
A PARALLEL ALGORITHM FOR BINARY SPACE

PARTITIONING TREES

BY
NAKWON CHU

Bachelor of Engineering
Inha University

Inchen, Korea
1984

Master of Science
Inha University

Inchen, Korea
1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1996

A PARALLEL ALGORITHM FOR BINARY SPACE

PARTITIONING TREES

Thesis Approved:

/-/. £

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. K. M.

George, my advisor. I appreciate not only his time spent on

my thesis but also his encouragement and advice throughout

my graduate study. I would like to extend my special thanks

to Dr. J. P. Chandler for his invaluable suggestions and

comments. A special thanks and appreciation to Dr. H. Lu

for her suggestions and help.

To all my family, but especially my parents, Young-Taek

Chu and Sun-Soon Mo, my heartfelt thanks for all the many

years of love and support. My thanks also go to my brother­

in-law and sister for their assistance. And finally, I wish

to express my thanks to my friend, Min-Su Choi and Se-Jin

Choi, for their time and experience in reviewing and

proofing my programs.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

II. REVIEW OF LITERATURE................................ 3

Hidden Surface Elimination Algorithms 3
Ray Tracing. 3
Painter's Algorithm....................... 4
Z-Buffering Algorithm 5
BSP Tree Algorithm. 5
Comparison of Algorithms 6

Parallel Processing Model 7

III. BSP TREE OPERATION 10

Building BSP Tree. 10
Traversing BSP Tree 14

IV. PARALLEL PROGRAMMING MODEL FOR BSP
TREE CONSTRUCTION . 16

Sequential Algorithm for Tree Construction
and Display. 16

Parallel Algorithm for Tree Construction 18

V. PERFORMANCE ANALYSIS 25

Theoretical Analysis 26
Experimental Analysis 29

VI. CONCLUSION ; 34

REFERENCES . 3 6

APPENDICES

APPENDIX A - ORGANIZATION OF THE PROGRAM 38

APPENDIX B - DERIVATION OF A FORMULA 40

iv

LIST OF TABLES

Table Page

1. Process to Processor Mapping 21

2. Tree level and Number of Active Processors 28

3. Execution Time, CPU Time, and efficiency of
500 Polygons 31

4. Execution Time, CPU Time, and efficiency of
1000 Polygons. 32

5. Execution Time, CPU Time, and efficiency of
2000 Polygons 32

6. Exe cut.ion Time, CPU Time, and efficiency of
5000 Polygons. 33

V

LIST OF FIGURES

Figure Page

1. BSP Tree Construction. 11

2. Process Decomposition of Build-Tree Algorithm 20

3. Mapping of n Processors ·. 22

4. Polygon Shape. 25

5. Polygon Set After Back To Front Sorting 26

vi

LIST OF ALGORITHMS

Algorithm Page

1. Sequential BSP-Tree-Build Algorithm 16

2. ESP-Tree-Display Algorithm 18

3. Parallel BSP-Tree-Build Algorithm 24

vii

CHAPTER I

INTRODUCTION

One of the long term goals of computer graphics is

real-time generation of realistic images of simulated 2-D

and 3-D environments. Ten years ago, creating an image in

1/60 of a second, fast enough to continually generate images

on a video monitor, is considered 'Real-time' [1]. In 1993

image creating speed was found to be nine or ten times

faster than ten years ago [24]. Currently the hardware is

even faster. With this fast image generation, there is no

discernible delay between specifying parameters for an image

and the image's appearance on the monitor's screen.

There are two major approaches to get real-time

performance (fast speed): Brute force and parallelism [19]

Brute force method employs larger and faster computers,

requiring larger budgets. Parallelism, on the other hand,

often makes use of software technology to achieve the speed­

up as fast image generation methods. But systems which can

achieve high performance are currently very expensive. So,

there are many algorithms being developed.

Binary Space Partitioning(BSP) is one of the

algorithms to rapidly generate realistic images of 2-D and

3-D scenes composed of polygons. The BSP algorithm is used

1

for solving the hidden surface problem. The BSP algorithm

is based on generating a 'Binary Space Partitioning Tree.'

An in-order traversal of a BSP tree at run-time will produce

a linear order of visibility of polygons in relation to the

viewing position. This visibility information can be used

to speed up image generation.

The polygon sorting problem is the task of deciding the

position of polygons on the display screen. This sorting

problem is to determine which polygons lie behind which, as

seen from the view point. When polygons overlap, we need to

decide the order in which the polygons should be drawn.

The BSP tree algorithm partitions the space into two

subspaces by a plane. The two sides of the plane are called

'inside' and 'outside'.

The basic BSP tree algorithm loops across all the edges

of a polygon and finds those for which one vertex is on each

side of the partition plane.

The goal of this study is to develop a parallel Binary

Space Partitioning tree algorithm and implement it on a

shared memory parallel processor architecture. For

implementation we use the SEQUENT machine and its parallel

programming library. This parallel algorithm results in

increased overall speed.

2

CHAPTER II

REVIEW OF LITERATURE

Hidden Surface Elimination Algorithms

The hidden surface computation determines which objects

in the simulated environment are visible, and which are

obscured. For this algorithm many realistic image

processing algorithms have been developed in university and

company environments over the past years. In this section

we review several hidden surface elimination algorithms: Ray

tracing, Painter's algorithm, Z-buffer algorithm,

Subdivision algorithm, and BSP tree algorithm.

(A) Ray Tracing

Ray tracing is one of the methods in the 2-D and 3-D

graphics. The earliest ray tracing algorithms were based on

the brute force technique. These algorithms solve the ray

environment intersection problem, finding the closest point

of intersection between an arbitrary ray and the objects in

the environment. An attempt is made to intersect the ray

with each of the objects in the environment. The resulting

intersections are sorted to determine the closest one.

3

Although ray tracing provides powerful basis for

realistic image computation, it traditionally has been

associated with high time complexity and unstructured

environments [7]. Because image generation involves both

hidden surface computation and shading computation, time

complexity is very high.

(B) Painter's Algorithm

When we make a realistic image using polygons, the

problem of overlapping polygons will occur. The major issue

with overlapping polygons is the order in which they are

filled. Implicitly the polygons have a priority ordering.

Each polygon with higher priority paints over any polygon of

lesser priority. This method is called painter's algorithm.

In a painter's algorithm, surfaces are scan-converted

in reverse-priority order. In the reverse priority order,

the most distant surface is written to the frame buffer

first. Subsequent surfaces are written over earlier

surfaces to hide them [13].

Unfortunately, when neighboring polygons are rendered,

a problem occurs. The previously painted pixels will be

given a blended color on the new polygon. Therefore, some

of the background painting will show polygon edges.

(C) Z-buffer and Subdivision Algorithm

4

A number of algorithms have been developed to solve the

color blending problem when polygons overlapped. The most

popular algorithms are Z-buffer algorithm and Subdivision

algorithm.

Z-buffer algorithm represents each display pixel by one

element in an array. The array is used to keep track of the

distance from the viewpoint to the polygon to be drawn at

the point. As a polygon is drawn to the screen, the

distance at each pixel is computed and compared with its

corresponding array element. Finally a new polygon pixel is

rendered to the closer viewpoint instead of the previous

polygon drawn at that pixel [13].

Subdivision algorithms analyze a group of polygons,

breaking them into smaller pieces that do not overlap. This

requires drawing the polygons concurrently and splitting

each scan line into nonoverlapping horizontal sections.

Alternatively, each polygon may be checked against every

other polygon for overlap. Thus both approaches require

significant extra processing [14].

(D) Binary Space Partitioning Tree Algorithm

Another algorithm that attempts to speed up object

space hidden surface image generation is Fuchs' BSP tree

algorithm [1]. This algorithm preprocesses the entire

scene, classifying the objects in the environment into a

binary space partitioning tree. Traversal of the resultant

5

data structure produces a list of scene elements in a

visually consistent back to front ordering.

BSP tree is a binary tree that represents a recursive

partitioning of n-space until space is empty [21]. In three

-space, arbitrarily oriented planes partition the scene.

The back to front r~ndering order is determined by an in­

order tree traversal. It is handled only by the position of

the viewer and no sorting key is need. The BSP tree

algorithm deals with the problem of cyclic overlaps and

polygon interpenetration by splitting the polygons during

the initial construction of the BSP tree.

(E) Comparison of Algorithms

In painter's algorithm, some problems occur in polygon

rendering. First, the center of a large polygon may be

closer to the view point than a smaller one, yet the large

polygon should be drawn before the small one. Second, when

three polygons overlap in a circular manner, the painter's

algorithm will be incorrect, irrespective of the order in

which the polygons are drawn.

While Z-buffer algorithm is a good solution for color

blending, it requires a large size memory. Each pixel may

require 16 or 32 bits to represent accurately the distance,

and the extra distance computation can be time intensive.

Ray tracing algorithms analyze a group of polygons,

breaking them into smaller pieces that do not overlap. This

6

may entail drawing the polygons concurrently, splitting each

scanline into nonoverlapping, horizontal sections.

Alternatively, each polygon may be checked against every

other polygon for overlap. Like Z-buffer algorithm, ray

tracing algorithm requires significant extra processing

[12] [14] .

BSP trees were developed to determine the visibility of

surfaces. They were later adapted to represent arbitrary 2-

D and 3-D shapes. BSP trees are built during a

preprocessing step for very fast polygon sorting and making

excellent images. BSP tree is a good realistic image

sorting algorithm.

Parallel Processing Model

Usually a tree structure is built from the root node.

Intuitively, if we initiate more than one processor to build

different nodes of the tree in parallel, we can obtain

shorter tree building time.

In single-processor machines, a tree is built

sequentially one node at a time. Multiprocessor machines

allow several processes to run simultaneously. If we use a

parallel programming library (e.g. fork, m_fork), we can

make several processes at the same time. On the SEQUENT

system, a user can execute several parallel processes, whose

number equals that of the number of CPUs [23]. Instead of

7

building a tree one node at a time, we can build a tree by

creating subtrees simultaneously.

SEQUENT systems support the following two kinds of

parallel programming multiprogramming and multitasking.

Multiprogramming is an operating system feature that allows

a computer to execute multiple unrelated programs

concurrently. Multitasking is a programming technique that

allows a single application to consist of multiple processes

executing concurrently. The parallel programs in this

thesis are primarily about multitasking, since the DYNIX

operating system does multiprogramming for all user programs

automatically.

The multitasking programming in SEQUENT system has two

programming methods data partitioning and function

partitioning. Data partitioning involves creating multiple,

identical processes and assigning a portion of the data to

each process. When we make data partitioning programs, we

usually use m fork function. Data partitioning is

appropriate for applications that perform the same

operations repeatedly on large collections of data. For

example, data partitioning is appropriate for applications

that require loops to perform calculations on arrays or

matrices.

Function partitioning involves creating multiple unique

processes and having them simultaneously perform different

operations on a shared data set. Function partitioning is

suitable for applications which must perform many different

8

operations on the same data. Therefore, function

partitioning is appropriate for applications that include

many unique subroutines or functions. We can usually use

fork function for function partitioning programs [23].

This study uses only m_fork function for parallel

programs, because m fork function can create more than 2

processes that are executed in parallel. Also, it is more

efficient than fork function [23].

9

CHAPTER III

BSP TREE OPERATION

Generating a BSP tree is conceptually straightforward.

From a list of polygons, choose one polygon to be the root.

Then separate the remaining polygons into two groups : one

in front and the other behind the plane of the root polygon.

Next, recursively build BSP tree out of each group. The

root of each subgroup becomes a child of the root containing

it. If any polygon is not completely in front of or behind

the plane of the root, it is split into two polygons. The

following defines the criteria for choosing a root polygon

The best choice causes the fewest numbers of splits in the

remaining polygons.

As described above, a BSP tree represents a recursive,

hierarchical partitioning of n-dimensional space. BSP tree

construction is a process which takes a subspace and

partitions it by any hyperplane that intersects the interior

of that subspace. The result is two new subspaces that can

be further partitioned by recursive applications of the

method.

(A) Building BSP tree

10

The BSP tree is constructed only for a given static

scene. First, a polygon is selected. Any polygon can be

selected. Its plane partitions the scene into two half-

spaces. One half-space contains all remaining polygons in

the positive side of this root polygon, relative to its

plane equation; the other contains all polygons in its

negative side. Polygons that intersect the plane are split

by the plane, and their positive and negative pieces are

assigned to the appropriate half-spaces. This process

recurs within each half-space until that space is empty. An

example of a sequence steps in BSP tree construction is

shown in Figure 1. Chin's modified algorithm is used for

tree construction [21].

B
; t

D

[ABCDE]

(a)

11

;\+
[ACD] ~ Cl]

(b)
..

/\
A C1

I\\
[D] [C] [B]

(c)

12

X

0

I~
A C

I\\
D C1 B

(d)

Figure 1. BSP tree construction(adopted from [21]).

The above construction shows both the geometry of the

scene and corresponding BSP tree at successive steps. The

scene shown in Figure l(a) with six polygons, is depicted in

2-D as lines. Arrows represent their surface normal with

the arrowhead indicating the direction of the positive half-

space. The - and+ signs represent the respective negative

and positive BSP tree branches. The circled letters

represent polygons yet to be processed for that half-space,

that is, unassigned nodes.

13

First, select polygon E to define a root partitioning

plane. It partitions the scene into two half-spaces as

indicated by the thin line in Figure l(b). One half-space

contains all the remaining polygons in its positive side,

i.e., B. The other half-space contains all the remaining

polygons in its negative side, i.e., A, and D. Since C

intersects the partitioning plane, it is split into C and

Cl. Distribute each portion of C into the appropriate half­

space(Figure l(b)). Node E becomes the root; its two

branches each contain a list of polygons yet to be processed

for its corresponding half-spaces.

This process is continued recursively by choosing

another plane within each half-space to partition the

remaining polygons. This continues until no plane remains,

as in Figure l(c) and Figure l(d).

After building BSP tree, we can make back-to-front

polygon order.

(B) Traversing BSP tree

The BSP tree's greatest advantage is that a special in­

order traversal of the tree is possible. This traversal

provides for an O(n) back-to-front ordering of polygons from

an arbitrary viewpoint. This traversal recursively does the

following. To render polygon P, first all of the polygons in

P's half-space opposite to the viewer are rendered, then P

14

is rendered, then all of the polygons in P's half-space

containing the viewer are rendered.

For an illustrative traversal, assume that the

viewpoint is x in Figure l(d). First, xis on the positive

side of node E, so traverse the negative side of node E.

Next, xis on the negative side of node A, so A is

traversed. Next C is traversed since it is the only polygon

there. Next, render node A's polygons. After that, Dis

rendered because Dis in the negative side of node A. Next,

traverse the positive side of node E. As Cl's negative

space is empty, render Cl. Finally, traverse the positive

side of node Cl, rendering B. The complete back-to-front

ordering is [C, A, D, E, Cl, BJ.

If view-point is surrounded by polygons, as in the case

of viewpoint yin Figure l(d), the back-to-front ordering

is generated as follows. First, y is in the positive side

of node E, so traverse its negative side toward node A.

Since y is in A's negative side, traverse A's positive side,

rendering C. Return to render A. Traverse A's negative

side, rendering D. Return to render E. Next, traverse the

positive side of E. Since y is in the positive side of Cl

and its negative branch is empty, render Cl. Traverse Cl's

positive side, finally rendering B. The ordering is [C, A,

D. E, Cl I B] .

15

CHAPTER IV

PARALLEL PROGRAMMING MODEL FOR BSP TREE CONSTRUCTION

Use of BSP tree in computer graphics involves three

important procedures; read polygon list, build tree, and

draw polygon on the monitor. Among these procedures the

important part is to build tree procedure. The emphasis of

this thesis is on this part. In this chapter, we first give

a known sequential algorithm and then provide a new parallel

algorithm.

(A) SEQUENTIAL Algorithm for Tree construction and display

Following is a sequential algorithm for building a BSP

tree [7] .

Algorithm BSP-tree-build

BSP tree *BSP maketree(polygon *polylist) { - -
polygon root;
polygon *backlist *frontlist;
polygon p, backpart, frontpart;
if (polylist == NULL)

return NULL;
else {

root= and remove poly(&polylist);
backlist = NULL;
frontlist = NULL;
for (each remaining polygon pin polylist) {

if (polygon pin front of root)

16

}

}
}

BSP add to list (p, &frontlist);
else if (polygon pin back of root)

BSP add to list (p, &backlist);
else { - /* polygon p must be split*/

BSP splitpoly (p, root, &frontpart, &backpart)
- BSP_add to list (frontpart,&frontlist);

BSP_add to list (backpart, &backlist);

return BSP combine tree(BSP maketree(frontlist) ,root,
- BSP_maketree(backlist));

} /* BSP maketree */

After building BSP tree, we can draw polygon images on

the screen. For drawing polygons, we need to calculate the

visibility priorities. Calculation of polygon order is a

variant of an in-order traversal of the environment's BSP

tree(traverse one subtree, visit the root, traverse the

other subtree). We must have an order of traversal that

visits the polygons from those farthest to the closest to

the current viewing position. At any given node, there are

two possibilities: positive side subtree, node, negative

side subtree or negative side subtree, node, positive side

subtree. We choose one of these two orderings based on the

relationship of the current viewing position to the polygon

of node. Specifically, we are interested in the side of the

polygon of node where the current viewing position is

located.

The traversal for a back-to-front ordering is 1) the

negative side, 2) the node and 3) the positive side. This

notion of a traversal may be embodied in at least two

17

different ways for visible surface image generation. The

first way is to assign priorities to polygons in the order

that we visit them. Using the in-order traversal we will

get a low-to-high visibility priority. The second way does

not assign explicit visibility priority value to polygons.

But this way uses the painter's algorithm that each polygon

paints over any polygon of lesser priority. Since higher

priority polygons are visited later, they will overwrite any

overlapping polygons of low priority. The following

recursive procedure generates a visible surface image in the

above described manner [l] [21]:

Algorithm: ESP-tree-display

BSP_displaytree(BSP_tree *tree)
{

if (tree != NULL) {

}

if (viewer is in front of tree-> root) {
/* display back child, root, and front child*/

BSP display tree(tree -> backchild);
display polygon(tree ->root);
BSP display tree(tree -> frontchild);

} else -{

}

/* display front child, root and back child*/
BSP display(tree -> frontchild);
displaypolygon(tree ->root);
BSP_display tree(tree-> backchild);

} /* BSP display tree*/

(B) Parallel Algorithm for tree Construction

18

To my knowledge, there is no work reported in the open

literature about parallel algorithms for building BSP tree

in multiprocessor environment. If we want to implement a

parallel BSP tree building algorithm on a shared memory

system, we do not have to make major change to the tree

representation scheme described in the previous section

because the complete tree list can be stored in a shared

memory. However, new algorithms should be developed to suit

the nature of the shared memory system.

As mentioned in chapter II, using parallel programming

functions we can make two kinds of parallel programming

algorithms : function partitioning algorithm and data

partitioning algorithm. The. approach taken in this thesis

is function partitioning. Function partitioning algorithms

as applied to tree construction is described below.

First, a program reads all input data and creates an

array of polygons. One of the polygons is chosen as the

root node. Split function compares all input data with root

data and splits the data into two halves. Then we have two

lists for input data. One is the left side of the root(data

< root) and the other is the right side of the root(data >

root). As Figure 1 shows, one part is located at the front

side of the root and the other side is located at the back

of the root. Now there are two sets of data to be

partitioned. So, create two more processes to partition the

two halves. This method is continued until there is no more

data to be partitioned. Each process sends the root node to

19

its parent before termination. When all processes

terminate, the tree construction is complete.

The parallelization model used in this thesis combines

the idea of function partitioning as described above with

the ides of mapping Processors to tasks. Implementation is

achieved using m fork. The model is explained below using

an example:

Assume that there are four Processors available for

computation. The process decomposition of function

partitioning is shown in Figure 2.

Figure 2.

Process decomposition of build-tree Algorithm.

The process decomposition depends on the number of

Processors available for computation. If N Processors are

available, we use 2N-1 processes. The processes are

organized into a tree. In this example there are seven

processes named PO - P6. PO partitions the original list.

20

After each partition, the left side is partitioned by the

left child and the right side is partitioned by the right

child. When the partitioning reaches the leaf nodes, each

leaf node is responsible for construction of the tree based

on the list it receives. In figure 2, P3, P4, PS and P6

represent the leaf nodes. Upon completion, P3, P4, PS and

P6 send the trees to Pl and P2. Pl and P2 construct their

trees and send them to PO. PO completes the construction.

Let Po, P1, P2, and P3 be the four Processors. Then, the

mapping of processes to the Processors is shown in Table 1.

Table 1. Process to Processor mapping.

Processors processes

Po PO, Pl, P3

P1 P2, PS

P2 P4

p3 P6

In the mapping scheme, Processor Po completes the first

partitioning. Now, two Processors can be used because there

are two lists to be partitioned. So, Po takes one list and

uses P1 to partition the other list. When Po and P1 complete

the partitioning of their respective lists, two other

21

Processors can be used. This results in the Processor

allocation shown in Table 1. In general, when Processor Pi

completes the split, it keeps one half and allocates the

other half to Processor PQ+2h) where his the level of the

node currently being split. The general mapping of

Processors to processes is shown in Figure 3. The

Processors Pi and Pci+2 h) are called level h buddies or

level_buddies(buddies for short). Two buddies build the two

children of a node at level h - 1.

----- Level 0

----- Level 1

----- Level 2

Figure 3. Mapping of n Processors.

The Processor mapping described above is used in our

parallel algorithm. Using m_fork, the scheme can be

described as follows

22

Each parallel build-tree process is the same function.

For example, if we want to use four Processors to build

tree, we use four identical functions because them fork

system call allocates the same function to the four

Processors. In general assume that we have N Processors

available for computation. Then we use a switch statement

where case i represents Processor i. The code associated to

case i will be performed only by Processor i. As shown in

Figure 3, each processor will be associated to several nodes

in the process tree. The actions performed at each node can

be abstractly represented by two roles. They are parent and

child. The actions performed in each are

Parent's task:

1. subdivide the list.

2. keep one half and give the other half to a

child. [These two Processors are called

level_buddies], and

3. construct the tree(attach children to root)

after building subtrees.

Child's task :

1. become a parent, and

2. when done give the root of the tree to parent.

The following algorithm is based on the scheme

23

described above

Algorithm: Parallel ESP-tree-build

switch(Processor i) {

}

case i :
wait for level_buddy; /* This Processor waits until

spliting reaches its level*/
while(more-to partition) {

split;
if(buddy-available)

}

signal buddy;
else exit;
push root;
push level;

if(more_to_partition)
use single Processor scheme;

while(stack_not=empty) {
pop root;
pop level;

}

receive sibling from level_buddy;
build_tree;

sent root to buddy;
break;

24

CHAPTER V

PERFORMANCE ANALYSIS

In this chapter we analyze the performance of the

parallel algorithm. First we provide a theoretical

analysis . Then we describe an experimental analysis . The

two metrics used for analysis in this thesis are speedup and

utilization . The experimental performance analysis is based

on experiments run with different tree node sizes. Execution

time for various operations are measured. To measure the

time, we use average elapsed time for 10 random operations

in each program.

............. .,...... .. • ,,w»:•:,:m:,:;.:v-

~ '''' ' '' 'ii',,.,,.,,.,,.,,.,,.

'",~zff" ~ ;· ... :·"",,;~;>/") : · :·: ,. ·· · ., ,

Figure 4. Polygon shape.

25

Figure 5. Polygon set after back to front sorting.

I used different sets of triangles for conducting

analysis. The triangles are filled triangles. Two examples

are shown in Figure 4 . To verify correctness of

implementation, the polygons were displayed in a back to

front order using SPHIGS in an X- terminal. A typical output

is shown in Figure 5. The theoretical and experimental

analyses of the algorithm are given in the next two

sections .

(A) Theoretical Analysis

For the purpose of this analysis, we make the following

assumptions :

26

(1) N=2h be the number of processors,

(2) the splitting can be done perfectly and the

processes from a balanced binary tree with 2N - 1

nodes, and

(3) T; be the time for the i~ process.

Then,

Time sequential :

To+ T1 + T2 + + T2N -2 ~ (2N - 1) * min(Ti)

In the parallel scheme, the total time is the same as the

time spent by Processor Po.

Time Parallel :

Time spend by Processor Po for one level ~ max (Ti)

So, total time spent by Processor Po ~ h max (Ti) where

his the number of levels in the tree.

sequential - time
So, Speedup = .;._· -=------

enhanced - time

(2N - 1) min(Ti)
~

hmax(Ti)

(2h+i - l)min(Ti)
~

hmax(Ti)

Next we compute the Processor utilization. With the

above assumptions, we have the scenario portrayed in table

2.

27

Table 2. Tree level and Number of Active Processors.

Level # of active processor

0 1

1 2

2 4

3 8

.

.

h 2h

Assume that every processor spends the same amount of

time at each level. Then at level O, Processors P1 Pn-1

are idle
1

of the time, at level 1, Processor P2 Pn-1
h

1
are idle of the time and so on.

h

Thus Processor Po is utilized 100% of the time,

1
Processor P1 is utilized (1 - -) of the time, Processor P2

h

and p3 are utilized (1 -
2
-) of the time and so on.
h

Let the number of Processors= N = 2h where his the height

of the tree.

28

1 [n-1]
Utilization = N ~ Timebusy(P;)

=_!_[1+(1--1) +2(1---2_) +22(1--3)+· .. ·+2h-1(1-~)]
N h+l h+l h+l h+l

1 (2h - 1) 1 [h] - l+-- - (h-1)2 +l
N 2-l N(h+l)

[
2h+l 1]

= l - l- 2\h+ 1) + 2h(h+ 1)

2 1

h+l 2\h+l)

(B) Experimental Analysis

For each algorithm, we conducted the experiments in

four cases, and in each case I created a different number

29

of processes to execute the algorithm. Also, different input

sizes were used. For comparison and analysis, I also

recorded the result of executing the single process

algorithm. We list the experimental results of the

algorithms in Tables 1, 2, 3, and 4. The time used for this

analysis is elapsed time in all cases. We use two criteria

for evaluation. They are speedup and efficiency. Speedup

is the ratio of Ts(the execution time for the sequential

algorithm) to Tp(the execution time for the parallel

algorithm).

Experiments were conducted with 4, 8, and 16

Processors. The machine· used for this research has a limit

of 24 Processors. Since 16 is the highest power of 2 less

than 24 I used the above mentioned number of Processors.

Efficiency is the ratio of speedup to N, the number of

Processors executing the algorithm. Designers of parallel

algorithms hope to achieve high speedup and efficiency.

Maximum possible efficiency is 1. For the sake of clarity,

the formulas used for computation of speedup and efficiency

are shown below:

Ts
Speedup=

Tp

Speedup
Efficiency=

N

30

Results given in tables 3 - 6 show that speedup

increases as the number of Processors increase. Efficiency

decreases as the number of Processors increase. This is due

to the fact that several Processors wait idle until spliting

reaches corresponding level in the ESP tree. Since the

shared memory Processors are not massively parallel in

general, the limit of 16 Processors used this study does not

skew the results.

Table 3. Execution Time, CPU time, and efficiency of 500 polygons

Programming Single Processor Parallel Processor
Method
No. of 1 4 8 16

1Processes
Elapsed Time 2: 14.60 1:52.22 1:18.33 54.39

CPU Time 1:58.22 1:18.49 1:03.68 50.42

Speedup 1.20 1.72 2.47

Efficiency 0.29 0.21 0.15

31

Table 4. Execution Time, CPU time, and efficiency of 1000 polygons

Programming Single Processor Parallel Processor
Method
No. of 1 4 8 16

Processes
Elapsed Time 6:52.37 5:01.44 4:12.51 3:03.12

CPU Time 5:52.46 4:07.95 3:40.21 2:12.37

Speedup 1.37 1.63 2.25

Efficiency 0.34 0.20 0.14

Table 5. Execution Time, CPU time, and efficiency of 2000 polygons

Programming Single Processor Parallel Processor
Method
No. of 1 4 8 16

Processes
Elapsed Time 10:53.32 8:47.34 7:22.53 5:21.35

CPU Time 9:23.19 7:39.11 6:47.24 4:48.23

Speedup 1.23 1.46 2.03

Efficiency 0.30 0.18 0.13

32

Table 6. Execution Time, CPU time, and efficiency of 5000 polygons

Programming Single Processor Parallel Processor
Method
No. of 1 4 8 16

Processes
Elapsed Time 32:52.37 24:01.45 18:42.31 14:02.46

CPU Time 28:23.19 20:53.33 16:10.37 11:48.21

Speedup 1.36 1.75 2.34

Efficiency 0.34 0.22 0.14

33

CHAPTER VI

CONCLUSION

In this thesis, we reviewed BSP tree algorithm for

polygon generation. The time consuming part of this scheme

is the BSP tree construction algorithm. Based on the

sequential algorithm found in the literature, we provide a

parallel BSP tree building algorithm. In order to develop

the parallel algorithm, we developed a mapping scheme of

processes organized as a binary tree to Processors. 2N - 1

processes are mapped into N Processors.

The parallel algorithm is implemented in a SEQUENT-S81

shared memory machine. Experiments were conducted to study

the performance of the algorithm. SPRIGS is used for

displaying 3D polygons. Four lists of polygons were

displayed using the algorithm. For each set of polygons,

the algorithm has been used with 1, 4, 8, and 16 Processors.

The results of the experiments show that speedup increases

while utilization decreases. This behavior of the algorithm

is due to the implementation scheme used which is busy­

waiting. The experimental findings are consistent with the

theoretical analysis.

34

The major draw back of the parallel algorithm is in the

area of resource utilization. Future work will be directed

towards finding methods to improve Processor utilization.

Another problem is to determine the optimum number of

Processors using both speedup and utilization as the

determining parameters.

35

REFERENCES

[1] Fuchs, Henry, 'On Visible Surface Generation by a
Priori Tree Structure', SIGGRAPH, 1980, Conference
Proceedings, July, pp. 14-18.

[2] Rubin, Steven M. & Whitted, Turner, 'A Three­
Dimensional Representation for Fast Rendering of
Complex Scenes', ACM SIGGRAPH, 1980, pp. 110-116.

[3] Kunii, Tosiyasu L. & Wyvill, Geoff, 'A Simple But
Systematic CGS System', Candian Information Processing
Society, 1985, May, Proceedings of Graphics Interface,
pp. 27-31.

[4] Roth, Scott D, 'Ray Casting for Modeling Solids',
Computer Graphics and Image Processing 18, 1982, pp.
109-144.

[5] Browne, James C. & Hyder, Syed I., 'Visual Programming
and Debugging for Parallel Computing', IEEE Parallel &
Distributed.Technology, 1995, Spring, pp. 75-83.

[6] Parker, J. R. & Ingoldsby, T. R., 'Design and Analysis
of a Multiprocessor for Image Processing', Journal of
Parallel and Distributed Computing 9, 1990, pp. 297-
303.

[7] Foley, James D, & Dam, Andries Van, et al., 'Computer
Graphics: Principles and Practice', Addison-Wesley,
1993, pp. 548-693.

[8] Rogers, David F., & Earnshaw, Rae A., 'Techniques for
Computer Graphics',Springer-Verlag, 1987, pp. 173-190.

[9] Angel, Edward, 'Computer Graphics', Addison-Wesley,
1990, pp. 361-354.

[10] Leendert, Ammeral, 'Interactive 3-D Computer
Graphics', John Wiley & Sons, 1988, pp. 237-249.

[11] Quinn, Michael J., 'Designing Efficient Algorithms for
Parallel Computers', McGraw-Hill, 1987. pp. 165-171.

[12] Green, Stuart, 'Parallel Processing for Computer
Graphics', The MIT Press, 1991. pp. 43-44.

[13] Roregs, David F., & Earnshaw, Rae A., 'Techniques for
Computer Graphics', 1990. Springer-Verlag, 1987, pp.
249-254.

[14] Naylor, Bruce F., 'Partitioning Tree Image

36

Representation and Generation from 3D Geometric
Models', Proceeding of Graphics Interface, 1992, May,

· pp. 201-212.

[15] Chrysanthou, Y. & Slater, M., 'Computing Dynamic
Changes to BSP tree', Computer Graphics Forum
(Eurographics' 92 Proceedings), 11(3), 1992, Sept,
pp. 321-332.

[16] Paterson, Michael S. & Yao, F., 'Efficient Binary
Space Partitions for Hidden-Surface Removal and Solid
Modeling•, Discrete and Computational Geometry, 5(5),
1990, pp. 485-503.

[17] Gordon, Dan & Chen, Shuhong, 'Front-to-Back Display of
BSP Trees', IEEE Computer Graphics and Applications,
11(5) I 1991, pp. 79-85.

[18] Sung, K. & Shirley, P., 'Ray Tracing with the BSP
Tree', Graphics Gems III, AP Professional(Academic
Press), 1992, pp. 271-274.

[19] Machover, Mark, 'Advanced Computer Technology: The
Experts'View' Electronic Digest, 32(3), 1984, pp. 212-
213.

[20] James, C. & Syed, I., 'Visual Programming and
Debugging for Parallel Computing', IEEE Parallel &
Distributed Technology, 1995, pp. 75-83.

[21] Paeth, Alan W., 'Graphics Gems V' AP Professional
(Academic Press), 1995, pp. 121-138.

[22] George, K. M. & Alfantookh, A., 'Implementation of 2-
4 Finger Trees in The Hypercube Architecture'
Proceeding of ACM Symposium on Applied Computing,
1995, pp. 198-205.

[23] Ostertaug, Anita, 'Guide to Parallel Programming'
Prentice-Hall, 1989, pp. b6-b9.

[24] Wang, Fangju, 'A Parallel Intersection Algorithm for
Vector Polygon Overlay' IEEE Computer Graphics &
Applications, 1993, pp. 74-81.

[25] Whitman, Scott, 'Dynamic Load Balancing for Parallel
Polygon Rendering' IEEE Computer Graphics &
Applications, 1994, pp. 41-48.

[26] Ma, Kwan-Lin, 'Parallel Volume Rendering Using Binary­
Swap Compositing' IEEE Computer Graphics &
Applications, 1994, pp. 59-68.

37

APPENDIX A

ORGANIZATION OF THE PROGRAM

38

r
The BSP tree program I used is composed of seven

modules. The following is a synopsis of the modules :

1. BSP allocation:

The purpose of this module is to allocate, free, and

append vertices and faces.

2. BSPcollision:

This module detects collision between the viewer and

static objects in an environment represented as a BSP

tree.

3. BSPmemory

This module allocates and frees memory.

4. BSPpartition:

This module partitions a 3-D convex face into two with

an arbitrary plane.

5. BSPtree :

This module constructs and traverses a BSP tree.

6. BSPutility:

This module computes equation of a plane, normalizes a

vector, and performs cross products.

7. main:

39

APPENDIX B

DERIVATION OF A FORMULA

40

Proposition:

1 + 2 * 2 + 3 * 2 2 + • • • • 'I- h * 2 h- l = (h - 1) 2 h + 1

Proof :

x + x 2 + X 3 + • ···'I- xh = x [1 + x +····'I- xh-l]

xh ~ 1
= x---

X-1

=
X-1

Differentiate both sides with respect to X.

1 + 2X + 3X2 + •••• 'I- hXh-l

Let X = 2,

Then,

= (X-l)[(h+l)Xh-1]-[xH+i_x]

(X -1)2

= (X-l)[hXh+Xh-1]-xh+ 1 +X

(X -1) 2

=
hxh+l - hXh - xh + 1

(X -1)2

1 + 2 * 2 + 3 * 2 2 + • 0 • 0 'I- h2 h-l = h2 h+I - h2 h - 2 h + 1

h2 h [2 - 1] - 2 h + 1

(h - 1)2h + 1

41

VITA

NAKWON CHU

Candidate for the Degree of

Master of Science

Thesis: A PARALLEL ALGORITHM FOR BINARY SPACE PARTITIONING
TREES

Major Field: Computer Science

Biographical:

Personal Data: Born in Seoul, Korea, August 29, 1960,
the son of Young-Taek Chu and Sun-Soon Mo.

Education: Graduated from Chung-Ang High School,
Seoul, Korea, in January 1979; received Bachelor
of Engineering Degree in Mineral and Mining
Engineering from Inha University in January 1984;
received Master of Science Degree in Mineral and
Mining Engineering from Inha University in January
1986; completed requirements for the Master of
Science Degree at Oklahoma State University in
December, 1996.

Professional Experience: Teaching Assistant,
Departments of Mineral and Mining Engineering,
Inha University, March, 1984, to December, 1986.
Researcher and Analyst, Korea Institute Energy and
Resource, Daiduk Research Center, March 1989 to
March 1991.

