) {(IsP3A3Z(L)si=14"")
PRINT 372
PEINT S34%
DC 4t K=1sNM
WEITS(64338) Ky lTVLE(K)H»CTHRLEIR)
CTVLLI(K)=CTVL3(K)
CTRLLI(KI=CTrLA(K)
CGNTINU=
D 48 I=
PI(I)- 3]
In=1
TRPS=C.291
=J.2C0201
KJ=0
1J9=0
DC 856 K=1,NM
kR(K)=0
NIK=N1(XK)
DC &0 1I=1,4N1K
CALCULATION OF OZ2RPTh IF wS3 AT TA(l, BdZCTICN
HA(K » I)SRA(RK L)+ (HA(RK s NL(K) ) =Ha(K, 1)) {I=1)/MN(K)
CALCULLATICN CF TiHsTVeX3 CF CRCSO-SECTICN SEZGWENTS
OC 53 MN=144
TV(KLsL o N)=TFL(K)/%
TH{(Ky Tet)=wl(R)=-wFL({K)
THI(Ks T o N)ISTE(Ks I sN)
OC &C N=ES 43
TV Ky I+NI=TFLI{(K)/8
TH(KsI sN)=wF L1 (K)
THI(KsI oN)=TH(KsI o)
XE(K» Tyl )=HA(K I )+TF2(K)+72TF1(K )/
XE(Ks I o2)=HA(KHI) +TF2(K)+3%TFI(R) /3
XE(Ks L3 3)=HA(K, [)+TF2(RK)+3%xTF LK) 78
XB(Ky [ o+ )=HA(RK L) FTF2(K)+TF1ILL) /3
XK I +S)=SHA(RYI) +TF2(KI+7%TFI(K) /3
XE(K9Is8 )=HA(Ky 1) +TF2(K)+32TF I(K) /5
XBUK sy [ 97)=HA(K YL ) +TF2(K)+2%2TFL(R) /0
XKE(K 19 3)=HA(Ky [I+TF2(K)+TF L1(XK) /B
DC %2 M=9,12
TVEK L s N)=STF2(K) /74
TrR{Ky I+ N)=W2(K)=aF2(K)
THL(KsI oN)=STE(KsIsN)
DC €4 N=13,1¢8
TVIR,sIyN)=TF2(K)/ 4
TH(K»I s N)=wF2(K)
TH1I(KesIeNISTE(LKy I sN)
XB{KsL+9)=7%xTF2(K)r2
X3 (Ky[s10)=SSRTF2(KI/3
ACE(RsIol1)=2%TF2(x)/3

1
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(2(K2112)STF2(K) /3
X3(Ke Lo 13)=7%TF2(K)/2
XB (Kol ola)=D38TF2(K)/J
X3(Ke I 13)=32TF2(K)/3
XE(KeI915)=TF2(K)/3
D2 &b N=17,2)
TV{Kel s NI=SHCF(K)/ 2
TH(KsI s N)=TCF(K)
68 THI(KsL s N)ISTE(KsL oN)
XS{Kes I o 1 7)I=TF2(RK)I+ACF(KI/ 4
XB(K sl 18)=TF2(R)+3%uClF({K)/4
XB(Ks1e1S)I=XI(Ke Il 7)
XB(KeI920)=XLB(K»I1sl3)
TV(ReIs21)=wn2(K)
Tr(Kels21)=Tuw(K)
THLI{KsI s21)=TritKels2l)
KE(Ksl+21)=TF2(K)Y+nwuw2(X)/C
DC &3 N=22,27
TVIK»I o N)IS(HA(K s I)=nd 1 (K )=aw2 (X)) /B
THI(KsT s N)=TH(K)
XKB(KsI s NIZ(N=21e3)%TV( Ky IoN)I+TF2(K) +vaZ(K)}
£3 THI(K»I o+ N)=TH(KsI o)
TVIKes[+23)=Ws1(K)
TrH(Ks»sI »28)=Tw(K)
THLI(KesI 922)=TiH(Ks[+»23)
XE(RKe I 2122 )1=TF2(K) *HA(RK 9 [ ) =wnliK)/2
COMPUTATION CF =Z8I1JUAL STFESS CF
DG 74 N=1,4%
IF(LTPeZEQ01 ) RSTUKs IaN)==YSTURIFLPFLIL)/Z{wI{K)I=aF1(K))
IF(LTRPsIU»2) KRAT( (Kol s W)==¥ST(R)BHUFL(K)/ (22 {WLl (K)=wFl{a
1))
IF(LTPSEQel) <STURK I yNIZ=ZHYST(K) 2 FL(LK )}/ (a%(w 1 (K)=¥F
1(K)))
MEN+3
IF(LTReZQsl) SST(K [ o ¥)S=YSTHURIFXWF2IR)IETF2(RKIZ(LUE(K)=
VWWF2(K))YSTF2(K )+ 2%wCF(R)=TIF{K}}
IF(LTRPeEQe2) RIT(Ky [+sM)S=YST(NIFLF2(K)HTFR{R)IZ{(25( (v 2{
IK )=wFZ2(K))IATF2(K)+2*TIF(RIFWCF (K} ))
IF(LTPeZQe3 ) RSTUKs [4M)==3F=YSTUL )50 F2()»TF2(K)/0a%(
L2(K)=WFRIK))IXTF2(K)+2xTCF (K )} %WCF(K)))
74 CONTINUE
DC 70 MN=53,38
RET(XKsy [ o MNIZYETIX)
A=N+8
FST(Kesl sM)=YSIT(KR)
L=N+12
LJ=L=-8
FET(Ke I sL)ISFEST(KyIslLJ)
7& CUNTINUE
RST(K»I +21)=Y53T(K)
00 78 N=22,27

CRCSS=33CTICH SIGHINTS
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IF(LTPeZQ 1) ASTURy I oN)I==Y3T(R) ¥inul(f)+aa22(n))r(ra(n,
1I)=wwl(K)=wyz2(K))
IF(LTPeEQe2) KRUTUKs [ AI=S=YST(RK)=(awl(K)Fwa2() )/ (25 (HA
I{KyI)=a el (K)=ww2(K)))
IF(LTP «SGe3) RSTCKsI oN)==S%YSTlA) R(uwl{RK)+aw2 (K) )/ (24!
tlA( Kl )=ail (K)=aau2({K)))
CONTINUE
RST(Ks[+23)=Y3T(K)
NIZ7{KsL)=(IHA(Ry [)=d Wl (Ki=awWZ(K) )/ )E2T)xTW(K)/S12Z
COMNTINUE
@ IL{RK)=((TRL(K)/3 ) %33 )% (Al {K)=uF1(K))/1Z
WI2(RK)=((TFL{K)/+)%%x3)%4F1 (Ki/Z7L 2
WIS(RI=SII(R)+HIZ2(K)
WIa(R)=S((TF2(K)/4DI*¥xJ)F(wl{K)=wifZ (R })/ L2
dIS(K)I=((TF2(RK)/%)%xJ)xur2(K)/12
WIE(R)I=n14{K)+3[3(K)
D3O 82 1I=1,6
PS(K[)=0,0
PLI(KsI)=0.0
CONTINUE
COMPUTAT ICN CF HGORIZ
AND LENSTH CF MZMEZR
OC S48 K=1 N
HO(K)=XC(K+1 )=XI(K)
VO(K)=YO(K+1)=YI(K)
ALC(K) =(DSART(HS({ ) w4 (K C(R)I=VL(K)))
CONTINUE
D2 g6 [=1 00
A(1)=2,
X1(I)=2,
PR (I1)=0,
PK(T1)=2,.3
P(1)=0.
TCLK=2,0
DT 190 K=1 N4 .
CALCULATICN CFF AZMBER TRAMSFCRYMATIOLN MATSILCE
D2 93 1=1+0
DC 98 J=1ls0
T(KsIsJ)=D42
CS{R)I=HT(XK I/ XLC(K)
SN{K)=VC(K)/XLI(K)
T(Kslol)=142
T(K»2+2)=1.,9
T{(Ks 39 2)=CS(K)
T(Ks3+3)==3N(K)
T{Ks49%)=CS(K)
T(Ks392)==3N(K)
TIKe5+3)sSSNIK)
T(K 354 3)=C3(K)}
T(Ke3e2)=35N(K)
T(KsE+0) =C3(K)
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03 139 L=1+5
OC 130 M=1,0
TT(K Lo M) 2T (KeMyi)
133 CCNTINJE
OCT 1932 K=1N¥¢
CVLT(K)=0.C
ChRLT(K)=0.2
NIK=NT(K)
S0 1232 I=1sNIK
CALCULATICN CF WMCMENT CF INERTIAs ARZA ANMNC THE
JISTANCE FROM THE CINTER COF CGRAVITY TC TrmzZ
SCTTCM CF ThRE INSIUT FLANGZ CF TriZ CRC33=-33CTINM
CTALL INKTIA(NINITHITV I X3 oXBTeKs 19 RT oND)
ARZA(Ky» 1)=38
WINI( (K ID)=awIN(K,1)
SREAI(KS[) =83
XOT1I(Ks1)=SX2T(Ks 1)
102 CCATINJE
CALCULATICN COF MIME8SR STIFFNESS CLEFFICIENTS
* DG 104 K=1shV
XLP(K)=XLZ(K)/NNIK)
Cl(K)}=2.0
C2(K)=J.0
C3(K)=2.0
C4(K)=2.D
CS(K)=2.0
CK(K)=De3
CL(K)=0 .0
MNAK=MNEK)
C 104 I=1,MNK
AWINS{NIN(K s II+a IN(RKy I+ ) I 2
IF('\WI‘Q.EQ.Q.’J')_ AwIN=9D,.,0001
CLIRK)I=CL(K)I+((XLP(R)®EI)R*Z=(XLA(R) " (I=1) )%%x2)=XLC(K )/ (
12% A% IN)
C2(K)=C2(K)+((XLA(K )R Iy #=aZ=(XIP{n)x(I=1))=%x3)
CRURISCRIKI +(CRALP (R IF T ) %% %= (XLP{RKIH(I=2) Yk=a)
JEAN(K) =I+1
ANIN=S(WIN(KyJI+NIDMKYyI+LIIZ2
IF(AWINCGECsD ed) AWIN=Ie0DC1
CIIKISCIUIRI+F((ALP(RIF L) FER2=(XLP (R ) ( [=1) )%=22)2XLL (<) /(
12%x2AwIN)
CHlRIZCH(RIF({IXLPIK )T )=x3=(XLP ()2 (I=1))2x3T)/(Zxaflil)
CLIRISCL(K)I+F((XLP{K &) xkgm (XULP{A)I®{I=1))%wa )}/ (&xAeIN)
AARZAZ(ARZA(K» I )FARSA(LK, I+1) ) /2
IF(AARCSASEZQeDed) AARSA=0.0001
CE(K)=CSUR)+XLP{K I/ (AARE ARE(K))
104 CCATINUS
JFE=JH
1193 NF=NLF
IF(INCEQel) NF=
i}

1
IF(INSZQWL) T2 111
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113

N

. g
[ SV KV W)
(¢ I 5

PRINT 32%
PRINT 540
PRINT 562
PRINT 3é4
PRINT 531

CCNT INUZE

DC 350 ILF=L1 WNF
JFEL1I=UF

KS=0

IF{JF +GZT +4) G2 TC 350
D0 112 K=L1sNM
CTYL{K)=CTVLLI(K)
CTHL(XK)=CTHL 1(L)

oQ 112 I=1,38
PS{KeI)=0.0
C2HTINUE

D2 114 J=19nF
PlJ)=Pl(J)

JK=9

LL=0

IF(JRK.NZLL) GC TI 12¢
OC 123 K=1l,M4M

2C 118 I=1.&
PLL(RKs1)=PL2(Ks )

N K=NT(K)

20 123 I=1eN1K
WIN(RKy I)=wIN2(K, 1)
ARZA(K » [ ) =SAREA2(K 1)
XQ‘T(KQI):)\E’TE(K’I).
CCHRTINJUE

OC 122 I=1sNP
X(I)=x2(1)

DO 120 J=1 NP
P{J)I=SPL(J)/IL

0C 123 K=1lyAM
CTVLIK)=CTVLI(K)/ZIL
CTHLIK)=CTHL I (K)/Z IL
OC 129 I=1,¢
B3(K»1)=90,0
CCNTINUE

CONTINUE

JE2=JF

DY 131 J=1loMM

OC 131 L=1,MM
T3TT(JsL) =D,
SPE=J42

DG 136 K=1 NV

JP=0

IF(JF eG4 ) GC TS 134
IF(KR(K)eZ2»1l) GCT T
Cl{r)=2,2

103

135
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132
134
136

128

104

C2(K)=0.9

C3(K)=D,2

C4 (K )=0 0

CE(R)=0,9

CR{K)=D eI

CL(K)=C.0

NNK=NN( )

00 132 1=1,NNK

AAINZ(IIN(RyI)+aINK,I+1))/2

[IF(AVINGZGeded) AWIN=2,2331
CLIR)=CL(K)+((XLPUIK)=T)IRFZ=(XIA(KIF(I=-1) )%x2)=XLC(K)/(
12%AWIN) '

C2A{K)I=C2(K I+ ((XLP (K I * I I &x3= (NP )I*x{I=1) )=23)/{ZxAxIN)
CRIK)=CKIRI+{IXLP(R)I® [ ) txa=(ALP{X)xn{I=1) )=xqg )/ {4*21N)
JENN(K)=I+1

ANINS(WINIK I+ INIR,J+1) )/ 2

IF(AWINGIGe0eD) ASIN=0,0001
CIUKIZCI(RI+F((XLP (K ) *1)F2 2= (2L (R)*{I=1))x==2)2 X C () /]
12%AWIN)
Ca4(RI=CAH(KI+FL(XLP ()L )=x3= (¥ P ()R (L=1) )3}/ (Ix84IN)
CLUKISCLIR)+ ((XLP(KR)*I)®xs=(xLA(L )% I=1) )=23)/(axia])
AAFEAS(ARZA( Ko ) +ARSA(K I+l ) I/2

IF(AAREAIEQi0ed) AARIA=I.2001

C3IKI=CHIRKI+XLP (KIZLAAREA®RT(RK))

CONT INUE

CONTINUE

CONTINUE

IF(JUFGZe+) GC TS 315

DS 172 K=1.0NM )

CALCULATICN UF STIFFNZISS COGFFICZIONTS
CVL(K)SCTVL(K)®=CI(K)=CTHL(LK)=»SNI(K)
CHL{K)=CTVL(K)*SN(KI+CTHL(K)*CS(R)
COUKI=SCVL(K)#XLO(IK) (XL O (X)) =C2(&) ~CK(K)) /2
C7(K)I=CVLIK)HXLC{RI®(XLO(K) 3CH(R)~-CL(k))/ 2

DD 138 [=1+¢

DC 133 Jd=1+8

S(Il+J)=0.9D

CALCULATICN UF CARRY-CZVER FACTIRS

CABR=(Cl (K)=C2(K))I/C2(K)

CBA=(C3(K)=C4(K))/C4(K)

CALCULATICN 3F 3TIFFNESS FACTURS

DAB=Z(K) 2 (XLC(KI**®2 )/ (C4(K)=CA3F(CI(K)=C4(K}))
D3ASZ(K)I R XLI(R)I*x#2)/(C2(K) =CEAR{LC1(L)=C2(K)))
CALCULATICN CF MIMBZIR STIFFNES3S AATRICES

3(1,1)=01\8

S{1+2)=CEA%CED

S{1,3)=(DAB+DBA#CEA)/ALC(K)

S{1,8)==5(1,23)

S(2,1)=033%CA3

S(2.,2)=C2A

S(2,3)=(DBA+LABFTAB ) /XLI(K]
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S(294)==3(2,2)
3(3+1)=5(1+3)
S(3+2)=3(2:2)
S(3,3)S(CAB+LABFTAB +O3A%CIm #0432 J/{AL3(K ) 5% 2)
5(3ea)==3{({3+3)
S(441)=S{1,48)
S(4 92)=S{24)
S(3+3)=S(3,4%)
5(4+3)=8(3+3)
S(5+5)=1/CS5(K)
S(5¢8)==1/C5(K)
S3(6+5)=3(5+5)
S(esz)=1/7CS(K)
J1=9
J2=0
IF(K+EQ 1) GO TJ 143
Kl=K=~1
IFCAFSA(KL oNLIIKLY ) oEUTeD20) J1l=)
120 [(FLARSEA(Ks 1) eZTed D) Ji=1
IF(KeZQeNM) GC TS 142
IF(ARSA(K+191) 03200 ) JZ=
a2 IF(ARZSA(KINLIN))eZ2Q+042) J2=1
CIF{KeNZel) GC To léa
IF(JEWNE.2) Jli=1
134 IF(KsNZ N2y S, T2 185
IF(JHNZ L) J2=1
t1a CCNTINUE
J3=Jl+J2
IF(J3:32Q.2) GI TS 1
GC TS 152
1aé¢ DT 150 i=1+4
DC 159 J=1+4
18D S(lsJd)=0e2
GC TC 182
152 IF(JL eZQel) &GS T3 153
GC TN 159
154 DC 1586 I=1,4
DC 155 Ju=1.:4
156 S(1+32=2.9
S(2e2)=(S({KIE(XLI(K) ) *x2)/C2(K)
S(2+3)=S(2+2)7XLCT(K)
S3(214)==5(2+3)
S{3:2)=S(2+3)
3(343)=S(2+2)/7{(RALZ(K) )®x2)
3(394)==3(3+3)
504 02)=S(2+3)
S(4+3)=S(3+3)
35(84+%)=S(3+3)
GC TC 132
153 1IF(J2eNES1) Gu TS 152
OC 150 1=1,4+4%

4}
(&)
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DC 162 J=1.44
S{IeJd)=2e0
SULsl)=(E(KIR(XLI(R))»x2)/C4(K)
S3(193)=S(1 sl )/ X0l(K)
S{1ea)==5(1+2)
5(--1)—5(1:3)
S{3.3 S{1y1)/7((XLO{K))%R%2)
(30»)-"(393)
5(441)=3S{1 )
S(4+3)=S(3.4)
S{4 +4)=S(3+3)
CONTINUE
ASS EMBL ING STIFFNESS NMATRIX CF FRAME
OC 1c4 L=1,¢E
DC 184 M=1,46
STT(KsL+1)=0,
2C 184 N=1,0
STT KoL sM)SSTT (Koo M) +S(LaNIET{K 4N 4)
DC 1et L=1l,06
20 1£6 M=1,6
ETESTT(L s R)=0,
DT 1e6 MN=1,6
STSTTUL o )=SSTOSTTILIM)IFTTUKIL o NI HSTT (KeNy M)
OC 1&8 L=1,8
Li=nPZ(X,L)
QC 1€38 M=1,4,5
MI=NPE (Ko M)
FEM(KeM)=J,0
TSTT(LL sML)=T3TTILL » L) +ITSTT{L o)
CALCULATION CF FIXED ACTICNS IF WMIZWIRrs ZUZ T3
UNIF JRM LGCADS
PEMU=Ca (R} *FC2(K)~(CL(K)=C2(RDIF{LT () =-CH(n))
PMAB(K)=(CH(IK)IR(CI(K)~C4 () )=C7 (1 )®C2(K))/PMM
PMAA(KIS(C7(K)IF(CL(R)=C2(K ) I=CH(KI>C&H(K) ) /M
FEM(Ksl)==PMAI(K)
NIK=N1(K)
IF(ARZEA(R )1 ) aZCeD 0 ) FEM(Ks 1)=0,40
IF(ARSA(KINIK) 2TQ 0l e 3) FEMIKSL)=CTIRK)/CI(K)
FEN(Ke2)I=PMBA(K)
IFLARZA(KIL ) «ECeD 0 ) FIM(KI2)=lE(RI)ZCZ(R)
IF(AREA(KIMNIK) sEQeded) FEM(KIZ)I=De0
FEM({Ke3 )=CVL(K)ZXLC(RK)I/2=(PHAE(K)=PHBA(RIIZXLI(K)
FEM(K 24 )=CVLIK)FXLI(K)/2+{PVIE(K)=3MBA(K) I/X_T(K)
IF{CVL(K) «ZQeded) GC TS 179
FEM(RSI=CHLIR)FALO(RIFFEN(KIII/(FEM(R s3I ) +7Eri(L04))
FEM(K»O IZCHRLIR)EXLO{LK)HFEMIRKI»S) /(FEA(Ky3)+FEM(K 94 ) )
CCNTINUE
00 171 I=1456
FEMGI(Ks 1)=J42
DC 171 J=1,8
FEAGIK I [)SFEMSIKy [ I +TT(R oy [ 4y I} =FEMIRK o J)

m N
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DC 172 [=1,45
PINPE(RI))I=r(NPTUR ST I +TIAG(K Y1
172 CONTINUE
DT 174 [=1,0N\P
D0 174 J=1eNF
1748 A([+J)I=STSTT(I+4)
N=NP
JR=Q
3C L7T6 I=1,.MP
IF(A(TIeI)eNZeQ D) GO T2 17¢
JR=JF+1
ME(J)=1
N=N=-1
175 COMNTIMUE
IF(J2aZQe) GT T
I H=NP
00 184 IF=1,yJR
IT=vF(IFP)=1RP+1
IK=1IH
Im=IH=~1
DT 1820 I=1,1IK
00 120 J=1TelInt
130 A{T+J)=A(IsJ+1)
20 182 I=ITsIn
DC 132 J=1,1IH
All s J)=A{I+1,3)
CONTINVE
CCNTINUE
ID0GT=9
CALCULATICIN QF INVIRSI 7 STIFVNZSS MATRIX
CALL LINV2F (AsNsNXy ALNY L ICST F
IF(IZRE +NEWQ) GC T2 G138
IF{JReZCeD) CC TS 153
IH=N
00 196 IP=1,ur
IT=MF(IP)
IK=IH
Ih=1IH+1
28 199 I=1,1IK
LEIK=1¢1
o0 183 J=IT,» IK
=TI K=J+1IT
138 AINV(LsM+1)=SAINV(L M)
190 AINVILsMF(IP))I=040
DC 194 J=lelH
M IH=J+1
o0 132 I=IT»IK
LeIK~-I+IT
1392 AINVIL+LlsM)=AINV L, M)
T16S NINYIVMF(ID)eV)=Dde
16&€ CONTINUZ
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CONTINUS

23 233 I=14ND

X1(1)=9.

PP(I)=ILF=PL(I)+3x(1)

[IF(JKs3Qel) PPUIIS(ILFA=1)2P L{Ii+LL*21( 1) /1 +7K(1])
CALCULATICN CF OZFLZCTIONS

DO 200 J=1.8P°
XIC(I)=X1(I)+AINV(I,J)3P(J)

M=AM/2

TCL=ILF*CTVL L (M) +TCLK

IF(JKeZQ0l) TOL=( ILF=1)#CTVL LA ) +LL SCTVL 1(M)/ L +TCLK
OC 272 K=1,NV '

CVYLT (K)=CVLT (<) +TVL (K )

CHLTI(K) =CHLT(K) +ChL(K)

CTVL(K)=0.)

CTHL(K ) =0 40

OC 204 I=1,Mi4

P(I)=0.90

XKCL)=X(I)+X1(1)

DC 214 K=1sAM

CALCULATION CF MIMSIS3 D ACTICNS

DC 236 I=1,6

PL(KSL) =D,

DC 208 J=1,¢
PLIKsII=PLIRI) +3TT (Ks Lo d ) =X LINPE(R 13U ))
DG 298 I[=1,6

PLIK I )SPLIKy L)=FEM (K, [)=P3(Ks1)
FEM(Ks»1)=3e0

FEMG(Ks1)=043

DEL(KsI)=J

D0 208 J=146
SEL(KeI)=OEL (Ko I +T{K s Lod )X LANPI(KJ) )
DELTIR)=NEL(K 9% ) =SZL (K 3)

5T 210 I=1.%8

PLI(KSINI=PLLI(KyI)+PL(KH»I)

PS(KsI[)=0.0

CONTIMUE

CALCULATICN CF LIJAL3 CUE TC 3ICCMe CRIZR ESFFCCTS
PS{KHI)=DELTLRKI®(FLLI{R18)=PLLI(Ky2) )/ (2%XLT(K))

P3(Kea)==PS5(Ky3)

DT 212 I=1+6

00 212 J=1,8

PINPT(K I ))I=SPINPI(Ry [ ) +TIT(Kylsd) ¥P3{K4J)

4 COMTINUE

00 215 K=1.NW
N1IK=N1(XK)

08 21S I=1sNiK

3C 215 N=1l.,28
THI{KsI oN)=THLI(KSI
INSPECTICMN CF STRE
ODC 270 K=1l,yMi
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NIK=NLI(K)

OC 270 I=1,NIK

IBK=9)

V0 21& N=1,28
SP(N)=2.0

SPL(N)=D42
THH(N)=THLI(Ks IsN)/2
IF(LCSG.0) SC T2 213
IIk=1+K

IF(IIKLECL2) [PK=1
IF{JH«NESJ) I1Px=D

9C 213 N=1,L¢C

IIK=K+}
[F(KsEQ+JTN(N)) 1PK=1
IF{IIKsZ2QeJCN(N)) IPK=
CONTINUE

IF({KeNEsNY) G2 TS 215
IF(I«ZQeNI(K)) [3K=1
IF(JheMZe3) IPK=)
CONTINUE .
IF(IPK NEWQ) 3C TC 272
IF(ARTA(KI 1) o320l ed) G T 270
AIN(KSsI)SWINL(K,I)
AREA(K Y L) =ARSAL (K1)
XBTIKs I )=XBT1I(Kesi)
CTMI=D.0

CTM2=J.72

CTM3=9.,9

CTRI=3,.,0

CTR2=0.0

CTP3=).0

F1=0.0

FF1=0,9

F2=0 40

FFZ2=0.0
CTP==PLI(Ks3)=CHLTIK ) *XLP(K}*x(1l=-1)
CTM=PLLI (K 1 )= {(PLLI{(KeL)+PLI(RK»2II¥{(I=1)/NNIKI+CVLT ()%
T(XLP(K) #x2) = ([=1)%x(NN(K)=L+1}/2
CTPL1=CTR

CTMI=CTM
WwWEAIN(Ks D)= l1(K)

IF(DAGS(9a) e L3WEP) &GS TS 228
WASHIN(KsI)=wI2(K)
IF{(DASS{wu) slLELWZP) GT TD 222
WasSWIN(KsI)=aI3(K)
IF{DABS(ww) sLISEP) G TO 222
IV=HIN(Kel)=wIs(K)
IF(DABS(Mw) +LZ,23) GC TC 222
WASWIM(Ky [ )=w {S(K)
IF(O0ABS(Wa)sLZs2P) G2 TC 222

WWSWIMN(KsI)=%wIB8(K)
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IF(CASS(wd) LZ+s3P) GO T2 222
WHSWINMIKsI)=aI7(LK,])
IF(DASS(ww) slE e3P ) GC T2 £2¢
ANSHIN(Ks 1) =3%al7 (Ko )
IF(DA33(wA)sLEWZR) G2 TLC 228
5C T2 239

IF(CTM.NEL0.,0) ST TC 224
IF(CTPNE 0D +2) GT TC 224

GC TC 2390

WIN(KsI)=0,92

AREA(K» I)=04+2

KJ=K ’ .
14=1

S50 TC 279

N=ND

HER= (2 ST(Ry LeNIRARSA(K I I+CTFIZ(YSTARI®TIN(Ke I st )
IF(DABS (HPP) oGT o TVI(Ks I oM} ) FFO=TV (Ks [oN)

TRLS{(C(TV(RK I sN)=CASS{HFRP)I/Z2)*TH{Ks ToN)RYSIT(R)IH{TVIK»?T
1. N)+CABS (PR ) ) /2

IF(DABS(CTM) oLT+TKXL) GT TC 220

WIN(Ks I)=0.0

ARSA(KsI}=240

K J=K

IJ=1

SC TC 279

N=ND

HPES(RST Ry Iy N)*ARKCAIRKy I I+TTRI/(YET(KI=TH(LK s LI oM))
TyN=22TVI{KsI o)

IF(CABS(RPP ) «GT s TVN) HPP=TVN

TRLS((2%TY(Ky LoN)=DAB3(HPP ) /21 %Tr{Ky LoM)IBYST(RK)XH(Z%TY
1{KsIsN)+CABS(FP3) )/ 2

IF(DASS(CTM) «LTeTKL) 32 TC 239
NIN(Ks I)=0490

ARZA(KsI)=040

KJ=K

IJ=1

GC TG 279

OO 236 N=1,23

IF(TH(KesT oN)YsZQed ) 3C TS 220
STEP=CTR/AREA(KSI)

STRM=SCT VF{XB(Ks Iy, N)=XST(RKs1))I/NIN{K,
IF(LTPWEQel ) CALL RESRIC(FSTeaTRMWSET
IFF2s THe TY s X8 sKs I s N)

IF(LTRP E3e2) CALL RESTEI(RSToOTRFA«STRP s ¥YSToF LeFF1,FZ,
IFF29sTH s TV THL1 X3 3SP+s3RLeK I o N) :
IF(LTP«EQe3) CALL RESTRP(RST+sSTRMISTROIYYST FLH,FF 1472,
1IFF2 s TH TV oTHL o X3 9352 o3 7Le Kol ¢NyTHH)

CINTINUE

CALL INRTIA(WINSTEITV o X39XB3TeXeIeB24M0)

ARZA(K,1)=238

IF(Fle=SCedeD) CISi=343

1)
SPIYSTHIFLeFF1eF2,y



IF(F24Z0Qe0ed7 £I32=0,23
IF(FlsMNZe0Ned) DISISFFL/FL
IF(F:.WLOOtO) cIsZ=FF2/F2

DIE=DI132=-D1I5S
IF{CIS EQ .Oou) S$3 TG 279
KR(K})=1
IF(AREA(K»I)sZQee0) KJ
IF(AREA(KsI) eECe3 «0) [ J
IF (ARCA(K 1) o2GeDed) 3C
IF(OASS{FLl) LT WDASS(F2)) GO TQ 244
CTM=CT MLl =F2RCIS+{(FL +F2)=( AT (X, [)=FFL/F1)}+ITP 1%
I(XBTI( 3T )=2BT(Ks1))
CTPR=CTPI=Fl=-F2
IF(CTM.ZEQeCTNHI) G2 TS 240
GG TC 242
40 IF(CTPLEQWCTRIY GZ T2 270
242 CTMI=CTH
CTPI=CTP
SC TG 220
PAERe IP(UAda(F°)oLToOA8$(ll)) G2 72 252
CTUM=SCTVL +FISCISH(FL4F2)5(X3TIRK [)=FFR2/F2)4CTP 1%
IOXBTLI(RHI )=XBT(RKI1))
CTP=CTPL=F1=F2

Y

IF(CTMeSQ.CTVE) SC T3 240
G0 TC 248
246 IF(CTP.ZQ.CTRP2) GC T3 272
a8 LT42—CTM
CTP2=CTP
GC TO 220
252 CTM=CTUI+F 1013
CTF=CTP1
IF(CTMsSQ.CTMI) GC TO 254
GC TC 286 '

254 IF(CTRPWEG.CTRP3) GC TC 27¢
25€ CTM3=CTM
CTRP3=CTP
SC TG 220
273 CCONTINUE
wE=EJH
OO0 2320 K=1.NM
N1K=N1(K)
SC 2389 [=1l.NIK
IF{ARSA(K 1) eZQsJ¢0) JF=UF+1
IF(K.,EQs1) GC TC 239
IF(I.,GT.1) GO TG 239
Kl=K=1 ~ '
APZARZA(KLIsNI(KLI) )I+ARZIA (K 1)
IF (AR 43T eDe0) GG TG 230
JE=JF=1
282 CCNTINUE
KS1=KS




IF(K3+,2Z2+3) G2 T2 313
KE=K3+1
DC 314 I[=! MM

214 SPE=SRE+FDASE(P(I))
IF(3PS«LT«EP3) 33 TC 31ig
GC TC 139

3l€ KS=9
IF{JUKWNE.Q) ¢ T3 3l
[F{JF oGToJF 1) JK=1
IF(JKEQel) JUF=JUF1L
IF(JK«EQ.Ll) GC TO 322
318 COMTIMUE

IF{JReNESL) GU T3I Z2v
IF(LL,EQsIL) GT TZ Z29
IF(JF +EQJF2) GC TG 3322

320 CONTINUE
IF(INSQe1) G TG 322
HEITZS(O 213463 ) PP{IRL) o CP{UM2)sTCLy X{JdAL ) X{(IHI )y X(JH4),
1JF.S1
322 CCANTINUE
IF(JKsEGeC) CGC TZ 2
LL=LiL+1
IF(LL «65T oL ) JK=C
IF(LLGT,IL) GT TC 330
IF(JF «GE ¢} GC TS 382
IF(LLeECsL) GC TC Llo
IF(UK,EQel) GO TI 123
320 CCONTINUE
CC 332 Jd=1 N3
332 X2(J)=X(J)
DG 340 K=s1,N\Wv
DC 334 I=lsc
PL2(K»I)=PLLI{K,I)
CUNTINUE
NIK=ENT(K)
DO 33& I=1+N1K
ARPTSAZ(KyI)SARTA(K LI
AIN2(Ks [)=w IN(KS I
XBT2(RK 2+ 1) =XBT(K» L)
336 CONTIMNUE
240 CCNTINJE
23S0 CCNTINUE
IF(IZRNEL2) GU TY 352
IN=IN+1
IF(JF GE +3) G2
IFCINSGT2) GC TC 3&2
DC 2356 I=1.MP
PRIII=PRBASE(]L)
SECSMD SIT CF Luads
REAC (5,30 ) (PBASZ(
TCLK=CTVLL(®)
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KEAC(Ss 522 CTYLLIR ) +CTrLEB(K) s =1y 7iM)
PRINT 376
PEINT 5330
PRINT 8352
WRITZE(G+512) {(IePIASZT{i)sI=14MP)
FRINT §79
PRINT 384
WRITE(H3538) (KeCTVLB{K) hCTRLA(K) ga=L1 3y Nit)
DL 358 I=1,MNP
358 P1(1)=PBASE(I)/NLF
D3 369 K=14NM
CTVLI(R)=SCTVLI(K)I/NLF -
CTHLI (K)Y=CTHLE(K) /NLF
259 CAMTINUE
GC TC 119
HZ PRINT 350
65 CONTINMNUE
IF(IZRSNESI) GC TC 36¢
GO TS 379
263 PRINT 300
370 CINTINJUE
PRINT 53¢
PRINT 538
SRINT $S<9
PRINT 3534
WRITE(99506) (Ko PLLL{K»3) 0PLLI{KI3) yPLLI(K 1Y 2L L (kyz),y
IPLL(K 93 ) PLL(K22) o K=1 ,0M)
DO 372 I=1,0
SUP1(TI)=),0
SUP2(1)=90.2
D€ 372 J=1,6
SUPL(L)=SUPL(IL)+TT(1sil+J)%PLI(L,J)
SURP2(I)=SSJUP2(I)+TTINI eI J)IFPLI(NAsJ)
372 CONTINUE
PRINT 592
PRINT 394
PRINT S53é
PRINT 382
AR ITE( S +8638) 3SUPL(3)+3JP1(3) s3UPL (L)
PRINT 5%3
PRINT 396
PEINT S&2
WRITZ(E,533) 3URP2(E)s3uP2( M) y3ur2(2)
IF{JFeGZe%) PRINT 523
4090 COMTINUE
S00 FCRMAT( S X! TEE MATRIX I3 ZZRC S0 [T DUZS MNMO2T wCRK*)
E)1 FOSMAT(2I 3)
302 FORMATI(7?13)
S0« FORMAT(SF10.2)
SO0% FCRMAT(1313)
S08 FCRHAAT (112, 1SECLNE ORVER ANALYSIS OF RICGLID FRAMESY//)
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S10 FCRMAT ('O 'y 'RESIDUAL 3TRESS PATTZRMN [ 3 RPECTANMGJULAR 1Y)
S12 FORMATIOX 913 s6X4F3e3)
S14 FORMAT( 13, ' MEMBIR NP1 NPz NP3 NP3 NP3 NRE! LS X,

LIXIP 42X o tY I 38K XJ1 2330 YU _

515 FCAMAT (42K 7 INe ' s 7X e INs' 27X 3'Tiia? 97X o' IN,*/)

S1€6€ FORMAT(9F3.3)

S138 FCSMAT(IH +71S5s1K+4F1043)

220 FORMAT(2F19.3)

522 FORMAT ('O ', *MZM3ER ANC MATERLAL DSCPERTIES, !
1v1Xs' 1IN o AND KS1%/)

$24 FCFMAT (4Fd43)

526 FCFMAT('1','VALUES CF JOINT LCALS, UNIFCFYM LUADSs s 1K
1'DEFLECTIONSs 3110 NUMEIR OF HMINMUIS ah0 ITERATICNS! /)

S28 FCRMAT('=1,3Xs'IN0 CF PRISLEW==== THEI FFAMI FAILFCY)

S3D FUPMAT( "0 '3 3X " JUINT LTADSs K287 /)

S32 FURMAT (I, 'RESIOUAL STRIZISS PATTIERN I35 TUILANGULARY/)
S34 FORPMAT('1' . wiIDTH UF 2CRTICN LF FLANGT AMD W33 IN')
SZ3 FORMAAT(1Xs " TENSILN DUZ TS KRESIuUAL 3TRESSIZe INe'Z)
5386 FCRMAT(!L ', 'FIRST SET CF LQASSY/)

€22 FIRMAT(IS2F 10.2)

Db

<

FCAMAT ('Q 'y *RORIZe LIALCY ya X, 'y
193X+ 'HORI Ze CEFLe* 92K 'VIRT S 3
+

23Xs'YST'y0Xe'20/)
544 FORMAT(IS s 1XePF 2030 SFCe3sF1C a2
S435 FURMAT (YO o " MEMBERT 9+ X3 P aF 1! 37X " Wnlt o7Xs'wF2
54683 FORMATIFL1004 93 XsF 10630l XsF1Ce4+2X>T1233,1%,53
Le2X e IS+3Xy1I3)
FOEMAT(ESEX"SNS TF RPRCELZMY)
FORMAT (34X 'LOCATICN Yy SXs'LTAD /)
FORMAT (') s ' MEVBIR' 92X ' VERTICAL* v 2Xy '"FCPIZCNTAL YY)
FORMAT(513)
FCRMAT(134,4F1043)
FCFMAT(413)
FCRMAT(1Xs AT THE TCRP CFR ' 42X5'aT THZIZ TIP ' 12X 'RT, LLCAD:!
1+SX9? AT TOUOP CF' 33X+ P AT NID SPAN' 2K ' AT TZP GF ', 7X
Sy 'MOe SF ' e2Xe 'NLs GCF')

U OV UV L) (DY«
o LOOVGLM®M
NMoxo FrNO

S&4 FORMAT (1 X9 'LEFT COLUMN'y3Xs PCF COLJMNS 'y 2L 5F RAFTERY
192X o' LEFT COLUMN?® yZX»#CF RAFTER' 44X o' S IGRT CTLUMN®, %2

21 "HINGES Y 92X, 'ITERWSY)
8 FORMAT (IS 44X sFlOe+415F1244)
8 FCRMAT(')'+3F1244)
570 FCOCRMAT('=7, 'UNIFJIRM LUADS, KIPS/ING')
572 FORMAT(' Q' 'RES[OUAL STRIESS FATTERM (3 TRAISZDIDAL'/S
574 FCRMAT(F10+42¢F13.32)
375 FCRMAT (1, SZCINC SET GF LCACS' /)
S78 FOFRMAT( 0, PANALY SIS CF FRAME NUMBER'»13/)
530 FORMAT ('=1,3/// 91X 'DI3GREZ UF FREZDIIM NJIM3EAS ANMD ' o1 X,
L' MEMBER END COGRDIMATZESs IN2')
S31 FORMAT(IX s 'KIPS 311Xy "KIPS 19X 'KIPS/ING'"»3Xe'INGY
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111X 9" INGt' 9l DXstINLI/)

S82 FCRMAT(SA»'KIPST 37X 9! KIPSY SN QIPS=I P!
324 FTURMAT(LISXy "KIPS? sUXe 'KIPSE yCay 1iINSaiNg ydmy tLIO031,

13X ?KIPSY y€EX 4" KIFP3=1Na'/)
386 FoRMAT('=',3///s1Xs'FINAL INC ASTIONS CF vz=ues
588 FORMAT{'C? 924X+ 73ND I' 931 Xe 158D U )
SO0 FLFRMAT( ' Q! ¢ "MEMSEIRT 33 X" AXI ALY 7Ky " SHIARY 46X, ¢ #CMENT !,
17X g PAXIAL Y s 7Xe " SHEARY 9EX 9! MININT' )

')

7]

l\

552 FUORMAT ("1 ', "REACTIONS AT SUPRPCRTS3 '/ /)

SC4 FURMAT('="' yOSX P LEFT 5U=RIFRT ]

566 FORMAT( ') V¢ "EORIZONTAL "9 2Xe 'WIERTICAL Y » IX s P HASMINT &)
568 FCORMAT( 1=, X, 'RICGAT SUPFLCRT ")

3TLCR
=END
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SULHRCUT INT INSTIA(wIMNaTHoTY o X3 9 X3V ek [ 433 ,400)
IMPLICIT REAL®E(A-rod~L)

DIMENSICN WIN(L2421) s THR(IE9Z1025),TVILIZy2L1,24)
DIMENSICN XB(12+21923) o X3ST(12,21)

BEE8=2+39

DC 2 N=1428

IF(TH{(KsIsN) ¢3T«Is0) NO=M
ES=8R8+ThIKs I yN)FTV(K» [ oN)

AK=0.00

DG 3 N=1428
AKSARFTHCK o TaN)*¥TY (Ko IaN)IHEXE(Ks Lo N)
#IN(KsI)=2,0C

IF(BB+Z0e0¢0) GC TC 3

X8T( (K1 )=AK/88

DO 4 N=1.28
BIN(RAII=WINIR LI H(TH(Ks ITaN)FTV Ky LoN)sxZT)/ 12+
ITH{Ks Lo NIETV (KL o NI F(XBT(RK» I)=X3 (Kol o N))zt2

S RETURN

N0
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SUBRISUTINEG RESRECIARET o3TrA s STEP oV ST o Tl o FrlyFlaTHEIZ T,
1TV X3eKe19N)
IVPLICIT REAL®3(A~HeZ=~Z)

DIMENSION RET(12521423)9YST(12)+sTH(12921 +23)
DIMENSICN TV 12921423)eX8(12+31+23)

STRERST(KsTsN) P3TAM+STR?

IF(DA3S(STR) LT eYST(K)) GG TC +

IF(STR«GSYST(K)) GC TZ =

FlaFl=(YSTI(K)+RST(K»I sN) IRTHR(RaLsN)FRTVIKoLsN)
FEI=FFL=(YSTUK)I+ISTIRK o LoM) ) 3TN e I 48 ) =TV g LoNI® XB(Ky L oM
TA(KsIsN)=0,0

SC TC 4

FR=F2 #(YST(K)=RST K » LaN) DT Ry Lo N)*ETV(Ks I o™N)

FR2FF 2+ {YSTIR)=FET(K s IaN) ) ®Tm(Ro I o N)FTYV(RKs TaN)EXZT(Lo T oN)
TH(KeIsN)=D4e)

CTNTINUE

RZETURN

=ZND
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SUSROUTINMNE RESTRFI(RST oS8T rMsST D oV STy Fl oFFLsFRaFF24TH
LTV oTH1I X3 9SPe5PL Ky Lo N)
[MPLICIT RZAL*B{(A=-HyC=2)

DIMENSION TH(12:2192d3)eTV(12121+23) +£2(12921428),3P(23)
DIMENSICN SPLI{Z23)9YSTIL12)sTHLI(L2,21+2283,+5T(12+21,23)

IF(NLZ %) GC TC o
IF(NS+8) GT TC 12

[F{N.LEL12) GC TG 9
IF{(NsLEs18) GO T3 12
IF(NsLZTe29) GC T3Z o
IF(N.EQe21) GC TC 12
IF(N.LZE27) G T3 S
IF(N+sEQe25) CC TC 12
STRERST(K sI s N)+STRM+:

> U

IF(CABS (STR) oL TWYSTH(
IF(STFRsGEYST(K)) GZ TC o
FLIL=Fl=(YSTIRITRSTIR s L aN) IR=TH(RK I yNIBRTVIKI oN)
FRL=FFRl=(YSTURK)I+RITIK ¢ LoMN) ) 2Ti(Ry IaN)FTV(Ks IToN)IEXT{KelaN)
TH{K+IeN)=D,40

GC TC 16

F2=F2+(YSTIK)=RST(K s L sNI)%TF (K3 IToNIXTV (K, 14N)
FF2=FF2+(YSTIRI=RSETIK s LoNI ) RTH(RKs ToNIXTVIK T o N)EXE(KsIoN)
TH(KsIsN)=0.0

GO TO 18

STO=3TRM+35TRP
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FO=F2+(SPLIN)+3P(M)I/Z2) =TTV (K Ie)

FRASFF2+ (SPLIN)I+SPIN)/Z2)xTOET /(s D) <3 (s T4 N)
SPLIN)=SPLIN)+3P(N)

THEAIN) =0 .0

CCANTIMJE

FE TUARN

END




SECOMD OKRDER ANALYSIS OF RIGID FRAMES

RESIDUAL STRESS PATTERN IS RUCTARGUL AR

ANALYSIS CF FRAAE NUMBER 1

MEMBER ANC MATERTIAL PROPERTIESS IN o AND ®S51]

MEMBE K TF1 w1 TrF2 we WCF TCF Tw HALGE) FACEL) ¥s 4
1 0.282 ©e OG0 0229 ©4D00 1720 03368 0200 S.038 18,523 S5£.C00  290430.,00
2 0.252 Goe0CO D440 6,000 14,720 0343 00200 LHeH23 EZ0,704 5000 25300430
3 0256 4,925 0.258 4428 040 0.0 0, 185 29,983 1G,421 55,003 29099 ,99
4 0256 14925 04250 4,925 0.0 0«0 Ge 18 194421 13.448 5,000 295000,00
5 06256 4.940 0,11 4940 0. 0.0 D213% 134563 19,670 5%.000 23309 ,.20
[ 0.256 3,949 01081 44949 0.0 00 0s134 194670 13,563 653,000 29000.920
7 0256 4,923 06290 4925 0.0 0.0 Uelash 132,448 19.421 L0000 2900000
8 06250 44925 04208 94.925 0.0 Jde0 0,183 1v, 121 29,953 HL,099 29))3.20
9 0,252 e D00 0,450 0000 04343 1720 0e2C3 20.704 12.620 HZ.,000 23000, 060
10 0.252 H.000 0,200 E€.000 0,344 Le720 04 2C0 1EeH2S HL548 654000 29000429

et



DEGREE CF FREEODOM MUMBERS

NEMUBER

NS WN -

O o

NP1

31

10
12
16
19
22
25

NP2

NP3

33

&

12
15
18
21
24
27

NP4

€
S
12
)
21
24
arv

39

NPS

(™
V]

——
~NE - UN

20
23

26

AND MEMBER END

NP6

—
-CcON

14
17
20
23
20

29

Xi
IMNe

‘0e O
7271
Gell2B
27.52¢&
102,060
28c. 773
4734937
550,013
50%. 418
270,275

CUURDINATE &>

Yi
IN.

Q.0
156,540
175,440
177. 73¢
18 .621
196,160
l&é.l:;’l
177.7506
175+ 43490
15€.,9%9

LN,

XJ
IN.

7.271
tell8
27 «528
102, €09
284723
474 .337
959.0148
5694158
S7TVe2 70
5775906

YdJd
INhe

1564540
175.440
177.72€
1364621
19%41¢C
1864621

177.7%¢

175.440
1564%40
JeC

(A AN



123
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EXAMPLES OF FRAME ANALYSIS

B.l--Example 1

The frame analyzed in this example is shown in
Figure B.l. It is a single story, single bay frame with a
multiple tapered rafter and single symmetric H-shaped cross-
sections. The columns have single symmetric cross-sections
with channel sections used for the inside flanges. A verti-
cal uniform load along the rafter is applied incrementally.
All web to flange welds are assumed continuous and one side
only with the size of the weld dependent on the thickness of
flanges and web. Shear force in the weld is assumed not to
govern.

Rectangular patterns are assumed for the residual
stress distribution of all cross=-sections. The procedure
presented in section 2.5 of Chapter II is used for computation
of width of tension blocks. The computation of tension blocks
of section F~F of Figure B.l is as follows:

According to minimum weld table in the AISC specification the
size of the weld is based on the thickness of plates to be
joined. In the case of cross-section F-F the web 0.2 inch,
governs and the minimum weld size is 3/16 in.

Thus W, = 3/16 in.
and the approximate area of the weld is (Egn. 2.10)

a=0.6w?=0.0211 in.?
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Figure B.1 Frame Geometry and Loading for Examplé 1
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The shrinkage force of the weld is computed from Eqgn. 2.§
F = CVA
where CV = 870 Rips/in., hence
F = 870 x 0.0211 = 18.35 Kips.

The width of tension blocks are then, using Egn. 2.41,

in outside flange:

_ 2F _  2x18.35 _ .
2Cy, = 5yTE = B5(2x0.252+0.2) - 0-948 in.

in outside portion of web: C_ = 0.074 in.

in inside flange:

S e _ 2F  _  2x18.35 .
2C, = Gyit T 55(2x0.7+0.27) - 1-112 in.

in inside portion of web: Cy = 0.556 in.

The residual stress level of these tension blocks is assumed
equal to the yield stress of the steel which is taken as 55
KSI. The residual stress of the remainder of the flanges and
web area are compressive, balancing their respective tension
forces. By the same procedure tension blocks for other cross-
sections are computed.

The reinforcement effect of connections is taken into
account by assuming that the yield stress of the portions of
the rafter and columns adjacent to the column-rafter connec-
tions to be higher than 55 ksi, so that no yielding will occur

in these areas during the loading process. The length of each
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portion is taken equal to the depth of the cross-section at
the narrow end of the portion.

Because of the rafter configuration and the single
symmetric cross-sections, the effective length factor approach
of AISC specification is not applicable, and the proposed
stiffness method (in the form of the computer program) and the
proposed trial and error method are used for the analysis of

the frame.

Analysis by Trial and Error Method

From Figure B.l the length of the beams and columns

are, respectively,:

L 281.646 in.

b

175.628 in.

Le

The following values are computed by integrating over small

elements of each member, using Egns. 3.19, 3.20, 3.21 and 3.22:

B 2
o = / xIdx = 6685.44
(o4 X
B _2
8 =/ xIdx 36207.68
A %

B (Lb-x)xdx
§ = n —_—— = 21011.69
X

B 2
o fj/ﬁ iEh_flf_Ef = 1507062.93
A 21

X
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Since the loading and the frame are symmetric, the deflection
and reactions of only one subassemblage needs to be computed.

The first load increment is assumed to be

W, = 0.02 kips/in.

Trial 1

Results of a first order computer analysis yields

VAl = 1l.1 in.
Pop = Pgy = 5-6326 kips
Quy = =91 = 2.75 kips

Based on these wvalues the member end moments are

MBA = MBc 436.68 kips-in.

436.68 kips—-in.

Mpp = Mpg

as = Map

2
\

288.47 kips-in.

From egqn. 2.23:
2 ar 2, o 2 2. 2, Va1 2
(PerOcab) (oLy*~BL*) =L “6hyy-EL *L “h () -y oy L “hCos6

2 2
-8L%)

Ap1 =4y =

2 2_
ELb Lc PCTh(OLLb
because this computation is for the first load increment

P =P

cr Cl



Substituting values of the frame parameter into Egn. 3.23

ABl = -ADl = -0.0171 in.
and
81 = 4am
p1 = lpp1
From Egn. 3.25
2H=-D_~D. +A -A
Vapy = /£b2=( R_L DTl "BTI,
e
thus
VATl = =0.,203 in. > =1.1 in.
Hence try
VAl = =1 in.
and Egn. 3.23 gives
ABl = —ADl = 0.0469 in.
Using these values, Egn. 3.25 gives
VAl = -0,562 in. > ~1 in.
Hence try
v = «0.95 in.

Al

135
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then

ABl = -AD1= -0.0789 in.

and

Vhl = =0.953 in. -0.95 in. say O.K.

Then from Egqn. 3.27

Al = ADl - ABl = 0.1578 in.
Because of symmetrical loading and symmetrical frame

BB” = DD” (see Figure 3.5)

Using Egn. 3.28

= BB / ® 1) xx . aB /A Pax , 1008
ELy, /B I, . EL, B I, E

and integrating over small elements of the rafter gives

J/fA ﬂb-2h3dx
B 2

A
L. -x)xdx
—E%b A —(-112—)—— = 0.0025718
X

A 2
T-:TlT / XIdx = 0.0043744
b B X

w1Cose A (Lb-x)xzdx
E B ~3Im ——— = -0.9980246

2In
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Substituting these values and the values of the moments in

Egn. 3.28 gives

BB” = DD* = -1.137 ini
and from Egn. 3.30

Al = - (BB” + DD”) sin 6

which gives

Al = 0.1914 in. > 0.1578 in. (computed by Eqn. 3.27)

Trial 2

Assuming ch = 2.80 kips

and using deflections from the previous trial gives

MBC = MBA 445.90 kips=-in.

Moa = MDE 445.90 kips-in.

Map = Mpp

-281.17 kips-in.

The values of VAl used in Eqn. 3.23 and its computed value by

Egn. 3.25 for Trial 2 are arranged in Table B.1l.
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Table B.l: Assumed and Computed Values of VAl for

Qqy = 2.80 kips
Va1 Va1
(used in Egn. 3.23) (computed in Egqn. 3.25)
-0.95 in. -1.559 in.
-1.00 in. -1.157 in.
-1.02 in. -0.999 in.
-1.018 in. * -1.016 in. *

For VAl = 1.016 in. Egn. 3.23 gives

ABl = -ADl = -0.0839 in.

and using Egn. 3.27

Al = ADi'— ABl = 0.1679 in.

Computing BB” by Egn. 3.28

BB” = -1.0182 in.

and Egqn. 3.30 gives

Al = ~(BB“+DD”)sinf = 0.1866 in.> 0.1679 in. (computed by Eqn. 3.27)
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Trial 3

Assuming ch = 2.833 kips and using the preceeding

procedure, the final values of A, by Egn. 3.27 and 3.30 are

1

B>
[}

0.1739 in. (by Eqn. 3.27)

Ay

0.1748 in. (by Egn. 3.30)

which are not sufficiently close, therefore a lower value for

ch must be tried.

Trial 4

Assuming ch = 2.831 kips and final values of 8y, are:

>
It

0.1754 in. (by Egn. 3.27)

>
]

0.1752 in. (by Egn. 3.30)

These two values are close enough and the other deflections

and reactions for this load increment are then found to be

ABl = -ADl = -0.0877 in.
Vay = -1.063 in.

PCl = PE1 = 5.626 kips
QEl = -2.831 kips
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Using the procedure described in section 2.6 and the
computed member forces, the yielded portions of every cross-
section were determined and new section properties computed.
For this increment additional yielding did not occure besides
those portion yielded due to residual stresses and the values
of a,B,8 and p are unchanged and iteration.was not necessary.

With the same procedure, deflections and reactions for

additional load increments are computed and shown in Table B.2.

At Wpp = 0.121 kips/in., two hinges formed on the rafter,

near the peak causing frame instability. The locations of
these hinges are symmetrical with respect to Point A as shown
_in Figure B.l.

The frame was also analyzed by computer (modified
stiffness method). The load-deflection relationships of the
two analyses are shown in Figure B.2. Good agreement was found

until Wpp = 0.1 kips/in. Between Wpp = 0.1 kips/in. and the

failure load, the trial and error method predicted higher
deflections, and the failure load computed by this method is
slightly lower than the failure load obtained by the computer

program.
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Results of Trail and Error Analysis of Example 1

WTl kips/in. QCT kips PCT kips VAT in. ABT in. ADT in.
0.02 2.831 5.6326 -1.063 -0.087 0.087
0.04 5.666 11.2652 -2.144 -0.173 0.173
0.06 8.494 16.8978 | -3.227 -0.255 0.255
0.08 11.324 22.5304 | -4.315 -0.332 0.332
0.10 14.154 28.163 -5.456 | -0.408 0.408
0.121 17.126 34.077 -6.97 -0.502 0.502

B.2 Example 2

The frame shown in Figure B.3 is analyzed in this

example.

The frame is constructed of members with doubly

symmetric H-shaped cross-sections and with constant tapering

angle.

The effect of connection reinforcement and residual

stresses are considered in the same manner as in Example 1.

The frame is subjected to a uniform load distributed along the

length of the rafter in additon to a single concenterated

lateral load at the eave.

stages:

The loading was incremented in two

The second stage was from this load to collapse.

First Stage Loading

The first stage continued until a single hinge formed.

Results of an analysis by the trial and error method

for the first stage loading are tabulated in Table B.3.

procedure used was described in Example 1.

The
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Second Stage Loading

At the end of the first stage of loading a hinge formed
on column DE, at a distance 22.5 in. from the center of connec-
tion D. Due to formation of this hinge, the frame is determin-
ate for further analysis. The loading for this stage was
identical to that of the first stage. A second hinge formed

when Wy = 0.004 kips/in. and Q2 = ¢.1 kip.

The horizontal deflection at B due to these loads is

computed using Egn. 3.71.

(HD)+(e
A =-8__h - ap*o%a *

B2 BC 2H DL DR

8,p) (H-Dp)

X h

where GBC, eBA’ GAB and eAD are computed by Egns. 3.14, 3.15

3.69 and 3.53.

o = Mpe /B x2dx
BC EL 2 C Ix

c
/ B 2 MAB / -x) + wzcose / B (Lb-x) xzdx
A ELb . A ZIX

w8
EIb

o = -ME-A-E ‘/7\(113_}{) wdx MAB A 2dX W2COSS A(Lb"X) xzdx
ELb B

AB + 2 + -
I, m?J/e kT T B TR
AD ELb2 D Ix ELy, D 2L,



Integrating over small elements yields

cosH
EL

N

EL

A

ér\\)

xzdx -
£ = 1.345 x 10
X
L, -x)xd -
(Ly=x)xdX ) 509 x 10
T
X
2
(Lb X)x“dx
2T
A(Lb-x)xdx _
= 1.517 x 10
T
B X
2
XIdx = 7.551 x 10~
X
2
(Lb-x)x dx
I,
2
XIdx = 6.12 x 10°6
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6

= 3.943 x 10~

2
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cos® “//‘A (Lb—x)xzdx -2
ELb D — 3T = 2.661 x 10

1 B 2
— 4//. xIdx = 1.578 x 10~°
c C X

Based on the deflected shape of the frame at the end of the first

stage loading the reaction due to Q2 and w, are

Pey = 1.023 kips

QC2 ==0.1 kip

Pp, = 1.124 kips ’
Qo = 0

and the member end moments are

M

~24.46 kips-in.

W
b

BC
Map = Mpp = -142.30 kips~in.
MDA =0 (See Figure 3.11)

For these moments, the member end rotations are

0. = -3.1191 x 10~%

BA rad.

-1.2693 x 10°°

D
i

AB rad.
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4

= ~9.7732 x 10 ° rad.

@
|

AD

5

-3.86 x 10~ rad.

@
n

BC
and Egn. 3.71 gives

= 0.3537 in.

>
)

B2

Using Egqn. 3.73 for vertical deflection at A

v, = (8ap * 8ap) N (2H - Dp ~ Dp)
A2 3 3
V,, = -0.2723 in.

From rafter geometry (Egn. 3.74)

2 2
+ap = 20/L,% - (e-Vyp -Vy )2 -H)

>
+

[
|

= 4.9974 in.

The deflection Al was computed in the first stage loading to be
A, = 4.74 in.

therefore

0.2574 in.

B>
n
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Substitution of the values of A2 and ABZ gives

AD2 = 0.61l1l1 in.
and
A + A
_ B2 D2 _ .
AAZ = ———2———'— = 0.4824 in.

The above results do not consider the P-A effects in the
second stage loading. Recalculation including these effects

results in the following:

bpy = 0.395 in.
YAZ = 0.3014 in.
b, = 0.285 in.
bpy = 0.6801 in.
AAZ = 0.5375 in.

Because of the increase, a second iteration is required.

Ag, = 0.3983 in.
VAz =-0.3037 in.
A, = 0.287 in.
bypy = 0.6856 in.
Apr = 0.542 in.

A2
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Since the difference in respective deflections between this
cycle and the previous cycle is sufficiently small, the
iteration is stopped and these deflections are taken as the
final deflections in the second stage.
With these loads a new hinge formed at 43 in. from
Point A on beam AB and the frame failed. fhe deflection and
reactions of the frame at several load increments for the
first and second stage loadings are tabulated in Table B.3.
Load-deflection curve§ from the trial and error analysié
and form a computer analysis are plotted in Figure B.4. As in
Example 1, the tiial and error method predicted slightly higher

deflection at loads near the failure load of the frame.

Table B.3 Results of Trial and Error Analysis of Example 2

Q Qc -Pc AB A VA
kips kips kips in. in.
0.5 1.282 5.101 0.075 0.891 | ~0.0970
1 2.557 10.19 0.155 1.794 -1.855
2 5.057 20.292 0.330" 3.752 -3.795 )
2.5 6.261 25.235 0.452 5.192 -4.861
2.6 6.161 26.27 0.850 5.878 -5.165
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3.0 1

Computer Analysis

Trial and Error Analysis

) 2 3 4 5 6 7
VAm.

Figure B.4 Load-Deflection Relationships for Example 2
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Computation of Maximum Allowable Load of the Frame Using

AISC Design Provisions

Since the frame contains double symmetric H~shpaed
members with constant tapering angle, the maximum allowable
stress for all members can be determined using the design
provisions of the AISC specification as explained in Reference 8.
In this procedure, the beams and columns of a frame are judged
adequate for a given load, when the value of an interaction
equation for every member of the frame is less than 1.0.

Figure B.5 shows the moment diagram for a first order
analysis of the frame for Q = 1 kip and w = 0.04 kips/in.

The moment and axial force of a cross-~section for a value of Q
and w (same ratio of Q/w as diagram) can be determined by multi-
plying the values from the diagram by Q. The adequacy of beams
and columns of the frame was checked for several values of Q

and w, and the maximum values obtained were Q = 2.53 kips and

w = 0.1012 kips/in. The computations for this value of Q and

w are as follows:

I. Beam AD

For column DE the tapering ratio is

- 4b _; _
Yo = F§ -1 =1.91.

The carry-over-factors and stiffness factor of the column

are



136.61 Kips-in

m—

/ 84864 kips-in

.~
608.64 klpg;m

2sT

Figure B.5 First Order Analysis Moment Diagram
for Frame of Example 2
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Cc

DE -0.2643

kDE

125161.81

The equivalent moment of inertia of the column is

bT

I =2k (1-C..C..) = _ 240 )

ec = 38 *pe'"CprCep) T 28+ x 125161.81 (1-0.9083x0.2643)
= 262.39 in.?

e o 2Tarm | 240%38.215  _ o 1a04

D Lblec 268.33x262.39 :

Assuming the frame is hinged at B, Gy = 10 (AISC recommended
for pinned end) and using the AISC design aid charts

kXY = 0.9

At the narrow end r, = 3.491 in. and

XeYop _ 0.9x268.33 _

Ty 3.491

69.18
AISC specification Table 1-50 gives
FaY = 21.2 ksi

From plastic design provisions of AISC

Pcr = 1.7 FaYA = 36.04A.
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Also

2
P . = m_EA = 59.95A

ey (kXYbe/rx)2

The interaction equation is

CcC M

P+ pm < 1
-IM

cr (1 /Pe Y) o

P

where Ch = 0.85 when sidesway is permitted.

The interaction equation was evaluated at 21 sections along
the beam AD. Pertinent parameters and results computed are
shown in Table B.4. The moments.and axial forces along the
beam AB are less than along beam AD, therefore, AD is adequate

by inspection.

II. Column DE
The tapering ratio of the beam AD is

a
Yy = 59 -1 = 1.91
a

and the carry-over-factors and stiffness factor of the beam are

CDA = -0.2643
CAD = -0.9083
k = 112085.2

DA
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Table B.4 AISC Analysis of Beam AD, Example 2
Distance| Mp A Moment | P P Sn P o
in. kips-in.| in.2 | kips-in. kips | B, (g [P, " 1 2
e’y Py
0 2253.86 | 5.648 | 2147.06 | =20.491| 0.1007 | 0.9075 0.9628
22.65 | 2143.47 | 5.4109| 1655.2 | =-19.464{ 0.0993 | 0.9042 0.798
26.80 | 2068.06 | 5.3968| 1570.7 | =-19.276 | 0.0996 | 0.9039 0.786
40.20 | 1928.56 | 5.2712{ 1309.79 | =-18.67 [ 0.0983 | 0.9034 0.7118
53.60 | 1825.10 | 5.1456| 1067.04 | -18.06 | 0.0974 | 0.9029 0.625
67.00 | 1724.14 | 5.02 | 842.46 | =-17.45 | 0.0965| 0.9023 0.537
80.40 | 1625.65 | 4.8944| 636.05 | -16.85 | 0.0955 | 0.9018 0.448
93.80 | 1529.66 | 4.7688| 447.82 | -16.24 | 0.0945 | 0.9012 0.358
107.20 | 1436.16 | 4.6432| 277.76 | -15.63 | 0.0934 | 0.9006 0.268
120.60 |. 1345.14 | 4.5176| 125.87 | -15.03 | 0.0923 | 0.8999 0.177
134.00 | 1256.62 | 4.392 | -7.85 | -14.42 | 0.0911 | 0.8992 0.097
147.40 | 1170.58 | 4.2664| -123.40 | -13.81 | 0.0898 | 0.8985 0.185
160.80 | 1087.03 | 4.1408| -220.78 | =-13.20 | 0.0885 | 0.§977 0.271
174.20 | 1005.96 | 4.0152| -299.98 | -12.6 0.0871 | 0.8970 0.355
187.60 | 927.39 | 3.8896 -361.02 | -11.99 | 0.0855| 0.8961 0.434
201.00 | 851.32 | 3.764 | -403.88 | -11.38 | 0.0839 | 0.8951 0.509
214.40 | 777.72 | 3.6384| -428.571] -10.77 | 0.0821| 0.8941 0.574
227.80 | 706.61 | 3.5128| -435.09 | -10.17 | 0.0803 0.8931 0.63
241.20 | 637.99 | 3.3872| -423.44 | -9.56 0.0783 | 0.8920 0.67
254.60 | 571.86 | 3.2616| -393.61 | -8.95 0.0761 | 0.8908 0.689
268.00 | 508.22 | 3.136 | -345.62 | =8.35 0.0739 | 0.8895 0.679
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The equivalent moment of inertia of beam AD is

bT 268.33
oB = §§'kDA(l‘CDA9AD) + 3x29000 * 112085.2(1-0.2643x0.9083)

L]
|

262.71 in.?

and

_ 268.33x38.215 _
D 240x262.71

0.1626

G

2 10 (AISC recommended for pinned end)

Using AISC design aid charts

. KXY = 0.91

At the narrow end r,.= 3.491 and

AISC specification Table 1-50 gives

FaY = 22.27 KSI

From plastic design provisions of AISC

Pcr = 1.7 FaYA = 37.86A
also
2
P . = T EA -— = 73.13a
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The interaction equation is

Pcr (1L -

where Cm = 0.85 when sidesway is permitted.

The values of interaction equation for 21 sections along
the column DE are shown in Table B.5. At a point 48 in. from
D, the value of interaction equation was maximum, slightly
less than 1.0, and is the critical section. Since the moments
and axial forces along column BC are less than moments and
axial forces along column DE, column DE is not critical. Thus,
Q = 2.53 kips and 2 = 0.1012 kips/in. is the load capacity of
the frame by the AISC.

The maximum load computed using the modified stiffness
technique described in Chapter II was Q = 2.6 kips and w =

0.104 kips/in. The AISC procedure prediction is 2.7% lower.



158

Table B.S AISC Analysis of Column DE, Example 2
vistarcs | 0 | n e |2 | 2 |9 |2, om
in. kips-in. in.”} kips-in. kips P er I-Ee_‘-; P (1. PP )
e’y
0 489.09 | 3.136 0.0 -25.89 | 0.2181 [ 0.9582 0.2181
12 553,06 | 3.2616] 107.35 -25.89 | 0.2097 | 0.9535 0.3948
24 619.55 | 3.3872} 214.71 -25.89 | 0.2019 | 0.9492 0.5309
36 688.55 | 3.5128{ 322.06 -25.89 | 0.1947 | 0.9453 0.6369
48 760.07 | 3.6384{ 429.41 -25.89 | 0.1879 | 0.9416 0.7199
60 834.09 | 3.764 | 536.77 -25.89 | 0.1817 { 0.9382 0.7855
72 910.63 | 3.8896| 644.12 -25.89 | 0.1758 | 0.9351 0.8372
84 989.67 | 4.0152| 751.47 -25.89 | 0.1703 | 0.9322 0.8781
96 1071.23 | 4.1408| 858.82 -25.89 | 0.1651 | 0.9295 0.9103
108 1155.31 | 4.2664] 966.18 -25.89 | 0.1503 | 0.9269 0.9355
120 1241.89 | 4.3920{1073.53 -25.89 | 0.1557 | 0.9245 0.9549
132 1330.99 | 4.5176{1180.88 -25.89 | 0.1514 |0.9223 0.9697
144 1422.59 | 4.6432|1288.24 -25.89 | 0.1473 | 0.9202 0.8906
156 1516.71 | 4.7688{1395.59 -25.89 | 0.1434 |0.9182 0.9883
168 1613.35 | 4.8944{1502.94 -25.89 | 0.1397 | 0.9163 0.9933
180 1712.49 | 5.0200{1610.29 -25.89 | 0.1362 | 0.9145 0.9961
192 1814.41 | 5.1456{1717.65 -25.89 | 0.1329 |{0.9128 0.9972*
204 1918.31 | 5.2712|1825 -25.89 | 0.1297 {0.9112 0.9966
217.5 2038.85 | 5.41251945.77 -25.89 | 0.1264 }0.9095 0.9945
228 2134.19 | 5.52242039.71 -25.89 | 0.1238 }0.9082 0.9918
240 2245.89 | 5.6480(2147.06 -25.89 | 0.1211 |0.9068 0.9880

*Critical section




