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CHAPTER I 

INTRODUCTION 

One of the long term goals of computer graphics is 

real-time generation of realistic images of simulated 2-D 

and 3-D environments. Ten years ago, creating an image in 

1/60 of a second, fast enough to continually generate images 

on a video monitor, is considered 'Real-time' [1]. In 1993 

image creating speed was found to be nine or ten times 

faster than ten years ago [24]. Currently the hardware is 

even faster. With this fast image generation, there is no 

discernible delay between specifying parameters for an image 

and the image's appearance on the monitor's screen. 

There are two major approaches to get real-time 

performance (fast speed): Brute force and parallelism [19] 

Brute force method employs larger and faster computers, 

requiring larger budgets. Parallelism, on the other hand, 

often makes use of software technology to achieve the speed­

up as fast image generation methods. But systems which can 

achieve high performance are currently very expensive. So, 

there are many algorithms being developed. 

Binary Space Partitioning(BSP) is one of the 

algorithms to rapidly generate realistic images of 2-D and 

3-D scenes composed of polygons. The BSP algorithm is used 
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for solving the hidden surface problem. The BSP algorithm 

is based on generating a 'Binary Space Partitioning Tree.' 

An in-order traversal of a BSP tree at run-time will produce 

a linear order of visibility of polygons in relation to the 

viewing position. This visibility information can be used 

to speed up image generation. 

The polygon sorting problem is the task of deciding the 

position of polygons on the display screen. This sorting 

problem is to determine which polygons lie behind which, as 

seen from the view point. When polygons overlap, we need to 

decide the order in which the polygons should be drawn. 

The BSP tree algorithm partitions the space into two 

subspaces by a plane. The two sides of the plane are called 

'inside' and 'outside'. 

The basic BSP tree algorithm loops across all the edges 

of a polygon and finds those for which one vertex is on each 

side of the partition plane. 

The goal of this study is to develop a parallel Binary 

Space Partitioning tree algorithm and implement it on a 

shared memory parallel processor architecture. For 

implementation we use the SEQUENT machine and its parallel 

programming library. This parallel algorithm results in 

increased overall speed. 
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CHAPTER II 

REVIEW OF LITERATURE 

Hidden Surface Elimination Algorithms 

The hidden surface computation determines which objects 

in the simulated environment are visible, and which are 

obscured. For this algorithm many realistic image 

processing algorithms have been developed in university and 

company environments over the past years. In this section 

we review several hidden surface elimination algorithms: Ray 

tracing, Painter's algorithm, Z-buffer algorithm, 

Subdivision algorithm, and BSP tree algorithm. 

(A) Ray Tracing 

Ray tracing is one of the methods in the 2-D and 3-D 

graphics. The earliest ray tracing algorithms were based on 

the brute force technique. These algorithms solve the ray 

environment intersection problem, finding the closest point 

of intersection between an arbitrary ray and the objects in 

the environment. An attempt is made to intersect the ray 

with each of the objects in the environment. The resulting 

intersections are sorted to determine the closest one. 
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Although ray tracing provides powerful basis for 

realistic image computation, it traditionally has been 

associated with high time complexity and unstructured 

environments [7]. Because image generation involves both 

hidden surface computation and shading computation, time 

complexity is very high. 

(B) Painter's Algorithm 

When we make a realistic image using polygons, the 

problem of overlapping polygons will occur. The major issue 

with overlapping polygons is the order in which they are 

filled. Implicitly the polygons have a priority ordering. 

Each polygon with higher priority paints over any polygon of 

lesser priority. This method is called painter's algorithm. 

In a painter's algorithm, surfaces are scan-converted 

in reverse-priority order. In the reverse priority order, 

the most distant surface is written to the frame buffer 

first. Subsequent surfaces are written over earlier 

surfaces to hide them [13]. 

Unfortunately, when neighboring polygons are rendered, 

a problem occurs. The previously painted pixels will be 

given a blended color on the new polygon. Therefore, some 

of the background painting will show polygon edges. 

(C) Z-buffer and Subdivision Algorithm 
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A number of algorithms have been developed to solve the 

color blending problem when polygons overlapped. The most 

popular algorithms are Z-buffer algorithm and Subdivision 

algorithm. 

Z-buffer algorithm represents each display pixel by one 

element in an array. The array is used to keep track of the 

distance from the viewpoint to the polygon to be drawn at 

the point. As a polygon is drawn to the screen, the 

distance at each pixel is computed and compared with its 

corresponding array element. Finally a new polygon pixel is 

rendered to the closer viewpoint instead of the previous 

polygon drawn at that pixel [13]. 

Subdivision algorithms analyze a group of polygons, 

breaking them into smaller pieces that do not overlap. This 

requires drawing the polygons concurrently and splitting 

each scan line into nonoverlapping horizontal sections. 

Alternatively, each polygon may be checked against every 

other polygon for overlap. Thus both approaches require 

significant extra processing [14]. 

(D) Binary Space Partitioning Tree Algorithm 

Another algorithm that attempts to speed up object 

space hidden surface image generation is Fuchs' BSP tree 

algorithm [1]. This algorithm preprocesses the entire 

scene, classifying the objects in the environment into a 

binary space partitioning tree. Traversal of the resultant 
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data structure produces a list of scene elements in a 

visually consistent back to front ordering. 

BSP tree is a binary tree that represents a recursive 

partitioning of n-space until space is empty [21]. In three 

-space, arbitrarily oriented planes partition the scene. 

The back to front r~ndering order is determined by an in­

order tree traversal. It is handled only by the position of 

the viewer and no sorting key is need. The BSP tree 

algorithm deals with the problem of cyclic overlaps and 

polygon interpenetration by splitting the polygons during 

the initial construction of the BSP tree. 

(E) Comparison of Algorithms 

In painter's algorithm, some problems occur in polygon 

rendering. First, the center of a large polygon may be 

closer to the view point than a smaller one, yet the large 

polygon should be drawn before the small one. Second, when 

three polygons overlap in a circular manner, the painter's 

algorithm will be incorrect, irrespective of the order in 

which the polygons are drawn. 

While Z-buffer algorithm is a good solution for color 

blending, it requires a large size memory. Each pixel may 

require 16 or 32 bits to represent accurately the distance, 

and the extra distance computation can be time intensive. 

Ray tracing algorithms analyze a group of polygons, 

breaking them into smaller pieces that do not overlap. This 
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may entail drawing the polygons concurrently, splitting each 

scanline into nonoverlapping, horizontal sections. 

Alternatively, each polygon may be checked against every 

other polygon for overlap. Like Z-buffer algorithm, ray 

tracing algorithm requires significant extra processing 

[12] [14] . 

BSP trees were developed to determine the visibility of 

surfaces. They were later adapted to represent arbitrary 2-

D and 3-D shapes. BSP trees are built during a 

preprocessing step for very fast polygon sorting and making 

excellent images. BSP tree is a good realistic image 

sorting algorithm. 

Parallel Processing Model 

Usually a tree structure is built from the root node. 

Intuitively, if we initiate more than one processor to build 

different nodes of the tree in parallel, we can obtain 

shorter tree building time. 

In single-processor machines, a tree is built 

sequentially one node at a time. Multiprocessor machines 

allow several processes to run simultaneously. If we use a 

parallel programming library (e.g. fork, m_fork), we can 

make several processes at the same time. On the SEQUENT 

system, a user can execute several parallel processes, whose 

number equals that of the number of CPUs [23]. Instead of 
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building a tree one node at a time, we can build a tree by 

creating subtrees simultaneously. 

SEQUENT systems support the following two kinds of 

parallel programming multiprogramming and multitasking. 

Multiprogramming is an operating system feature that allows 

a computer to execute multiple unrelated programs 

concurrently. Multitasking is a programming technique that 

allows a single application to consist of multiple processes 

executing concurrently. The parallel programs in this 

thesis are primarily about multitasking, since the DYNIX 

operating system does multiprogramming for all user programs 

automatically. 

The multitasking programming in SEQUENT system has two 

programming methods data partitioning and function 

partitioning. Data partitioning involves creating multiple, 

identical processes and assigning a portion of the data to 

each process. When we make data partitioning programs, we 

usually use m fork function. Data partitioning is 

appropriate for applications that perform the same 

operations repeatedly on large collections of data. For 

example, data partitioning is appropriate for applications 

that require loops to perform calculations on arrays or 

matrices. 

Function partitioning involves creating multiple unique 

processes and having them simultaneously perform different 

operations on a shared data set. Function partitioning is 

suitable for applications which must perform many different 
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operations on the same data. Therefore, function 

partitioning is appropriate for applications that include 

many unique subroutines or functions. We can usually use 

fork function for function partitioning programs [23]. 

This study uses only m_fork function for parallel 

programs, because m fork function can create more than 2 

processes that are executed in parallel. Also, it is more 

efficient than fork function [23]. 
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CHAPTER III 

BSP TREE OPERATION 

Generating a BSP tree is conceptually straightforward. 

From a list of polygons, choose one polygon to be the root. 

Then separate the remaining polygons into two groups : one 

in front and the other behind the plane of the root polygon. 

Next, recursively build BSP tree out of each group. The 

root of each subgroup becomes a child of the root containing 

it. If any polygon is not completely in front of or behind 

the plane of the root, it is split into two polygons. The 

following defines the criteria for choosing a root polygon 

The best choice causes the fewest numbers of splits in the 

remaining polygons. 

As described above, a BSP tree represents a recursive, 

hierarchical partitioning of n-dimensional space. BSP tree 

construction is a process which takes a subspace and 

partitions it by any hyperplane that intersects the interior 

of that subspace. The result is two new subspaces that can 

be further partitioned by recursive applications of the 

method. 

(A) Building BSP tree 
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The BSP tree is constructed only for a given static 

scene. First, a polygon is selected. Any polygon can be 

selected. Its plane partitions the scene into two half-

spaces. One half-space contains all remaining polygons in 

the positive side of this root polygon, relative to its 

plane equation; the other contains all polygons in its 

negative side. Polygons that intersect the plane are split 

by the plane, and their positive and negative pieces are 

assigned to the appropriate half-spaces. This process 

recurs within each half-space until that space is empty. An 

example of a sequence steps in BSP tree construction is 

shown in Figure 1. Chin's modified algorithm is used for 

tree construction [21]. 

B 
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Figure 1. BSP tree construction(adopted from [21]). 

The above construction shows both the geometry of the 

scene and corresponding BSP tree at successive steps. The 

scene shown in Figure l(a) with six polygons, is depicted in 

2-D as lines. Arrows represent their surface normal with 

the arrowhead indicating the direction of the positive half-

space. The - and+ signs represent the respective negative 

and positive BSP tree branches. The circled letters 

represent polygons yet to be processed for that half-space, 

that is, unassigned nodes. 
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First, select polygon E to define a root partitioning 

plane. It partitions the scene into two half-spaces as 

indicated by the thin line in Figure l(b). One half-space 

contains all the remaining polygons in its positive side, 

i.e., B. The other half-space contains all the remaining 

polygons in its negative side, i.e., A, and D. Since C 

intersects the partitioning plane, it is split into C and 

Cl. Distribute each portion of C into the appropriate half­

space(Figure l(b)). Node E becomes the root; its two 

branches each contain a list of polygons yet to be processed 

for its corresponding half-spaces. 

This process is continued recursively by choosing 

another plane within each half-space to partition the 

remaining polygons. This continues until no plane remains, 

as in Figure l(c) and Figure l(d). 

After building BSP tree, we can make back-to-front 

polygon order. 

(B) Traversing BSP tree 

The BSP tree's greatest advantage is that a special in­

order traversal of the tree is possible. This traversal 

provides for an O(n) back-to-front ordering of polygons from 

an arbitrary viewpoint. This traversal recursively does the 

following. To render polygon P, first all of the polygons in 

P's half-space opposite to the viewer are rendered, then P 
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is rendered, then all of the polygons in P's half-space 

containing the viewer are rendered. 

For an illustrative traversal, assume that the 

viewpoint is x in Figure l(d). First, xis on the positive 

side of node E, so traverse the negative side of node E. 

Next, xis on the negative side of node A, so A is 

traversed. Next C is traversed since it is the only polygon 

there. Next, render node A's polygons. After that, Dis 

rendered because Dis in the negative side of node A. Next, 

traverse the positive side of node E. As Cl's negative 

space is empty, render Cl. Finally, traverse the positive 

side of node Cl, rendering B. The complete back-to-front 

ordering is [C, A, D, E, Cl, BJ. 

If view-point is surrounded by polygons, as in the case 

of viewpoint yin Figure l(d), the back-to-front ordering 

is generated as follows. First, y is in the positive side 

of node E, so traverse its negative side toward node A. 

Since y is in A's negative side, traverse A's positive side, 

rendering C. Return to render A. Traverse A's negative 

side, rendering D. Return to render E. Next, traverse the 

positive side of E. Since y is in the positive side of Cl 

and its negative branch is empty, render Cl. Traverse Cl's 

positive side, finally rendering B. The ordering is [C, A, 

D. E, Cl I B] . 
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CHAPTER IV 

PARALLEL PROGRAMMING MODEL FOR BSP TREE CONSTRUCTION 

Use of BSP tree in computer graphics involves three 

important procedures; read polygon list, build tree, and 

draw polygon on the monitor. Among these procedures the 

important part is to build tree procedure. The emphasis of 

this thesis is on this part. In this chapter, we first give 

a known sequential algorithm and then provide a new parallel 

algorithm. 

(A) SEQUENTIAL Algorithm for Tree construction and display 

Following is a sequential algorithm for building a BSP 

tree [7] . 

Algorithm BSP-tree-build 

BSP tree *BSP maketree(polygon *polylist) { - -
polygon root; 
polygon *backlist *frontlist; 
polygon p, backpart, frontpart; 
if (polylist == NULL) 

return NULL; 
else { 

root= and remove poly(&polylist); 
backlist = NULL; 
frontlist = NULL; 
for (each remaining polygon pin polylist) { 

if (polygon pin front of root) 

16 



} 

} 
} 

BSP add to list (p, &frontlist); 
else if (polygon pin back of root) 

BSP add to list (p, &backlist); 
else { - /* polygon p must be split*/ 

BSP splitpoly (p, root, &frontpart, &backpart) 
- BSP_add to list (frontpart,&frontlist); 

BSP_add to list (backpart, &backlist); 

return BSP combine tree(BSP maketree(frontlist) ,root, 
- BSP_maketree(backlist)); 

} /* BSP maketree */ 

After building BSP tree, we can draw polygon images on 

the screen. For drawing polygons, we need to calculate the 

visibility priorities. Calculation of polygon order is a 

variant of an in-order traversal of the environment's BSP 

tree(traverse one subtree, visit the root, traverse the 

other subtree). We must have an order of traversal that 

visits the polygons from those farthest to the closest to 

the current viewing position. At any given node, there are 

two possibilities: positive side subtree, node, negative 

side subtree or negative side subtree, node, positive side 

subtree. We choose one of these two orderings based on the 

relationship of the current viewing position to the polygon 

of node. Specifically, we are interested in the side of the 

polygon of node where the current viewing position is 

located. 

The traversal for a back-to-front ordering is 1) the 

negative side, 2) the node and 3) the positive side. This 

notion of a traversal may be embodied in at least two 
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different ways for visible surface image generation. The 

first way is to assign priorities to polygons in the order 

that we visit them. Using the in-order traversal we will 

get a low-to-high visibility priority. The second way does 

not assign explicit visibility priority value to polygons. 

But this way uses the painter's algorithm that each polygon 

paints over any polygon of lesser priority. Since higher 

priority polygons are visited later, they will overwrite any 

overlapping polygons of low priority. The following 

recursive procedure generates a visible surface image in the 

above described manner [l] [21]: 

Algorithm: ESP-tree-display 

BSP_displaytree(BSP_tree *tree) 
{ 

if (tree != NULL) { 

} 

if (viewer is in front of tree-> root) { 
/* display back child, root, and front child*/ 

BSP display tree(tree -> backchild); 
display polygon(tree ->root); 
BSP display tree(tree -> frontchild); 

} else -{ 

} 

/* display front child, root and back child*/ 
BSP display(tree -> frontchild); 
displaypolygon(tree ->root); 
BSP_display tree(tree-> backchild); 

} /* BSP display tree*/ 

(B) Parallel Algorithm for tree Construction 
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To my knowledge, there is no work reported in the open 

literature about parallel algorithms for building BSP tree 

in multiprocessor environment. If we want to implement a 

parallel BSP tree building algorithm on a shared memory 

system, we do not have to make major change to the tree 

representation scheme described in the previous section 

because the complete tree list can be stored in a shared 

memory. However, new algorithms should be developed to suit 

the nature of the shared memory system. 

As mentioned in chapter II, using parallel programming 

functions we can make two kinds of parallel programming 

algorithms : function partitioning algorithm and data 

partitioning algorithm. The. approach taken in this thesis 

is function partitioning. Function partitioning algorithms 

as applied to tree construction is described below. 

First, a program reads all input data and creates an 

array of polygons. One of the polygons is chosen as the 

root node. Split function compares all input data with root 

data and splits the data into two halves. Then we have two 

lists for input data. One is the left side of the root(data 

< root) and the other is the right side of the root(data > 

root). As Figure 1 shows, one part is located at the front 

side of the root and the other side is located at the back 

of the root. Now there are two sets of data to be 

partitioned. So, create two more processes to partition the 

two halves. This method is continued until there is no more 

data to be partitioned. Each process sends the root node to 
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its parent before termination. When all processes 

terminate, the tree construction is complete. 

The parallelization model used in this thesis combines 

the idea of function partitioning as described above with 

the ides of mapping Processors to tasks. Implementation is 

achieved using m fork. The model is explained below using 

an example: 

Assume that there are four Processors available for 

computation. The process decomposition of function 

partitioning is shown in Figure 2. 

Figure 2. 

Process decomposition of build-tree Algorithm. 

The process decomposition depends on the number of 

Processors available for computation. If N Processors are 

available, we use 2N-1 processes. The processes are 

organized into a tree. In this example there are seven 

processes named PO - P6. PO partitions the original list. 
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After each partition, the left side is partitioned by the 

left child and the right side is partitioned by the right 

child. When the partitioning reaches the leaf nodes, each 

leaf node is responsible for construction of the tree based 

on the list it receives. In figure 2, P3, P4, PS and P6 

represent the leaf nodes. Upon completion, P3, P4, PS and 

P6 send the trees to Pl and P2. Pl and P2 construct their 

trees and send them to PO. PO completes the construction. 

Let Po, P1, P2, and P3 be the four Processors. Then, the 

mapping of processes to the Processors is shown in Table 1. 

Table 1. Process to Processor mapping. 

Processors processes 

Po PO, Pl, P3 

P1 P2, PS 

P2 P4 

p3 P6 

In the mapping scheme, Processor Po completes the first 

partitioning. Now, two Processors can be used because there 

are two lists to be partitioned. So, Po takes one list and 

uses P1 to partition the other list. When Po and P1 complete 

the partitioning of their respective lists, two other 
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Processors can be used. This results in the Processor 

allocation shown in Table 1. In general, when Processor Pi 

completes the split, it keeps one half and allocates the 

other half to Processor PQ+2h) where his the level of the 

node currently being split. The general mapping of 

Processors to processes is shown in Figure 3. The 

Processors Pi and Pci+2 h) are called level h buddies or 

level_buddies(buddies for short). Two buddies build the two 

children of a node at level h - 1. 

----- Level 0 

----- Level 1 

----- Level 2 

Figure 3. Mapping of n Processors. 

The Processor mapping described above is used in our 

parallel algorithm. Using m_fork, the scheme can be 

described as follows 
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Each parallel build-tree process is the same function. 

For example, if we want to use four Processors to build 

tree, we use four identical functions because them fork 

system call allocates the same function to the four 

Processors. In general assume that we have N Processors 

available for computation. Then we use a switch statement 

where case i represents Processor i. The code associated to 

case i will be performed only by Processor i. As shown in 

Figure 3, each processor will be associated to several nodes 

in the process tree. The actions performed at each node can 

be abstractly represented by two roles. They are parent and 

child. The actions performed in each are 

Parent's task: 

1. subdivide the list. 

2. keep one half and give the other half to a 

child. [These two Processors are called 

level_buddies], and 

3. construct the tree(attach children to root) 

after building subtrees. 

Child's task : 

1. become a parent, and 

2. when done give the root of the tree to parent. 

The following algorithm is based on the scheme 
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described above 

Algorithm: Parallel ESP-tree-build 

switch(Processor i) { 

} 

case i : 
wait for level_buddy; /* This Processor waits until 

spliting reaches its level*/ 
while(more-to partition) { 

split; 
if(buddy-available) 

} 

signal buddy; 
else exit; 
push root; 
push level; 

if(more_to_partition) 
use single Processor scheme; 

while(stack_not=empty) { 
pop root; 
pop level; 

} 

receive sibling from level_buddy; 
build_tree; 

sent root to buddy; 
break; 

24 



CHAPTER V 

PERFORMANCE ANALYSIS 

In this chapter we analyze the performance of the 

parallel algorithm. First we provide a theoretical 

analysis . Then we describe an experimental analysis . The 

two metrics used for analysis in this thesis are speedup and 

utilization . The experimental performance analysis is based 

on experiments run with different tree node sizes. Execution 

time for various operations are measured. To measure the 

time, we use average elapsed time for 10 random operations 

in each program. 

............. .,...... .. • .............. ,,w»:•:,:m:,:;.:v-

~ '''' ' . ............ . ....... ......... '' 'ii',,.,,.,,.,,.,,.,,. 

'",~zff" ~ ;· ... :·"",,;~;>/" ) : · :·: ,. ·· · ., , 

Figure 4. Polygon shape. 
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Figure 5. Polygon set after back to front sorting. 

I used different sets of triangles for conducting 

analysis. The triangles are filled triangles. Two examples 

are shown in Figure 4 . To verify correctness of 

implementation, the polygons were displayed in a back to 

front order using SPHIGS in an X- terminal. A typical output 

is shown in Figure 5. The theoretical and experimental 

analyses of the algorithm are given in the next two 

sections . 

(A) Theoretical Analysis 

For the purpose of this analysis, we make the following 

assumptions : 
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(1) N=2h be the number of processors, 

(2) the splitting can be done perfectly and the 

processes from a balanced binary tree with 2N - 1 

nodes, and 

(3) T; be the time for the i~ process. 

Then, 

Time sequential : 

To+ T1 + T2 + ..... + T2N -2 ~ (2N - 1) * min(Ti) 

In the parallel scheme, the total time is the same as the 

time spent by Processor Po. 

Time Parallel : 

Time spend by Processor Po for one level ~ max (Ti) 

So, total time spent by Processor Po ~ h max (Ti) where 

his the number of levels in the tree. 

sequential - time 
So, Speedup = .;._· -=------

enhanced - time 

(2N - 1) min(Ti) 
~ 

hmax(Ti) 

(2h+i - l)min(Ti) 
~ 

hmax(Ti) 

Next we compute the Processor utilization. With the 

above assumptions, we have the scenario portrayed in table 

2. 
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Table 2. Tree level and Number of Active Processors. 

Level # of active processor 

0 1 

1 2 

2 4 

3 8 

. 

. 

h 2h 

Assume that every processor spends the same amount of 

time at each level. Then at level O, Processors P1 .... Pn-1 

are idle 
1 

of the time, at level 1, Processor P2 .... Pn-1 
h 

1 
are idle of the time and so on. 

h 

Thus Processor Po is utilized 100% of the time, 

1 
Processor P1 is utilized (1 - -) of the time, Processor P2 

h 

and p3 are utilized (1 -
2 
-) of the time and so on. 
h 

Let the number of Processors= N = 2h where his the height 

of the tree. 
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1 [n-1 ] 
Utilization = N ~ Timebusy(P;) 

=_!_[1+(1--1 ) +2(1---2_) +22(1--3 )+· .. ·+2h-1(1-~)] 
N h+l h+l h+l h+l 

1 ( 2h - 1) 1 [ h ] - l+-- - (h-1)2 +l 
N 2-l N(h+l) 

[ 
2h+l 1 ] 

= l - l- 2\h+ 1) + 2h(h+ 1) 

2 1 
----

h+l 2\h+l) 

(B) Experimental Analysis 

For each algorithm, we conducted the experiments in 

four cases, and in each case I created a different number 
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of processes to execute the algorithm. Also, different input 

sizes were used. For comparison and analysis, I also 

recorded the result of executing the single process 

algorithm. We list the experimental results of the 

algorithms in Tables 1, 2, 3, and 4. The time used for this 

analysis is elapsed time in all cases. We use two criteria 

for evaluation. They are speedup and efficiency. Speedup 

is the ratio of Ts(the execution time for the sequential 

algorithm) to Tp(the execution time for the parallel 

algorithm). 

Experiments were conducted with 4, 8, and 16 

Processors. The machine· used for this research has a limit 

of 24 Processors. Since 16 is the highest power of 2 less 

than 24 I used the above mentioned number of Processors. 

Efficiency is the ratio of speedup to N, the number of 

Processors executing the algorithm. Designers of parallel 

algorithms hope to achieve high speedup and efficiency. 

Maximum possible efficiency is 1. For the sake of clarity, 

the formulas used for computation of speedup and efficiency 

are shown below: 

Ts 
Speedup= 

Tp 

Speedup 
Efficiency= 

N 
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Results given in tables 3 - 6 show that speedup 

increases as the number of Processors increase. Efficiency 

decreases as the number of Processors increase. This is due 

to the fact that several Processors wait idle until spliting 

reaches corresponding level in the ESP tree. Since the 

shared memory Processors are not massively parallel in 

general, the limit of 16 Processors used this study does not 

skew the results. 

Table 3. Execution Time, CPU time, and efficiency of 500 polygons 

Programming Single Processor Parallel Processor 
Method 
No. of 1 4 8 16 

1Processes 
Elapsed Time 2: 14.60 1:52.22 1:18.33 54.39 

CPU Time 1:58.22 1:18.49 1:03.68 50.42 

Speedup 1.20 1.72 2.47 

Efficiency 0.29 0.21 0.15 
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Table 4. Execution Time, CPU time, and efficiency of 1000 polygons 

Programming Single Processor Parallel Processor 
Method 
No. of 1 4 8 16 

Processes 
Elapsed Time 6:52.37 5:01.44 4:12.51 3:03.12 

CPU Time 5:52.46 4:07.95 3:40.21 2:12.37 

Speedup 1.37 1.63 2.25 

Efficiency 0.34 0.20 0.14 

Table 5. Execution Time, CPU time, and efficiency of 2000 polygons 

Programming Single Processor Parallel Processor 
Method 
No. of 1 4 8 16 

Processes 
Elapsed Time 10:53.32 8:47.34 7:22.53 5:21.35 

CPU Time 9:23.19 7:39.11 6:47.24 4:48.23 

Speedup 1.23 1.46 2.03 

Efficiency 0.30 0.18 0.13 
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Table 6. Execution Time, CPU time, and efficiency of 5000 polygons 

Programming Single Processor Parallel Processor 
Method 
No. of 1 4 8 16 

Processes 
Elapsed Time 32:52.37 24:01.45 18:42.31 14:02.46 

CPU Time 28:23.19 20:53.33 16:10.37 11:48.21 

Speedup 1.36 1.75 2.34 

Efficiency 0.34 0.22 0.14 
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CHAPTER VI 

CONCLUSION 

In this thesis, we reviewed BSP tree algorithm for 

polygon generation. The time consuming part of this scheme 

is the BSP tree construction algorithm. Based on the 

sequential algorithm found in the literature, we provide a 

parallel BSP tree building algorithm. In order to develop 

the parallel algorithm, we developed a mapping scheme of 

processes organized as a binary tree to Processors. 2N - 1 

processes are mapped into N Processors. 

The parallel algorithm is implemented in a SEQUENT-S81 

shared memory machine. Experiments were conducted to study 

the performance of the algorithm. SPRIGS is used for 

displaying 3D polygons. Four lists of polygons were 

displayed using the algorithm. For each set of polygons, 

the algorithm has been used with 1, 4, 8, and 16 Processors. 

The results of the experiments show that speedup increases 

while utilization decreases. This behavior of the algorithm 

is due to the implementation scheme used which is busy­

waiting. The experimental findings are consistent with the 

theoretical analysis. 
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The major draw back of the parallel algorithm is in the 

area of resource utilization. Future work will be directed 

towards finding methods to improve Processor utilization. 

Another problem is to determine the optimum number of 

Processors using both speedup and utilization as the 

determining parameters. 
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APPENDIX A 

ORGANIZATION OF THE PROGRAM 
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r 
The BSP tree program I used is composed of seven 

modules. The following is a synopsis of the modules : 

1. BSP allocation: 

The purpose of this module is to allocate, free, and 

append vertices and faces. 

2. BSPcollision: 

This module detects collision between the viewer and 

static objects in an environment represented as a BSP 

tree. 

3. BSPmemory 

This module allocates and frees memory. 

4. BSPpartition: 

This module partitions a 3-D convex face into two with 

an arbitrary plane. 

5. BSPtree : 

This module constructs and traverses a BSP tree. 

6. BSPutility: 

This module computes equation of a plane, normalizes a 

vector, and performs cross products. 

7. main: 
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APPENDIX B 

DERIVATION OF A FORMULA 
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Proposition: 

1 + 2 * 2 + 3 * 2 2 + • • • • 'I- h * 2 h- l = ( h - 1 ) 2 h + 1 

Proof : 

x + x 2 + X 3 + • ···'I- xh = x [ 1 + x +····'I- xh-l] 

xh ~ 1 
= x---

X-1 

= 
X-1 

Differentiate both sides with respect to X. 

1 + 2X + 3X2 + •••• 'I- hXh-l 

Let X = 2, 

Then, 

= (X-l)[(h+l)Xh-1]-[xH+i_x] 

(X -1)2 

= (X-l)[hXh+Xh-1]-xh+ 1 +X 

(X -1) 2 

= 
hxh+l - hXh - xh + 1 

(X -1)2 

1 + 2 * 2 + 3 * 2 2 + • 0 • 0 'I- h2 h-l = h2 h+I - h2 h - 2 h + 1 

h2 h [ 2 - 1] - 2 h + 1 

(h - 1)2h + 1 
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