
MINICOMPUTER CONCEPTS

By

BENEDICTO CACHO
II

Bachelor of Science

Southeastern Oklahoma State University

Durant, Oklahoma

1973

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degre~ of
MASTER OF SCIENCE

July, 1976

. -<~ . i;:·~.~~·:-.~?. '; .
.- ·~"' . . . ~

' .• ..
. .

~ . . ' .

, ..
J:.

,.

MINICOMPUTER CONCEPTS

Thesis Approved:

fl. F.

w. m wd/

9 I"'' ') 2 I"' e.:
tl d I a

i. i

PREFACE

This thesis presents a study of concepts used in the design of

minicomputers currently on the market. The material is drawn from

research on sixteen minicomputer systems.

I would like to thank my major adviser, Dr. Donald D. Fisher, for

his advice, guidance, and encouragement, and other committee members,

Dr. George E. Hedrick and Dr. James Van Doren, for their suggestions

and assistance. Thanks are also due to my typist, Sherry Rodgers, for

putting up with my illegible rough draft and the excessive number of

figures, and to Dr. Bill Grimes and Dr. Doyle Bostic for prodding me on.

Finally, I would like to thank members of my family for seeing me

through it a 11 .

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Objective
History of Minicomputers

II. ELEMENTS OF MINICOMPUTER DESIGN

Introduction
The Processor . .

Organization
Operations .

The Memory
Input/Output Elements .

Device Controllers ..
I/0 Operations .

III. GENERAL SYSTEM DESIGNS ...

Considerations
General Processor Designs .

Fixed Purpose Register Design
General Purpose Register Design
Multi-accumulator Design

Microprogramm1ng
Stack Structures
Bus Structures
Typical System Options

IV. MINICOMPUTERS OF THE 70'S ..

Introduction
Fixed Purpose Register Machines .

Digital Equipment Corporation PDP 8/e
Cincinnati Milacron CIP/2200 ..
Computer Automation ALPHA LSI-2
Texas Instruments 980B

iv

Page

1

1
2

6

6
8

8
12

20
21

21
22

25

25
25

26
29
31

34
37
39
41

42

42
42

42
45
50
54

Chapter

IV. MINICOMPUTERS OF THE 70 1 S (Continued)

Multi-accumulator Machines ...

Digital Computer Controls D-116
Data General ECLIPSE S/200 .

General Purpose Register Machines •.

Digital Equipment Corporation PDP 11/40
Raytheon Data Systems RDS-500 .
Interdata Model 8/32

A Stack Machine -- The Microdata 32/S

V. SUMMARY

The 3200 Microprocessor
The 32/S Architecture

SELECTED BIBLIOGRAPHY

APPENDIX A - INSTRUCTION EXECUTION TIMES
(IN MICROSECONDS) ...

APPENDIX B - APL DESCRIPTION OF EFFECTIVE
ADDRESS CALCULATING SCHEMES

APPENDIX C - APL DESCRIPTION OF INTERRUPT
OPERATIONS

v

Page

58

58

58
58

68

68
72
78

85

86
86

100

104

106

109

117

LIST OF TABLES

Table

I. 1974 Minicomputer Shipments

II. PDP 8/e Functional Characteristics

III. CIP/2200 Functiorial Characteristics

IV. ALPHA LSI-2 Functional Characteristics

V. TI 9808 Functional Characteristics

VI. D-116 Functional Characteristics

VII. ECLIPSE S/200 Functional Characteristics

VI I I.

IX.

X.

XI.

Memory Fault Codes

PDP ll/40 Functional Characteristics

PDP 11/40 Addressing Modes

RDS-500 Functional Characteristics

XII. Model 8/32 Functional Characteristics

XIII. Microdata 32/S Functional Characteristics

XIV. Addressing Modes and Effective Addresses

XV. Summary of Minicomputer Characteristics .

vi

Page

5

43

46

51

57

59

61

64

69

72

74

80

88

95

101

LIST OF FIGURES

Figure ·

1. Basic Computer Organization

2. Processor Organization

3. The Basic Processor Cycle

4. Machine Instructions

5. Processor Organization for Fixed Purpose
Register Machines

Page

7

9

13

18

27

6. Program for a Fixed Purpose Register Type System 28

7. Processor Organization for General Purpose
Register Machines 30

8. Programming a General Purpose Register Machine 31

9. Processor Organization for Multi-accumulator Machines . 32

10. Program For a Multi-accumulator System 33

11. Two Types of Control Units

12. Stack Operations

13. Stack Error Conditions

14. The Universal Bus .

15. PDP 8/e Instruction Formats

16. CIP/2200 Simplified Instruction Formats

17. Variable Length Data Formats

18. Decimal Data Representation

19. Memory Banking Example

20. D-116 Memory Reference Instruction Formats

vii

35

38

38

40

44

47

48

49

55

60

Figure

21. D-116 Arithmetic/Logic Instruction Format
(NL - No Load)

22. Error Checking and Correction Example

23. Specify Address Accumulator Formats

24. ECLIPSE S/200 Cache System .

25. PDP ll/40 Instruction Formats

26. Automatic Priority Interrupt Structure

27. RDS-500 Instruction Formats .

28. RDS-500 Dual Bus Architecture

29. Model 8/32 Processor Block Diagram

30. Register Set Numbering

31. Model 8/32 Instruction Formats

32. The 3200, 32/S, MPL Heirarchy

33. 32/S System Configuration .

34. Monobus Organization

35. Push Stack Operation

36. Pop Stack Operation .

37. Memory Reference Instruction Formats

38. Stack Operate Instruction Formats .

39. Branch Instruction Formats

40. String Descriptor

viii

Page

60

63

65

67

71

73

76

77

79

82

84

85

87

90

92

93

95

97

98

99

CHAPTER I

INTRODUCTION

Objective

In the past decade, the minicomputer industry was no doubt the

fastest growing segment of the computer industry which to this day is

the fastest growing industry in the world (30). Since the mini-

computers first attracted the attention of end-users, much work has

been done to optimize and expand the capabilities of these machines.

Today they are powerful and versatile, and they cover a wide range of

applications.

This paper presents a study of the concepts used in today•s mini­

computer designs. It is written from the viewpoint of a computer

scientist with emphasis on logical organization. Details of circuit

designs are not pursued. The basic elements of a minicomputer are

described in Chapter II. Chapter III deals with the general system

designs and some of the more important architecture found in today•s

minicomputers. Chapter IV focuses on what this author considers some
I

of the more interesting systems being marketed. Chapter V contains a

summary of the topics discussed, th~ future trends in the minicomputer

industry, and the conclusions derived from this study. Appendix A

contains a comparative chart of exeaution times of selected instructions

for the minicomputers discussed in the text. Appendix B and Appendix C

contain APL descriptions (8) of the effective address calculation

1

2

schemes and the interrupt systems for the same machines.

The basis for this paper comes from the 1974 survey of mini­

computers by Hobbs and Mclaughlin (7). Other surveys reviewed include

the one by Butler (2) in 1970 and Theis and Hobbs (28) in 1969.

Thompson's work (29) on developing a general minicomputer simulation

system is very much related to the subject of this paper and is

recommended for complementary reading.

History of Minicomputers

In 1963, at a time when the computer industry was just beginning

to stabilize from its fast paced revolution, the first of a new breed

of computers was delivered by Digital Equipment Corporation of Maynard,

Massachusetts (9) (30). It was physically much smaller than the

typical computer of the time and it had just the very basic processing

capabilities. Its primary function was to control discrete and contin­

uous processes. New as it was, the "minicomputer" was undoubtedly

unimpressive, especially because the general trend then was to

centralize and concentrate computing power in larger and larger

machines. So the first delivery did not attract much attention, but

it did, however, set into motion a movement which was to be termed

"the minicomputer revolution" (15) (30).

The original equipment manufacturers (GEM's) were at the outset

the almost exclusive market for the minicomputers. They did the job

of installing the little machines into large application systems

primarily for process control. Before long, however, keen end users

began noticing the price/performance benefits that the minicomputers

offered--benefits that were unavailable in the medium and large scale

computers. They began pointing to a wide variety of new applications

suitable to the capabilities of the minicomputers. Such applications

include:

Instrumentation systems

· Automated test systems

· Data acquisition, monitor and control

· Communications control

· Transportation and distribution control

Physical science monitoring, analysis, and control

Medical science monitoring and analysis

3

By the end of 1965, an overwhelming interest in the new minicom­

puter industry was evident (28). In that year, over 1000 units were

sold valued at approximately $25 million. The growth rate became

phenomenal. In 1968 sales including peripheral equipment neared the

$200 million mark. By 1972 over 35,000 units (54% of all computers

installed in the country) had been sold and the industry had sustained a

growth rate of over 30% per year (30). In 1975 alone world wide ship­

ments were projected to reach $1.24 billion which includes 55,400

units (14).

What accounted for such an explosion? What made the minicomputers

so attractive? It certainly was not their processing capabilities, not
I

alone, anyway. Well then, what was the characteristic that caught the

eyes of the then medium and large scale computer users? It was none

other than the 11 price/performance benefits 11 , the relatively minimal

cost of owning and operating a minicomputer system. That characteristic

coupled with the fact that improvements in technology generally brought

down prices was the primary catalyst in the dynamic nature of the mini-

4

computer industry. In March of 1969, a survey of mini computers by Theis

and Hobbs (28) included systems in the range of $50,000 or less. In

October of 1970, a survey by J. L. Butler (2) included systems costing

$25,000 or less. In July of 1974, a survey by Hobbs and Mclaughlin (7)

was limited to systems costing under $10,000. So the cost of mini­

computers were low to begin with, and as technology continued to

improve, those low prices continued to decrease.

What is the current state of the minicomputer industry, that is,

what now·are the general characteristics of the minicomputers, what

are their roles in today•s society, and who are the manufacturers?

The minicomputers of today have very impressive processing

capabilities. They are much more powerful and much more versatile than

those of the strictly monitor and proces,s control days. A key factor

in the hardware improvements is the increased use of integrated circuits

(10). In effect, because of the microscopic nature of integrated

circuits, it is now possible to implement some of the sophisticated

processes of large scale computers within the mainframe of a mini­

computer. Inherent in today•s minicomputers are three such

sophistications:

use of general registers

microprogramming

interfacing through bus structures

As for the current roles of minicomputers, the applications

mentioned earlier still make up close to 84% of the total number of

applications. Of the remaining 16%, 9% consist of the more recent

implementations in business functions. 4% in education, and 2% in the

wide range of other applications (7) (10) (14). In the light of

today•s advances, predictions state that there will be more new

applications as well as continued size and cost reductions and

performance improvements.

5

As mentioned earlier, the nature of the minicomputer industry is

dynamic. This characteristic is evident when the history of mini­

computer manufacturers is examined. Hobbs and McLaughlin (7) cite

some of the recent trends in their 1974 survey. In light of that

article, it is safe to say that today there are well over 20 manufac­

turers. Table I shows Modern Data•s (14) 1975 rating of the top nine.

TABLE I

1974 MINICOMPUTER SHIPMENTS

MANUFACTURERS UNITS SHIPPED DOLLAR VALUE CUSTOMER SITES

Digital Equipment Corp 28% 33% 35%

Data General 20% 13% 16%

Hewlett Packard 11% 10% 12%

Texas Instruments 5% 5% 6%

General Automation 6% 5% 3%

Varian Data 2% 5% 4%

Digital Computer Controls 3% 5% 2%

Interdata 6% 3% 2%

Modular Computer Systems 2% 3% 3%

CHAPTER II

ELEMENTS OF MINICOMPUTER DESIGN

f
' Introduction

I

Around 1830, an eccent~ic English mathematician named Charles

Babbage, cbncerned with improvfng methods of computing mathematical

tables, set forth the description of a machine which he called the

Analytical Engine (6). In that description, the five most important

features included the following:

1.

2.

3.

4.

5.

It has an input medium, by means of which an unlimited
number of operands and instructions may be entered.

It has a memort, where the operands and instructions may
be stored and ater retrieved.

It has a calculating unit capable of performing ar:ithmetic
and logical operations on the operands stored in the memory.

It has an output medium, by means of which the results of
the calculations are returned to the user.

It has a decision capability, by means of which alternate
courses of action may be taken depending on computed
results. ' ..

Today, a computer system is described in terms of the five

features listed above. Its basic organization is illustrated in

·Figure 1. One other feature added in 1947 by John Von Neuman of

Princeton is the stored program concept in which the calculating unit

does not recognize the difference between operands and instructions

since both are stored in the same form, in the same memory.

6

and Instructions....---------.

Input

Decision
Results.

Memory

Calculating
Unit

Control

Results

Output

Instructions

Figure 1. Basic Computer Organization

7

Minicomputers have the general features described above. When

contrasted with medium and large scale computers, their distinguishing

characteristics are:

· small physical size

· small word length

• sma 11 cost

..

Most minicomputers fit in a 19 x 11 x 21 inch mainframe. Their word

lengths range from 8 to 24 bits with most systems using 16 bits. The

cost of a basic system configuration including a processor, 4096 words

qf memory, and a teletype generally does not exceed $10,000 (10) (26).

Although they have evolved into versatile units and have acquired some

large scale computer features, it is at present inconceivable that a

minicomputer system can actually replace a large scale computer

system. There is still a big gap between the processing capabilities

of the two classes of computers.

The description of the basic elements in a minicomputer system

follow. The main topics correspond with the three major components:

the processor

· the memory

· the input/output controllers

The Processor

8

The processor of a system is concerned with the major operations

of a computer. It may be likened to the foreman in a group of workers

who tells everyone what to do and when to do it. Thus all computer

operations are initiated by the processor and when each operation is

completed, the processor is notified.

Organization

The processor contains four basic elements:

· a set of registers

· an arithmetic/logic unit

bus connections

· a control unit

Figure 2 shows one way these elements may .be organized.

9

Bl;!.t .. 2 Bus 3
r-r-

..... if Program counter \

I

B;!~ 1

~
I Memory address register ...

~

Core memory / 1-

Control

I t unit

~ Memory buffer register ... '
I

~

I i vr--.
t--1---

Instruction register ~
t'-.. v

Accumulator I

I

-

~

Other arithmetic and/or II

~
~

index register(s)
(if any)

\ \
/ I

Arithmetic/logic unit

\ ""'--
I

Figure 2 .. Processor Organization

10

The Register Set. Processor registers are fast memory units used

by the processor. Physically each register consist of a set of 11 flip

flops 11 , memory devices each capable of storing one bit (binary digit)

of information. The number of bits that a register can store depends

on the word length of the system.

The functions of each register vary. In general some are used

strictly by the processor while others are accessible to the user.

Those used in today•s minicomputers are described below (6) (9):

1. The program counter contains the address of the next instruc-
tion to be processed. ·

2. The instruction register contains the instruction currently
being processed.

3. The memory address register contains the address of the
memory location accessed or to be accessed.

4. The memory data register contains the operand or instruction
to be stored into or just retrieved from the memory.

5. The status register or individual status indicators contain
current status information about the processor.

6. The accumulator stores operands and results of arithmetic/
logic operations.

7. The accumulator extension serves as an extended part of the
accumulator for operations requiring more than the usual
number of bits.

8. The index register is used in operand addressing.

9. The pointer register contains the address of an operand.

10. The stack pointer contains the address of 11 Stacked 11 operands
or results.

11. The general purpose register may serve any one of the above
functions.

The Arithmetic/Logic Unit. The arithmetic/logic unit performs

all calculations required by user programs. The unit consists of logic

circuits capable of performing operations such as the following:

add the contents of two registers

· logically 11 and 11 the contents of two registers

· complement the contents of a register

shift or rotate the contents of a register

· increment or decrement the contents of a register

11

Bus Connections. Data paths between the arithmetic/logic unit and

the registers are simplified by the use of data buses. In Figure 2

note the use of three data buses. Buses 1 and 2 are input buses from

the registers to the arithmetic/logic unit. Bus 3 is an output bus

from the arithmetic/logic unit to the registers.

Control Unit. The control unit coordinates all the actions of a

computer l:>y generating pulses to effect logical sequences. Control

units may be hardwired or microprogrammed. In the hardwired version,

the logic sequences are built into the logic circuits of the control

unit. Thus the sequences are fixed and unalterable. The microprogram­

med version consists of a microsequencer and a control memory which is

separate from the main memory. The microsequencer is a control unit in

itself but its operations are much more basic. It operates on micro­

programs stored in the control memory. The control sequences are thus

defined by microprograms. By changing the contents of the control

memory or by replacing the control memory with another control memory

containing different microprograms, the control sequence is changed.

The ability to be altered makes microprogrammed processors more adapt­

able to specific user needs. See Chapter III for a more detailed

discussion of microprogramming.

12

Operations

The Basic Cycle. Processor operations involve a basic cycle of:

1. fetching an instruction from main memory

2. decoding the instruction

3. executing the instruction

Each of these operations are initiated and controlled by timed pulses

generated by the control unit.

The first control pulse begins the instruction fetch by transfer­

ring ·the contents of the program counter (PC) into the memory address

register (MA). Thus both registers contain the address of the next

instruction to be processed. The next pulse gates the contents of PC

through the arithmetic/logic unit (ALU) to be incremented and returned

to the PC. The PC now contains the address of the next sequential

instruction. The next control pulse is a read from memory. The

contents of the location addressed by MA is transferred into the

memory data register (MD). So MD contains the instruction which must

be passed into the instruction register (IR) for the decoding oper­

ations. That transfer is effected by the next control pulse completing

the instruction fetch cycle.

The decode stage of the cycle feeds the contents of IR into a set

of decode logic circuits which performs a-logic branch to the appro­

priate logic sequence. This logic sequence is associated with the

machine instruction code in IR.

Suppose the machine instruction is an add operation. In the

basic minicomputer one operand is assumed to be in the accumulator (AC).

The second operand is taken from the memory location specified by the

addressing portion of the instruction word. Once the second operand is

13

fetched and placed into MD, control pulses gate the contents of AC and

MD into the adder unit of the ALU where the sum is generated and then

returned into AC. Thus the execute phase of the basic cycle is complet­

ed. The control sequence returns to the beginning where the next

instruction is fetched, decoded, and executed. An APL (8) description

of ·the process described above is shown in Figure 3a. The symbols used

in the description are defined in Figure 3b.

-

MA +---PC
PC~ INC (PC)
MD~MlMA
IR +---MD

decode sequence

.
AC ~ADD (AC, MD)

(a)

Legend

progr.~m counter

0
1
2
3

AO feE-

PC
MA
M
MD
IR
ADD
INC

memory address register
memory
memory data register
instruction register
ALU add function
ALU increment function

(b)

Figure 3. The Basic Processor Cycle

14

Interrupts. During the basic cycle, conditions requiring the

attention of the processor may arise. An overflow in the result of a

calculation, machine failure, an input/output device (initiated

earlier) ready for the processor to activate a data transfer are

examples of such conditions. The processor must be 11 interrupted 11 from

its normal sequence of operation to take appropriate actions in return­

ing the system to its normal state.

An interrupt is either internal or external. Internal interrupts

are caused by various types of error conditions, such as arithmetic

overflow, or invalid memory address. External interrupts are requests

for attention from either the conventional I/0 devices or external

devices related to real time systems such as process control or lab

experimentation.

Interrupts are moni tared by the processor usually after the

execute phase of the basic cycle. If an interrupt is required, the

interrupting element must set an interrupt request indicator sometime

during the current processing cycle. Upon recognition of the interrupt,

the processor initiates an interrupt procedure by saving the 11 environ­

ment11 of the program being interrupted. The environment of a program

consists of the current contents of the registers and the status

indicators. At the completion of the interrupt procedure, the environ­

ment of the interrupted program is restored and the processor continues

with that program's execution.

Two general methods of processi.ng interrupts are used in mini­

computers. One of the methods uses one interrupt request line for all

possible interrupts. When an interrupt is requested~ the processor

transfers to a general interrupt processing sequence where it must

15

determine which element caused the interrupt. Once that is resolved,

the processor transfers to an interrupt sequence that services the

element that caused the interrupt.

The second method allows each interrupting element an interrupt

(11 vectored 11) address. Whenever an interrupt is granted by the proces­

sor, the next instruction executed is taken from the address associated

with the interrupt. The instruction is often a branch to the appro­

priate service routine. This method of processing interrupts is faster

and more efficient than the first method.

What happens when more than one interrupt occurs within a cycle?

Some type of a priority system must be established. Internal interrupts

are usually given higher priority over external interrupts. Among the

external interrupts, real time devices with fast response requirements

are usually given top priority. Then depending on physical location

and speed, each I/0 device is given its unique priority.

Priority schemes may be programmed or hardwired (built-in). One

implementation of the hardwired version requires two interrupt lines

for I/0 processing (21). One line is used by the devices to request

interrupts~ The other is used by the processor to grant interrupt

requests. The priority is determined by the order in which the grant

·signal is propagated through all the devices. The device connected

closest to the processor on the grant line thus has the highest

priority. If two devices request an interrupt simultaneously, the

device with the higher priority receives the grant signal first there­

by not allowing the grant signal to reach the second device.

Effective Address Calculations. Instructions involving an operand

fetch from memory must deal with the minicomputer•s inherent problem

16

of the short word length (10). The problem lies in trying to code

both the machine instruction and the operand address in one instruction

word. In a system with 16 bit words, if 3 bits are used for the

instruction code, then 13 bits are left for addressing the operand.

With 13 bits, 8192 words (or bytes) is the maximum number of locations

that are directly addressable. For some applications a minicomputer

system with 8192 words of memory is sufficient. Yet, there are many

more applications where 8K of memory is simply too small. And for some

of those applications, 3 bits is often not enough to code all the

necessary machine instructions.

To circumvent the problem, minicomputer designers devised a

variety of addressing schemes. One scheme divides the,memory into

11 pages 11 • The size of a page depends on the number of bits used for the

address part of an instruction word. For example, if the address is 8

bits long, then the page size is 28 or 256 words. If the memory size

is say 16K words, then there are 64 pages of memory numbered from 0 to

63. With such a scheme, at least four modes of addressing are possible:

1.

2.

3.

4.

Direct Page-0. The effective address is taken to be the
address specified in the instruction.

Direct Current Page. Enough high order bits of the
program counter are concatenated with the address in the
ins_truction to form the effective address.

Relative to the Program Counter. The address in the
instruction is treated as a signed value and added to
the current value of the program counter.

Direct with a Pa~e Register. A separate register
provides the hig order bits in the calculation of the
effective address.

The key point in the schemes described is the forming of a 16 bit

effective address which allows access to 64K of memory.

There are many other addressing schemes used in minicomputers.

Some of the mo.re common ones are described bel ow:

l. Indirect Addressing. The address specified in the
instruction contains the effective address. Some
systems have "multi-level" indirection where usually
the most significant bit of an indirect address is
tested. If it is set then the address points another
indirect address, otherwise it points to the operand.

2. Indexing. The effective address is the sum of the
address in the instruction and the contents of an
index register.

3. Extended Addressing. The effective address is found
in the location immediately following the instruction
location.

4. Immediate Addressing. The operand is either in the
instruction itself or in the word following th~
instruction.

In many systems, addressing schemes are combined. Terms such as

preindexing or postindexing refer to the combination of index and

indirect addressing. In preindexing, the indexing operation is

performed, then the indirection is considered. It is vice versa for

postindexing.

17

Machine Instructions. Machine instructions define the programmable

operations: of a computer. From one computer to another, the instruc­

tion sets usually differ according to their application. Generally,

machine instructions are divided into three classes:

l. memory reference

2. register operate

3. input/output

These classes of instruction are discussed in the following paragraphs.

Memory reference instructions require some type of a memory

access, either for fetching an operand or for transferring control. For

18

minicomputers, instructions of this class usually include those listed

in Figure 4a.

Register operate instructions deal mainly with the processor

registers and the status indicators. There is no reference to the

memory. The entire instruction word can thus be used to specify one

or more register operations. Figure 4b lists the typical register

operations.

Input/output (I/0) instructions deal with the transfer of data

and device status information between the processor and the I/0

devices. Three types of information, control, address, and data, may

transferred .. Control information are signals that initiates and/or

terminates I/0 operations. Address information refers to areas in the

memory in which data is transferred in or out. The data, of course,

INSTRUCTION

ADD

AND

ISZ

JUMP

JSUB

LOAD
STORE

ACTION

Add the contents of a register and a memory location,
place the results in the register.
Logically AND the contents of a register and a memory
location, place the results in the register.
Increment the contents of a memory location and skip
the next instruction if the result is zero.
Branch to a memory location and resume execution of the
program.
Store the address of the next instruction into a. memory
location and resume execution of the program at the
location immediately following.
Load a register with the contents of a memory location.
Store the contents of a register in a memory location.

(a) Memory Reference Instructions

Figure 4. Machine Instructions

19

INSTRUCTION ACTION

CLEAR Reset each bit in a register to zero.

COMP

EXCH

INC

ROTATE

SET

SKIP

SHIFT

INSTRUCTION

DMAIN

DMAOUT

INBLK

INPUT

OUTBLK

OUTPUT

SELECT

SENSE

Complement each bit in a register.

Exchange the contents of two registers.

Increment the contents of a register.

Rotate the contents of a register one bit left or right.

Set each bit in a register to one.

Skip the next instruction (conditional - the contents of
a register is examined).

Shift the contents of a register one or more bits.

(b) Register Operate Instructions

ACTION

Initialize a DMA input block operation.

Initialize a DMA output block operation.

Initialize a concurrent input block operation.

Input a word from a device to a register or a memory
1 ocati on.

Initialize a concurrent output block operation.

Output a word from the memory or a register to a device.

Transmit a specified function code to a device.

Test the status of a devic~.

(c) Input/Output Instructions

Figure 4. (Continued)

is the information being transferred between registers or memory

locations and the l/0 devices. Typical l/0 instructions are listed

in Figure 4c.

The Memory

20

The memory of a computer performs the vital function of storing

data, instruction sequences, and intermediate results of computations.

Minicomputer memories generally range from 1024 to 32,768 words. Their

speeds are in terms of cycle time, which is the time required to select

and write data into a memory location. The cycle times vary from 250

to 2000 nanosecond (billionth of a second). The common practice is to

manufacture memories in modules of 1024, 2048, 4096, or 8192 words.

Thus users can start with the bare minimum and as needed for system

expansions separate modules are purchased and installed (7) (10).

Two types of memories are most common: magnetic core, and semi-

conductor. Core memories are the slower of·the two types but they have

the distin~t advantage of being. non-volatile, which means their conten~

are not lost when the power supply is shut off. This characteristic

coupled with the fact that core memories have, until recently, been

generally cheaper, has made them the primary type of memory used

today. However, with vast improvements in large scale integratiohs

(LSI) drastically reducing their cost, semiconductor memories are now

considered to be serious competitioh for the core memories (6) (10).

Minicomputers continue to improve. In memory design, special

features such as those listed below are becoming more common.

1. Parity logic is used for error detection and correction.

2. Memory protect logic is used for maintaining the integrity
of a system.

3. Scratchpad or cache memories are being used as fast (50 to
100 nsec) intermediate storage (14).

4. Memory modules are interleaved allowing overlapped memory
access (15).

5. Memory banking techniques allow the use of up to 256K of
memory (15).

Input/Output Elements

Computers must have a way of communicRting with their users.

21

This is done through the input/output elements which include peripheral

devices such as card readers, 1 i ne printers, tape' drives, and te 1 etype

Keyboard/printers. The devices, however, cannot communicate directly

with the processor. · Interfacing elements must be provided to bridge

the gap between the processor and the p~ripheral devices. These

elements are called device controllers.

Device Controllers

Device contra 11 ers vary according to the type of peri ph era 1

devices they control. One type is used for serving devices that

transfer data serially such as a teletype keyboard/printer or a

cathode ray tube (CRT) keyboard/display. These are slow devices with

transfer rates not exceeding 30 characters per second. Another type

may be used to service a card reader with transfer rates up to 200

(80 column) cards per minute. Another type might service a line

printer with a transfer rate of over 1000 (132 column) lines per

minute. Then there are those that service high speed devices such as

magnetic tape and disc drives. Controllers for these high speed devices

often bypass the processor using the direct memory access (DMA)

technique.

Generally a device controller is made up of two decoders. One

decodes input from device selection lines. When an 1/0 operation is

required the processor must send a device code through the device

selection lines. All devices have access to these lines and each

shall compare the signals with its unique device code. The device

whose code matches those of the device selection lines then responds

according to the function specified. The function is sent by the

processor. It is decoded by a function decoder which activates the

specified I/0 operation - input/output of device status or input/

output of data.

1/0 Operations

l/0 operations involve some or all of the following steps (6):

1. Check to see if device is available.

2. When device becomes available, activate.

3. Transfer data.

4. Deactivate.

22

The first step can be accomplished in two ways. The first method

involves a program loop where the status information of an unavailable

device is checked and rechecked until the device becomes available.

This method is very inefficient primarily because of the processor

hold up. The second method uses the interrupt facility. The proces­

sor can request an l/0 device to enter an interrupt request as soon as

it becomes available. While waiting for the interrupt request, the

processor is free to do some other computations.

The second step (activation) may not be necessary for some

devices. Teletypewriters and CRT's are usually ready to go as soon as

23

they become available. But for units such as a tape drive special

activation processes must be performed.

The third step (transfer of data) can be accomplished using one of

three methods:

· programmed·

buffered or concurrent

· direct memory access

Programmed data transfers make use of an interrupt procedure for each

·word transferred. This method is time consuming since every word

transferred requires storage and restoration of the interrupted

program. Buffered or concurrent data transfers usually involve a block

of words and require extra hardware or microprogrammed logic. Once

initiated by a special instruction, it interrupts the processes when

it is ready for a transfer. It reads a buffer address and a word

count from memory, determines the current address for the transfer,

transfers the word in or out of memory, updates the word count, checks

to see if the buffer is filled, and then returns to the interrupted

program. In this method, the interrupted program need not be stored

and restored, thus saving valuable processor time. The ultimate time
;:·1· 1}

saver, however, involves the use of the third method, direct memory

access. In its implementation a separate processor is installed. The

DMA processor consist of enough logic and registers to make data

transfers in and out of the memory without having to go through the
' main processor. Like the buffered data transfer DMA transfers also

usually involve a block of data words. Once initiated, the DMA

processor 11 steals 11 a memory cycle from the processor each time it

becomes ready to transfer a word. The main processor is notinterrupted

24

but 11 delayed 11 one memory cycle. When all I/0 transfers are completed,

the device is deactivated.

CHAPTER III

GENERAL SYSTEM DESIGNS

Considerations

The design of any computer system is influenced by the applicatioffi

it is intended to cover. The systems of interest in this paper are the

low cost general purpose minicomputers that are useable in the appli­

cations mentioned in Chapter I. Considerations involved in designing

such systems include the following:

1. The system must be flexible. It must have the capability to
assume a wide variety of configurations dictated specifically
by the applications.

2. The system must be expandable. Structures for expanding the
memory and the I/0 capabilities must be implemented in the
system design.

3. Designs involving the programmability of the system must be
directed at achieving maximum effectiveness with minimum
programming effort.

4. If possible, designs for a new system should also be directed
at making the system compatible with earlier models. The
software developed for the earlier models can thus be
executable in the new system.

General Processor Designs

Processor operations generally involve information transfers to,

from, and among the processor registers. The organization of the

processor registers thus dictates the types of instructions that are to

be included in a system's instruction set. In minicomputer systems,

there are three general processor designs. The three designs are

correlated to the type of programmable registers used. These three

25

26

types are fixed purpose registers, multi-accumulators, and general

purpose registers. Systems with fixed purpose registers make use of

stngle operand address instructions. Those with multi-accumulators use

double register operands. Systems with general purpose registers also

use double operands, but the operands do not have to represent contents

of registers.

Fixed Purpose Register Design

Minicomputers employing fixed purpose registers represent the

basic, less sophisticated systems found in dedicated applications such

as industrial process control, communications, and peripheral proces­

sing for larger computers. Systems belonging. to this class of mini­

computers include:

· Cincinnati Milacron CIP/2200

· Computer Automation ALPHA LSI-2

Digital Equipment Corporation PDP 8/e

Texas Instruments 9808

Varian Data Machines VARIAN 520/i

Figure 5 is a simplified block diagram of the processor organiza­

tion for this class of minicomputers. As shown, the programmable

register set includes an accumulator, an accu~ulator extension, and an

index register. Some systems, however, may not have all three

registers. The PDP 8/e, for example, does not have an index register.

The ALPHA LSI-2 does not have an accumulator extension. Then there are

systems that have all three of those registers plus some others. The

TI 9808 has, in addition, a base register and a subroutine linkage

register.

27

MEMORY DATA " f----ACCUMULATOR MEMORY REGISTER 1..- fE-...
I

\.

MEMORY ADDR INSTRUCTION ACCUMULATOR
~ REG'ISTER REGISTER EXTENSION

I
PROGRAM INDEX -
COUNTER REGISTER cE--

I l
Figure 5 •. Processor Organization for Fixed Purpose Register Machines

Fixed purpose register systems are often referred to as single

address machines. The implication comes from the use of one operand

in each of the memory reference instructions. Figure 6 shows how such

instructions are used in summing an array of values. The first instruc­

tion clears both the accumulator and the index register. the second

instruction begins the summing loop .. It instructs the system to add

into the accumulator the contents of the memory location specified by

the sum of the index register and the address value associated with

ARRAY. The first time through the ·loop, the index register is zer6, so

the value added into the accumulator is 10. The next instruction

increments the contents of the index register. Thus the next value to

be added into the accumulator is taken from the address ARRAY + 1 which

contains the value 25. The ISZ instruction increments the contents of

COUNT from -4 to -3. Since COUNT is not zero the next instruction (JM~

28

Mnemonic Code Meaning

OPR CLA, DTX Clear the accumulator and deposit to the index
register.

LOOP ADD X ARRAY Add a memory value into the accumulator.

OPR INX Increment the contents of the index register.

ISZ COUNT Increment memory value and skip if the result
is zero.

JMP LOOP Branch back to process the next value.

OPR HALT Terminate execution.

COUNT DC -4 Define constants.

ARRAY DC 10

DC 25

DC 13

DC 75

SUM DS Define storage.

END

Figure 6. Program for a Fixed Purpose Register Type System

returns control to the instruction labeled LOOP. The value of 25 is·

taken from memory and added into the accumulator to form the new

accumulator contents of 35. The process of incrementing the index

register and the negative counter is repeated. Since the counter

contains a -2, the third value 13 is added into the accumulator making

the sum 48. The program loops back for the last time to add the fourth

29

value 75. When the ISZ instruction is executed this time the counter

becomes zero, thus the JMP instruction is skipped. The STO instruction

stores the contents of the accumulator into the memory location assoc­

iated with SUM. The OPR HALT instruction terminates the execution of

the program.

General Purpose Register Design

If the systems with the fixed purpose register,design represent

one end of the spectrum of minicomputers, then the other end is

represented by the systems with the general purpose register design.

Minicomputers in this class are geared for applications involving

complex operations such as multi-tasking. For example, one of these

systems may be used to automate industrial processes, monitoring and

controlling multiple operations in real-time while simultaneously

preparing and printing production reports for management. The follow­

ing are a few of the minicomputers belonging to this class of computers:

· Digital Equipment Corporation PDP 11/40

· General Automation SPC-16

Interdata Model 8/32

Lockheed SUE

· Modular Computer Systems . M~DC~MP II

Raytheon Data Systems RDS-500

Texas Instruments 9608

The processor organization of a system with a general purpose

register design is shown in Figure 7. The programmable register set

consists of eight general purpose registers numbered 0 to 7. Each of

those registers can function as accumulators, accumulator extensions,

30

Memory Data ~ Memory GPR 0 Register
I

GPR 1 ~ ~

'
~

Memory Instruction
~ GPR 2 ~

Address Reg. Register '

I

~
~ GPR 3

__,

Program
[, ~

~ GPR 4 Counter

~ GPR 5 ~

~ GPR 6 ~
--"'

t--
~ GPR 7 __,

Figure 7. Processor Organization for General Purpose Register Machines

index regtsters, and operand pointers.

The programming example in Figure 8 illustrates how the general

purpose registers are used. Like the program in Figure 6, it sums an

array of values. Note the use of double operand instructions in which

the operations are considered to be register-to-register or register-

to-memory.

31

Mnemonic Code Meaning

SR 2, 2 clear register 2

LR 3, 2 clear register 3

LOOP ADD 2t ARRAY(3) add into register 2 the value in the
location specified by the sum of
register 3 and the address of ARRAY

INC 3 increment register 3

COM 3, COUNT compare the contents of register 3 and
location COUNT

BLT LOOP branch to loop if register is less than
the memory value

STO 2, SUM store the accumulated sum into the
location SUM

HALT terminate execution

Figure 8. Programming a General Purpose Register Machine

Multi-accumulator Design

The multi-accumulator design is a combination of the previous two.

designs. Operations in systems with this design are generally centered

around four accumulators, two of which can be used as index registers.

Systems implementing this design include:

· Data General NOVA Computer

· Data General · ECLIPSE Computer

· Digital Computer Controls D-116

32

The organization of a system with a.multi-accumulator design is

shown in Figure 9. Of the four programmable registers, the first two

are used strictly as accumulators, the other two are used as accumu-

lators or index registers.

l
... MEMORY DATA ~ ACC 0 MEMORY REGISTER

I
~

~ ACC 1
v

MEMORY ADDR INSTRUCTION ACC 2 ~
_ ~ , REGISTER REGISTER or INDEX REG

T ~ ACC 3 r-

PROGRAM or INDEX REG
I'

COUNTER

Figure 9. Processor Organization for Multi-accumulator Machines

The multi-accumulator design is an attempt at implementing a

general purpose register:design with the use of a minimum number of

registers. In this design, there are only five memory reference

instructions and these five do not include arithmetic/logic operations.

The five instructions are:

load

· store

• jump ·

33

jump subroutine

increment and skip if zero

All arithmetic/logic instructions are one cycle register-to-register

instructions {they do not address memory). The extra instruction word

bits can be used for other functions such as specifying a rotate of the

resulting register and/or a conditional skip of the next instruction.

LOOP

Menmonic Code

SUB

MOV

LOA

LOA

ADD

INC

INC

JMP

STO

0, 0

2' 0

3, COUNT

1, ARRAY, 2

0, 1

2' 2

3, 3, SZR

LOOP

0, SUM

Meaning

Clear accumulator 0.

Clear accumulator 2.

Load the negative count into ACC 3.

Load the value at the address specified
by the sum of ACC 2 and address ARRAY
into accumulator 1.

Add the contents of register 0 and
register 1. Place the result in
register 0.

Increment index register 2.

Increment negative counter in register
3. Skip next instruction if zero.

Branch to instruction labeled LOOP.

Store the contents of register 0 into
memory location associated with SUM.

HALT Terminate execution.

Figure 10. Program For a Multi-accumulator System

34

Figure 10 illustrates the use of some of those instructions. The

algorithm for summing an array of values is used again for comparison.

One might note that an extra load instruction had to be used since the

ADD instruction does not reference memory.

Microprogramming

The concept of microprogramming as formulated by Professor M. V.

Wilkes of Cambridge University (13) was incorporated into the design of

minicomputers around 1970. The primary reasons were to give mini­

computers added flexibility and to allow them to perform more sophis­

ticated operations. The first large scale implementation of

microprogramming was in the IBM 360 family of computers introduced in

1964 (6). One of the primary reasons for the implementation was to

permit reasonably efficient emulation of earlier IBM computers for which

the customer software had been developed. Needless to say, the

microprogramming technique became a valuable marketing tool and it

contributed greatly to the success of the new IBM computers.

The microprogramming concept is illustrated in Figure 11 along with

the diagram for a non-microprogrammable machine. Note that the two

architectures are identical except for the control unit. In effect, the

same sequence of control pulses are generated by both versions. It is

the means by which the control signals are generated that is different.

The mi croprog.rammed control unit consists of a read only memory

(ROM), a mi croaddress register (MAR), a microinstruction register (MIR),

a microsequencer, and a network of decoding logic. The microsequencer

acts as the controlling element in a microprogrammable control unit.

The read only memory contains the microinstructions. The microprogram-

Input
signals

Input
signals

Hard-wired
control unit

Control
signals

(a) Hard-Wired Control

Read-only
memory

Decoding
logic

sequencer

Control
signals

(b) Microprogrammable Control

Memory

Logic
units

Memory

Log1 c I
units ,

Figure 11 .. Two Types of Control Units

35

PC

36

ming cycle begins by reading into MIR a microinstruction from a ROM

word specified by the contents of MAR. From MIR the microinstruction

is decoded to produce one of two actions--generate pulses for register

transfers or modify the contents of MAR. The modification of MAR causes

a microsequence branch. If a microsequence branch is not effected then

the next microinstruction to be executed is read from the ROM word

immediately following the ROM word of the current microinstruction (6).

An important feature in microprogramming is the abi 1 i ty to specify

many different operations within a microinstruction word. As a matter

fact, microinstruction word lengths are often longer than the word

length of the main memory. This feature is useful in overlapping

processor operations to save time.

One of the most important observations in microprogramming is the

fact that the functions of the microprogrammable control unit are

defined by the microprograms stored in the ROM. To meet different

application requirements that dictates different control unit functions,

one needs only to replace the microprograms. Thus microprogramming is

advantageous in applications that require:

1. Implementation of large, sophisticated instruction set with
a relatively simple processor.

2. Emulation of different computers with different designs for
different applications.

3. Implementation of complex operations such as multiply/divide,
floating point processing, and input/output.

Many of today•s minicomputer systems employ a microprogrammed or

microprogranmable control unit. In the Cincinnati Milacron CIP/2200,

complex decimal number manipulation instructions incl~ding ••edit and

mark .. and 11 translate and test 11 are implemented. Hewlett Packard 21MX

and Data General ECLIPSE S/200 allows for customized instructions and

subroutines through a writeable control store feature separate from the

37

ROM of the control unit. One computer company, Microdata, manufactures

only microprogrammable machines. The products include MICRO 800, MICRO

1600, and MICRO 3200. An interesting 11 firmware 11 (microprogram) develop­

ment by Microdata is the MICRO 32/S. It is a MICRO 3200 processor

microprogrammed to emulate a stack machine (11). The system is discussed

in more detail in Chapter IV.

Stack Structures

A useful special-purpose feature incorporated in many of the

current minicomputers is a push-down storage unit, sometimes called an

LIFO (last-in-first-out) list, or a stack. A stack is considered to be

a list storage structure in wh·ichdata items are inserted and deleted

from one end only. Its use ranges from evaluation of arithmetic

expressions to implementation of high level languages (11). The primary

advantage in using a stack structure is its ability to allocate and

deallocate storage locations dynamically.

A stack structure is analogous to a stack of cafeteria tr~ys

where the last tray placed on top of the stack is the first to be

removed. Thus there are two major operations involved in a stack

structure, 11 push 11 a data item onto the top of the stack and 11 pop 11 a

data i tern from the top of the S;tack.. These operations are il 1 ustrated
' ' '

in Figure 12. Error conditions 11 Stack overflow 11 and 11 Stack underfloW 11

are illustrated in Figur~ 1~.

Generally there are three levels of stack structure implementations

in minicomputers. The first. level of impl~mentation involves automatic

saving and restoring of environments in subroutine and interrupt proces­

sing. In the Cincinnati Milacron ClP/2200 it is called the control

1000 .
1001.
1002
1003

1000
1001
1002
1003

1000

1001

1002 .

1003

1004

EEI~topof
~ stack

(a) Push Data C

EEl+-- top of EE.j stack

1000
1001
1002
1003

into Stack

1000
1001
1002
1003

(b) Pop Data B. from Stack

Figure 12. Stack Operations

Stack Base = 1000 Stack Length = 5

A 1000

B 1001

c 1002

D 1003

E ~top of
stack 1004

38

top of
~stack

~.
top of
stack

~top of
stack

(a) Overflow Condition (Push) (b) Underflow Condition (Pop)

Figure 13. Statk Error Conditions

39

stack facility (3). The user has no direct access to the facility.

The second level of implementation is user oriented. The user can

define and manipulate his own stacks through special stack manipulating

instructions. The facility is considered to be an added feature. Such

a facility is implemented in the ALPHA LSI-2 (19) and ECLIPSE S/200 (22)

computers. The third level of implementation involves a completely

stack oriented system. In such a system the machine instructions are

specifically designed to manipulate stacks. The Microdata 32/S (11) is

an example of such a system.

Bus Structures

As microprogramming has contributed to the flexibility and useful­

ness of minicomputer systems, the use of bus structures has provided

ease in the interfacing of a large number of peripherals, memory expan­

sion and in some cases multiprocessor operation~. Specifically the

use of a universal bus has become very popular among minicomputer

manufacturers. Just to name a few, the Computer Automation ALPHA LSI-2

has its MAXIBUS, the PDP 8/e has its OMNIBUS, the PDP 11/40 has its

UNIBUS, Lockheed Electronics SUE system has its INFIBUS, and the

Raytheon Data Systems RDS·SOO has its SUPERBUS I and SUPERBUS II.

Figure 14 illustrates the rel~tionship df a universal bus with its

system components. Ineffect, the universal bus provides the communica­

tion link from one system component to another. Thus it is made up of

communication lines with each line used for one of three types of

signals-- address, data, or contrdl.

Processor

DMA
Processor

Universal Bus

Memory

I/0
Controller

Figure 14~ The Universal Bus

40

The address lines are used by the processor and DMA controllers.

The processor uses them to send device and function codes. DMA

controllers use them to address memory locations for I/0 data transfers.

The data lines are shared by the processor, memory, and all I/0

controllers. The processor uses them to read data from or write data

into the memory. It also uses them for transferring data to and from

the I/0 controllers. The DMA controller uses them to read data from or·

write data into memory. All other I/0 controllers use them to convey

their unique interrupt addresses during interrupt processing.

The control lines are used by the processor to effect specific

aCtions involving the memory and/or the l/0 controllers. These lines

can be subdivided into four categories -- I/0 commands, utility signals,

interrupt signals, and DMA signals. l/0 command signals define the type

of I/0 operation (input, output, etc.) to be processed. Utility signals

are used by the processor in resetting system status during a power-up

41

procedure. The interrupt signals are associated with interrupt requests

by the I/0 devices and the interrupt processing that fo 11 ows. The DMA

signals are used for DMA interrupt priority signal propagation, DMA bus

acquisition, and processor grant of DMA bus control.

Typical System Options

When an application requires more processing capabilities than

what the standard equipment can offer, the user is usually made aware

of the optional equipment. For the scientific applications where there

is extensive use of mathematical computations, desirable options include

the hardware multiply/divide. and the floating point processor. These

two greatly improve the speed of mathematical routines where the

multiply/divide and floating point operations are normally done by slow

software routines. Where power failure becomes a critical event, the

power fail/restart option could be purchased to avoid disasters. This

special option monitors the voltage levels in a system. When a voltage

level drops below the normal operating level, an interrupt procedure

saves the status of the current program in the non-volatile core memory.

When the voltage level is restored, the restart procedure reloads the

interrupted p'rogram. The norma 1 processing operations are then reacti­

vated at the point where the interruption occured. Where applications

involve real world timing intervals, a real-time clock option is often

necessary. Computer procedures may then monitor the clock and perform

time-related operations. The options that have been discussed are the

more typical options offered by today's minicomputers. Each system has

its own set of options. Some may even offer some of the options

described above as standard equipment.

CHAPTER IV

MINICOMPUTERS OF THE 70'S

Introduction

In this chapter, the system designs of ten of today's minicomputers

are examined. Of the ten, four have fixed purpose registers, two have

multi-accumulators, and three have general purpose registers. The last

minicomputer has a specialized design implemented through microprogram­

ming.

Fixed Purpose Register Machines

Digital Equipment Corporation PDP 8/e

The first PDP 8 model was introduced in 1964, a year after its

predecessor, the PDP 5, hit the market (20). Through the years, the

PDP 8 series has proven itself to be one of the most successful line of

minicomputers~ The primary reason for its success is the preservation

of the original instruction set (10). The succeeding models were thus

compatible with the earlier models allowing users to develop a massive

amount of general-purpose and application software. It is no wonder

that today in 1976, the PDP 8/e, with its seemingly obsolete 12-bit

design, is sti 11 a very serious competitor for the overwhelming 16-bi t

systems because of the large and valuable software inventory.

42

43

The functional characteristics of the PDP 8/e are listed in Table

II. The instruction formats are shown in Figure 15. There are five

two-cycle memory-reference instructions with one level of indirect

addressing possible, and eight memory locations on page-D serving as

TABLE II

PDP 8/e FUNCTIONAL CHARACTERISTICS

Features

Processor
Programmable Registers

Control Unit
Instructions

Memory Reference
Register Operate
Interrupt

Addressing
Direct
Current page
Indirect

Interrupt System

Memory
Word length
Cycle time
Capacity
Minimum
Maximum
Increment
Parity

Input/Output
Maximum number of devices
Programmed
Direct memory access

Universal Bus

Characteristics

1 accumulator
1 accumulator extension
hardwired
34
6
20
8

128 words
128 weeds
4096 words
polling (1 interrupt line)

12 bits
1200 nsecs (core)

4096 words
32,768 words
2096 or 4096 words
option

60
10 characters/sec
833 K words/sec

96 lines (bidirectional)

44

autoindex (automatic incrementing) registers. The processor has one

accumulator and a temporary storage register whose contents can be

transferred to and from, or exchanged with the accumulator by one-cycle

instructions. Up to 512 I/0 instructions are possible with the use of

a single-level interrupt system. A DMA processor allows data transfer

within one memory cycle or three memory cycles if the transfer is just

one of a block transfer (10) (20).

0 1 2 3

[OP~CODE :

ADDRESS MODE BIT----'
0 = DIRECT
1 = INDIRECT

4 5 6 7 8 9 10

~--·PAGE BIT
0 = PAGE 0
1 = CURRENT PAGE

(a) Memory Reference Instruction Format

Bits Group 1 Grou~ 2 Grou~
0-3 1110 1111 1111.
4 Clear AC Clear AC Clear AC

3

5 Clear Link Skip on AC 0 AC ext into AC
6 Complement AC Skip on AC=O ------
7 Complement Link Skip on Link 0 AC into AC ext
8 Rotate Right Reverse Skip Logic ------
9 Rotate Left Logical OR ------

10 Byte Swap Halt ------
11 Increment AC 0

(b) Register Operate Instruction Format

Figure 15. PDP 8/e Instruction Formats

11

Cincinnati Milacron CIP/2200

The Cincinnati Milacron CIP/2200 is a general purpose, byte

oriented minicomputer employing a microprogrammed control unit (3).

It has an extensive instruction set including binary arithmetic,

decimal arithmetic and character manipulation. The functional

45

characteristics are listed in Table III. The instruction formats are

shown in Figure 16.

The CIP/2200 has an 8-bit hardware data path and memory. The CPU

registers, however, are 16 bits in length. The instruction set

includes a complete set of 16 bit register-to-memory and register-to­

register binary arithmetic instructions. In addition, variable length

binary arithmetic on 8, 16, 24, or 32 bit operands are possible.

Another group of instructions provides memory-to-memory decimal arith­

metic and character string move and compare, code conversions, and

decimal editing.

The CIP/2200 I/0 structure consists of a microprogrammed serial

I/0 interface, a byte I/0 facility, a microprogrammed facilit~ for

concurrent transfers, and up to two independent DMA processors. The

serial I/0 interface controls a teletype or other similar terminal

devices. The byte I/0 facility transmits 8-bit data between one of 32

peripheral devices and either a r~gister or a memory location. The

microprogrammed Direct Memory Channel (DMC) for concurrent transfers

allows a maximum transfer rate of 86,000 bytes per second concurrently

operating with program execution. The independent DMA processors

compete with the CPU for access to main memory and have a maximum

transfer rate of 909,000 bytes per second.

46

TABLE III

CIP/2200 FUNCTIONAL CHARACTERISTICS

Features

Processor
Programmable Registers

Control Unit
Instructions

Arithmetic
Memory moves
Register change
Shifts
String manipulation
Control transfers
Interrupt·
I/0
Immediate

Addressing
Direct
Indirect
Indexed
Extended
Immediate
Relative

Interrupt System
Type

Memory

Internal
External

Word length
Cycle time
Capacity .

Minimum
Maximum
Increment

Parity

Protect
Read Only Memory

Characteristics

1 accumulator
1 accumulator extension
1 index register
microprogrammed
119
14 (binary and decimal)
3
41
12
6
19
13
8
7

256 words
32,768
32,768
32,768
1 - 4 bytes in instruction
128 behind - 127 ahead of .

program counter

vectored with priority ,
6 lines
1 line (64 signals)

16 bits
1.1 nsecs (core)

8192 words
32,768 words
8192
optional with 9 bit/byte

memory
optional
1536 words used for teletype

controls, bootstrap loader
concurrent block 1/0,
instruction set extension

TABLE III (Continued)

Features

Input/Output .
Maximum number of devices
Maximum transfer rates

Serial I/0
Byte I/0
Concurrent block
Direct memory access

Control and Reg. oper. I OPCODE
I

Conditional skip I OPCODE

Shift I OPCODE

I/0 (register) I OPCODE

I/0 ·(memory) joPCODE

Memory immediate loPCODE

Memory to Memory loPCODE

Mem9ry to Memory ext. !oPCODE

Memory reference loPCODE

Memory reference ext. loPCODE

Literal !OPCODE

DISPL

COUNT

I FUNC I
I FUNC I
I DATA

LENGTH

DATA

ADDR

Characteristics

32

110 bits/sec
10,000 bytes/sec
86,000 bytes/sec
910,000 bytes/sec

DEv_j

DEV I X I ADDR

I X I ADDR

I X I ADDRD lxl
I LEN I X I ADDRD

AD DRs

I X I

xj ADDR J
I 1-4 data bytes

Figure 16. CIP/2200 Simplified Instruction Formats

47

I
AD DRs

48

The use of microprogramming in CIP/2200 has allowed instructions

of considerable power and flexibility to be implemented. 11 Edit and

mark 11 and 11 translate and test 11 are two such instructions. If more

specialized instructions are needed, the writeable control store (WCS)

feature of CIP/2200 may be used. The user may use special instructions

provided by CIP/2200 to transfer to user written application micro­

programs residing in the WCS.

Variable Length Binary Arithmetic. Special variable word length

instructions perform binary arithmetic on one, two, three, or four

bytes of data. This is useful for character operations, single byte

arithmetic, and extended precision arithmetic on 24 or 32-bit quantitie~

Variable word length instructions use two operands, one in the

accumulator (A) - accumulator extension (B) pair and the other in memory.

For each operation a special word length indicator (WL) must be set to

the desired length. Figure 17 shows which bytes of the register are

WL

2

3

4

Accumulator Accumulator Extension

High Byte Low Byte High Byte Low Byte

Figure 17. Variable Length Data Formats

emory
Operands

involved for each word length. The variable length operations are

described below:

1. set/reset the word length indicator

2. load/store variable word length data

3. add/subtract variable word length data

4. AND variable word length data

5. add/subtract word length to/from index register ..

49

Decimal Arithmetic. Decimal numbers are represented as strings of

ANSCII decimal digit characters in varying lengths from 1 to 16 digits.

Each digit is represented in memory as one byte. The first four bits

contain digit zone, the last four contain the decimal digit value. The

digit zone of the least significant digit contains the sign of the

decimal number. A minus sign is an all zero digit zone pattern, the

plus sign is a lOll digit zone pattern. Examples are shown in Figure 18.

Decimal operations include add, subtract, multiply and divide. The two

operands reside in memory and the result replaces one of them.

Decimal Number

1234

-5678

Machine Representation

I lOllOOOl I lOllOOlO lOllOOll lOllOlOO I

I 10110101 I 10110110 10110111 OOOOlOOO I

Figure 18. Decimal Data Representation

50

The Control Stack Facility. The CIP/2200 uses a control stack to

implement state switching where the saving and restoring of computer

state information are required in operations such as interrupt proces­

sing and subroutine linkage. The state information consists of the

contents of the accumulator, the accumulator extension, the index

register, the program counter, and all status indicators. The stack

mechanism is based on the 11 Last In First Out 11 (LIFO) technique. Each

entry in the control stack consists of a complete set of state infor­

mation. The most recently saved set is at the 11 top 11 of the stack, the

oldest at the 11 bottom 11 •

In normal useage, each subroutine saves the machine state

immediately after being called. The information is restored when the

subroutine executes a return to the calling program instruction, when

there are more than one level of subroutine processing, the control

stack has an entry for each of the subroutine calls. As the successive

returns are executed, corresponding entries are 11 popped 11 from the top

of the stack.

Computer Automation ALPHA LSI-2

The ALPHA LSI-2 computer is. a package product of an integrated

family of compatible components including two central processors, three

kinds of memories, and a wide variety of device controllers (19).

Through the implementation of a universal bus (the MAXIBUS), the user

can mix memories of varying speeds, sizes, and technologies with either

of the two processors (which differ in speed and performance) and the

necessary I/0 devices to obtain the best price/performance margin for

his purposes. The ALPHA LSI-2 package includes the LSI-2 processor

51

which is the faster of the two. The functional characteristics are

listed in Table IV. Special features are discussed fn the following

sections.

TABLE IV

ALPHA LSI-2 FUNCTIONAL CHARACTERISTICS

Features

Processor
Programmable Registers

Control Unit

Instructions
Memory Reference
Immediate
Stack
Register Change
Shifts
Control
Interrupt
Input/Output

Addressing
Direct
Relative
Indexed
Indirect
Indirect (Post Indexing)
Immediate

Interrupt System
Internal
External

Characteristics

1 accumulator
1 iridex register also ,used as the

accumulator extension
hardwired

188
30 (standard hardware mult/div)
10
15
52
16
20
12
33

256 words
256 words foreward, 255 backward
32K
32K - multi-level
32K
1 byte in instructions and

vectored with priority
2 lines or levels
3 levels - unlimited device support

52

TABLE IV (Continued)

Features

Memory
Word length
Cycle time

Core (3 speeds)
Semiconductor

Capacity
Minimum
Maximum

Increment

Parity
Interleaving
Banking

Input/Output
Maximum number of devices
Maximum tranifer rates

Programmed

Concurrent block
Direct memory access

Universal Bus
Address lines
Data lines
Control lines

General Stack Processing.

Characteristics

16 bits

980 nsec, 1200 nsec, 1600 nsec
1200 nsec

1024 words
32,768 words (262,144 with memory

banking)
1024 or 2096 words

optional
optional
optional

248

130,000 words/sec (via registers)
90,000 words/sec (direct to memory)
80,000 words/sec
1 ,020,000 words/sec
(1,666,000 with interleaving)

16 bidirectional
16 bidirectional
27 unidirectional

Fifteen stack instructions allow the use

of any memory location as a stack pointer to maintain a last-in-first­

out (LIFO) stack anywhere else in memory. Any number of routines can

maintain any number of stacks wi.th the possi.bility of using any n\Jmber

of separately maintained stack pointers that access the same physical

53

stack. Furthermore, arithmetic, logic, and compare operations on data

contained in stacks are also implemented separate from the conventionAl

set of instructions. These facilities invite the use of sophisticated

programming techniques.

Automatic Memory Scan. A "Scan Memory" instruction compares the

contents of the accumulator with the contents of memory locations in a

data buffer defined by sequentially indexed addresses. If a match is

found, the scan is terminated and the next sequential instruction is

executed. Initially, the index register contains the number of words

to be scanned, it is decremented after each compare. Thus, the data

buffer is scanned in descending order, beginning with the highest

memory location and ending with the lowest. When a match is found, the

index register contains the number of words remaining to be scanned.

The remainder of the data buffer can be scanned simply by executing the

scan instruction again~ If a match is not found when the index register

reaches zero, the scan is terminated and the next instruction is skipped.

This feature becomes valuable in applications where limited serial

search routines are prevalent.

Memory Interleaving. Memory interleaving allows memory modules to

be paired so that even and odd addresses are assigned different memory

modules. Since a relatively high percentage of memory accesses are

normally sequential, this feature allows alternate memory accesses to

address different memory modules thereby saving time because of the

overlap in the alternate accesses. The asynchronous universal bus can

thus support a much higher data transfer rate which effectively reduces

the execution times in the ALPHA LSI-2.

54

Memory Banking. Memory Banking consists of an optional Memory

Bank Controller that allows the programmer access to a maximum of 256K

words of memory. Up to 32K can be enabled at any given time. The user

can specify which memory modules are to be used by using special instruc­

tions that enable or disable the desired modules. In the example of

Figure 19, there are four primary modules, two are 4K and the other two

8K. The computer can operate normally as a 24K computer using these

modules. The two 4K modules (POD odd and POD even) are interleaved, the

8K's (PlO and P20) are not. There are seven alternate modules in the

example. Each alternate module can be an alternate for only one

primary module. For example, modules All, Al2, and Al3 are the first,

second and third alternates for the primary module PlO. Under software

control, the Memory Bank Contrplle,r can disable PlO and enable All, Al2,

or Al3. Thus a total of 32K words are available between addresses 8K

and 16K, but only 8K of the 32K are available at any given time.

Texas Instruments 9808

The Texas Instruments 9808 Computer is one of the more powerful

general purpose computers in the fixed purpose register class of mini-

, computer. Its processing capabilities are enhanced by standard features

that are often optional in other minicomputers (18). Such features

include:

· hardware multiply/divide

programmable memory protection

power fail detection and automation restart

Other important features are listed in Table V.

8K - - - - -

A02

8K 8K - - - -

Al3 A12

4K

A22 - - - - -

A22

- - - - - -

4K
ODD

AOl

4K
EVEN

AOl

8K

All

8K

A21

-

4K
ODD

POD

4K
EVEN

POD

8K

PlO

8K

P20

-

55

ADDR

0

8K

16K

24K

32K

L-------------------~--~--------------~~
ALTERNATE MODULES

Figure 19. Memory BanKing Example

PRIMARY
MODULES

56

MOS Semiconductor Memory. The main memory for the 9808 consist of

MOS Semiconductor elements (10). Each bit is stored in what amounts to

a one-bit shift register whose output is fed back to the input through

a clock gated MOS refresh amplifier. Thus every 33 microseconds each

bit is regenerated. The cycle time for the memory used in TI 9808 is

750 nanoseconds. Since semiconductor memories are volatile, an optional

plug-in battery pack is available for sustaining the contents of the

memory during power failure conditions. A 16K memory can be sustained

for 20 hours .

. Programmable Memory Protection. The 9808 computer incorporates a

memory protect feature that allows a system programmer to write system

programs that prohibits a user program from:

· changing the memory protection boundary

bringing the computer to an idle

· branching into or accessing data in protected ~emory

changing the status register

· interfacing with system I/0 operations.

Two status register bits (4 and 9) control the memory protect

feature. When bit 4 is set, any attempt to access protected memory

causes a system interrupt. The protected memory is defined by upper and

lower limit registers in the memory controller. The two registers are

loaded under program control with a standard I/0 instruction. When bit

9 is set, program relocation operations are in effect. All addresses

used in any memory access are modified by the contents of the lower

li~it register. Thus programs are relocated automatically with no

changes in the programs required.

TABLE V

TI 9808. FUNCTIONAL CHARACTERISTICS

Features

Processor
PrograiTillable Registers

Control Unit
. Instructions

Memory Reference
Register Operate
Shift
Skip
Bit Manipulation
Input/Output

Addressing
Direct
Relative
Indexed
Indirect
Indirect (Post indexing)
Extended
Base-Displacement
Base-Displacement Index
Immediate

Interrupt System
Internal
External

Memory
Word Length
Cycle Time (MOS Semiconductor)
Capacity

Minimum
.Maximum

Memory Protect
Read Only Memory

Input/Output
Maximum device controllers
Maximum transfer rates

Programmed
DMA

Characteristics

1 accumulator
1 accumulator extension
1 index register
1 subroutine link register
1 base register
Microprogranmed
98
31
14
20
20
8
5

256 words
128 backwards; 127 forward
65K
65K
65K
65K
65K
65K
8, 16, or 32 bits
Vectored with priority
1 line
3 lines

16 bits
750 nanoseconds

8,192words
65,536
Standard
256 units used for bootstrap

1 oaders

256

l30K words/sec
l,OOOK words/sec

57

58

Multi-accumulator Machines

Digital Computer Controls D-116

The Digital Computer Controls D-116 is a basic multi-accumulator

machine that incorporates large scale integration (LSI) packaging

concepts. The D-116 is offered in two versions. The D-ll6S version

has a 1200 nanosecond cycle time. The D-ll6H version is faster with a

980 nanosecond cycle time. Both versions can be expanded up to 32K of

memory. With the optional Memory Expansion and Protection Unit, maxi­

mum memory becomes 128K. Table VI shows the other important attributes

of D-116.

The D-116 computer has th,ree classes of instructions -- memory

reference, arithmetic/logic, and input/output. As a multi-accumulator

machine, one of the distinguishing characteristics is the separation of

memory access and arithmetic/logic operations. The memory reference

instructions use the two formats shown in Figure 20. There are only

six memory reference instructions and none of them involve arithmetic/

logic operatinns. The arithmetic/logic operation~ are restricted to

interregister instructions. The format for these instructions are

shown in Figure 21. Note that the arithmetic/logic instruction format

allows for multiple functions. Thus an ADD instruction can also rotate

right or left, or swap bytes of a register, test a result (or its carry

bit) for a skip condition, and indicate whether the result should be

retained (no load bit).

Data General ECLIPSE S/200

The Data General ECLIPSE S/200 is a multi~accumulator system with

59

TABLE VI

D-116 FUNCTIONAL CHARACTERISTICS

Components

Processor
Programmable Registers

Control Unit
Instructions

Arithmetic/Logic
Conditional Skips
Shifts
Memory Reference
Input/Output

Addressing
Direct
Indirect
Indexed
Relative
Autoincrement Locations
Autodecrement Locations

Interrupt System

Memory
Word Length
Cycle Time

·capacity
Minimum
Maximum

Increment

Input/Output
Maximum number of devices

Characteristics

4 accumulators (2 can be used as
index registers).

hardwired
32
8
}
3
6
8

256 words
32,768
32,768
256
8
8
hardware party-line

16 bits
960 nanosecond or 1200 nanosecond

4096
32,768 (128K with optional memory

expansion and protect).
4K, 8K, or 16K words

62

an extensive range of features that makes it ideal for data communica­

tions, critical real-time process control, and high-speed computation

applications. Among those features are Memory Error Checking and

Correction and Memory Allocation and Protection providing high data and

I oiFuNc I Ac I I IINDExl DISPLACEMENT
0 1 2 3 4 5 6 7 8 15

(a) With Accumulator (I - Indirect)

I 0 0 0 I FUNC I I I INDEX I DISPLACEMENT
0 2 3 4 5 6 7 8 15

(b) Without Accumulator

Figure 20. D-116 Memory Reference
Instruction Formats

11 I sRc IDEST I FUNC lsHIFTjcARRYINLI SKIP
0 1 2 3 4 5 7 8 9 10 11 12 13 15

Figure 21. D-116 Arithmetic/Logic Instruction
Format (NL - No Load)

60

system integrity. A hardware stack, hardware interrupt processing,

Floating Point Processor, and memory interleaving are effective in

maximizing system throughout. , Semiconductor. memories employing a

11 cache 11 system produce effective. cycle times from 200 to 640 nano­

seconds. Custom instru~tians can be developed through microprogramming

with the writeable control store· feature. ~Those features make the

ECLIPSE S/200 one of the more sophisticated general purpose mini­

computers today.

The functional characteristics of the ECLIPSE S/200 are listed in

Table VII. Thre~ of its features (Memory Error Checking and Correction,

Writeable Control Store, and the Cache system) are described below.

61

TABLE VII

ECLIPSE S/200 FUNCTIONAL CHARACTERISTICS

Components

Processor
Programmable Registers

Control Unit
Instructions

Fixed Point Arithmetic
Logical Operations
Shifts
Bit/Byte Manipulation
Block Moves
Stack Manipulation
Control Transfers
Microprogramming
Memory Allocate and Protection
Floating Point Arithmetic
String and Decimal Manipulation
Input/Output
Interrupt
Special Instructions

Addressing
Direct
Indirect
Indexed
Extended
Relative
Autoincrement Locations
Autodecrement Locations

Interrupt System
Type
Levels

Memory
Word length
Cycle time (MOS)
Capacity

Minimum
Maximum

Increments ·

Characteristics

4 accumulators (2 can be used
as index registers)

4 64-bit floating point
registers

microprogrammed
193
20
9
6
10
2
5
15
4
7
55
37
8
9
6

256 words
32,768 (multi-level)
32,768
32,768
256
8
8

Priority Po 11 i ng
16

16 bits
700 nanoseconds

8192 words
32,768 (without MAP) 256K (with

MAP)
8192

TABLE VII (Continued)

Components

Parity

Writeable Control Store

Input/Output
Maximum number of devices
OMA transfer rates

Maximum input
Maximum output

Characteristics

single-bit error detect and
correction1 multiple-bit
error detect

256 56-bit words

59

1,250,000 words/sec
715,000 words/sec

62

Memory Error Checking and Correction. The Error Checking and

Correction (ERCC) feature of the ECLIPSE S/200 detects and corrects all

single bit errors in the words of main memory. 'The feature also detects

multiple-bit errors but does not correct them.

Figure 22 illustrates how ERCC works. When a word is written into

memory a 5-bit check field is generated. Each check bit is set or

cleared depending on its parity rule (odd or even) and the contents of

selected fields in the word. For the example in Figure 22a the check

bits generated are 01110.

Errors are detected during read~from-memory operations.· When a

word is read, a 5-bit fault code is generated.· The check bits generated

when the word was written are used in the calculation of the fault code.

The Memory Fault Code Table (Table VIII) is then used to pinpoint the

bit or bits in error. In Figure 22b, the fault code generated is 10100

indicating that bit 14 is error. Stnce tt ts a stngle bit error, the

63

Data Bits Written Check Bits
Check
Bit 0 Number~,~~~~~~~L,L,~~~~~~~~~~~~~~~~

co ~ 1--1

Cl 1--------------t
C2
C3 -·-t 1--- -i 1--- _., 1--·--1 1-- --...f

C4 1--1 1---1 ~ 1---1

Even parity
1-- ___ -- _ _. Odd parity

(a) Word Written Into Memory

Bits Read From Memory (Data Bit 14 in Error)

~a~~~~~~~~~~~~~~~~~~~~~~~~~ Fault
1 Code
~~~~~~~~~~~~~~~~~~~~~~.r~~~ 

1- - - -- - - - - - ~ - __., 1- - +-----' 

- -1 ·-- - -1 1--- -f 1----4 .... -- -~ 
1-----11 1---f 1---f 1--4 t--l 

t--------t Even parity 
1- ____ --1 Odd parity 

(b) Word Read From Memory 

Figure 22. Error Checking and Correction Exampl~ 

error is corrected by complementing bit 14. 

1 
0 
1 
0 
0 

The Writeable Control Store. The Writeable Control Store (WCS) 

feature of the ECLIPSE S/200 allows the user to write and execute micro­

programs for customized applications (22). There are four instructions 

used in the process: 

1. Specify Address 

2. Load Microcode 



FAULTCODE 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 
01000 
01001 
01010 

01011 
01100 
01101 
01110 
01111 

TABLE VI'I I 

MEMORY FAULT CODES 

MEANING FAULTCODE 

No error .10000 
Error in check bit 4 10001 
Error in check bit 3 10010 
Error in data bit 0 10011 
Error in check bit 2 10100 
Error in data bit 1 10101 
Multiple-bit error 
Error in data bit 3 10110 
Error in check bit 1 1 0111 
Error in data bit 4 11000 
All data bits and check 11001 

bits in location are 1 11010 
Error in data bit 6 11011 
Error in data bit 7 11100 
Error in data bit 8 11101 
Error in data bit 9 11110 
Multiple-bit error 11111 

3. Load Decode Address 

4. Enter WCS 

64 

MEANING 

Error in check bit 0 
Error in data bit 11 
Error in data bit 12 
Error in data bit 13 
Error in data bit 14 
All data bits and check 

bits in location are 0 
Error in data bit 2 
Multiple-bit error 
Error in data bit 10 
Multiple-bit error 
Error in data bit 5 
Multiple-bit error 
Error in data bit 15 
Multiple-bit error 
Multiple-bit error 
Multiple-bit error 

The WCS itself contains 256 56-bit words with a 200 nanosecond cycle 

time. There is a WCS word register used in accessing specific WCS 

words. 

The Specify Address instruction transfers the contents of a 

specified accumulator into the WCS word register. The format of the 

information in the accumulator depends on the instruction to be executed 

next. If it is a Load Microcode instruction then the format in Figure 

23a applies. If a Load Decode Address instruction is executed then the 



BIT NUMBER 

0-5 

6-13 

14-15 

CONTENTS 

Unused 

Address in WCS of the 56-bit microword 
that will be loaded by the following 
LOAD MICROCODE instruction. 

Field of the 56-bit microword that will be 
loaded by the following LOAD MICROCODE 
instruction. If these bits are 00, the 
field is microcode bits 0-15. If these 
bits are 01, the field is microcode bits 
16-31. ·If these bits are 10, the field 
is microcode bits 32-47. If these bits 
are 11, the field is microcode bits 48-
55. 

(a) Accumulator Format for Load Microcode 

BIT NUMBER 

0-10 

11-14 

15 

CONTENTS 

Unused 

Entry number--from bits 6-9 of the corres­
ponding XOPl instruction. 

Deco~e number. If this bit is 0, the 
following LOAD DECODE ADDRESS instruction 

· wi 11 specify a decode 1 address. If this 
bit is 1, the following LOAD DECODE 
ADDRESS instruction will specify a decode 
2 address. 

(b) Accumulator Format for Load Decode Address 

Figure 23; Specify Address Accumulator Formats 

65 



66 

format in Figure 23b applies. The Load Microcode instruction transfers 

the contents of a specified accumulator into the field of the WCS word 

specified by the WCS word register according to the format in Figure 23a. 

The Load Decode Address instruction transfers bits 8-15 of a specified 

accumulator into the WCS word specified by the WCS word register accord­

ing to the format in Figure 23b. Thus the first three instructions are 

used to write the microprograms. To execute them, the Enter WCS instruc­

tion must be executed. The feature allows for 16 possible entry points. 

The Enter WCS instructions must specify which entry point microcontrol 

transfers to. 

Cache Memory. The Cache system used in the ECLIPSE S/200 computer 

consists of a 16-word, 200 nanosecond bipolar (10) memory that front­

ends each BK of 700 nanosecond MOS semiconductor memory modules. The 

Cache system combines the speed of fast, expensive bipolar memory with 

the economy of the slower MOS semiconductor memory. The system is fully 

automatic requiring no programming effort. 

Figure 24 is a simplified diagram of the organization of a Cache 

system. When the processor requests a memory word, the content addres­

sable memory (CAM) is used to find the requested word in the Cache. If 

the word is in the Cache, it is transferred to a processor register in 

200 nanoseconds. If the word is not in the each~, then CAM retrieves it 

from the MOS memory. The word goes to a processor register. At the 

same time the Cache is loaded with four sequential words (a block) 

including the word requested. If sequential program flow continues, the 

next word requested will be in the Cache, ready for a 200 nanosecond 

transfer. 



--------------------------

--------------

67 

ADDRESS CAM .. ,. 

.. 
8K MOS 

MEMORY 

MEMORY BUS 
~ 

I~ 

' I' 

CACHE 

Figure 24. ECLIPSE S/200 Cache System . 



68 

General Purpose Register Machines 

Digital Equipment Corporation PDP 11/40 

Introduced in the late l960 1 s by Digital Equipment Corporation, 

the PDP 11 system rivals the PDP 8 series in importance concerning 

minicomputer history. The architecture of a PDP 11 system promotes 

simplicity in designing complete system configurations involving a wide 

range of peripheral devices. The key feature in the architecture is 

the use of a universal bus (UNIBUS), through which all device to 

device communications are accomplished. The UNIBUS is also the key to 

the comprehensive, powerful, and straight forward instructions 

implemented. 

The PDP ll/40 is one of the latest processors in the PDP 11 family. 

It is oriented towards a multi-programming environment such as time­

sharing systems where many users at terminals are interacting concurrent­

ly, or real-time systems where many tasks may be active at the same time. 

The functi6nal characteristics of the PDP 11/40 are listed in Table IX. 

The following sections are devoted to the structure of the UNIBUS, the 

instruction formats, and the hardware automatic priority interrupt 

system. 

The UNIBUS. The UNIBUS of the PDP 11 systems is a single, common 

path that connects the central processor, memory, and all peripherals. 

Address, data, and control information are sent along 56 (mostly bi­

directional) lines of the bus. The form of communication is the same 

for every device of the UNIBUS. The processor uses the same set of 

signals to communicate with memory as with peripheral devices. Each 

device, including memory locations, processor registers, and peripheral 



69 

TABLE IX 

PDP 11/40 FUNCTIONAL CHARACTERISTICS 

Components 

Processor 
Progranmable Registers 

Control Unit 
Instructions 

Arithmetic/Logic. 
Register change 
Control transfers 
Interrupt 
Shifts and Rotates 

Addressing 
Register Pointer 

Indirect 
Index 
Imnediate 
Extended 
Relative 

Interrupt System 
Type 
Traps {Internal) 
External 

Memory 
Word length 
Cycle time 
Capacity 

Minimum 
Maximum 
Increment 

Parity 
Management and Protect 

Input/Output 
Maximum number of devices 
Maximum rates 

non-DMA 
DMA 

Bus lines 

Characteristics 

6 general purpose registers 
1 system stack pointer 
1 program counter 
microprogrammed 
69 
10 
19 
22 
11 
7 

32,768 words (with autoincrement and 
autodecrement operations) 

32,768 
32,768 
operand word follows instruction 
32,768 
32,768 

vectored automatic priori:ty 
9 
5 lines (unlimited numbers of 

devices) 

16 bits 
980 nanoseconds (core) 

8192 words 
32,768 (128K with memory management) 
8K or 16K words 
standard 
optional 

unlimi.ted 

1 SOK words/sec 
2000K words/sec 

56 bidirectional 



• 

70 

device registers, is assigned an address on the UNIBUS. Thus, 

peripheral device registers may be manipulated as flexibly as main mem­

ory by the centra 1 processor. A 11 the instructions that can be applied 

to data in matn memory can be applied equally well to data in peripheral 

device registers. This feature is especially powerful considering that 

data in main memory can be processed as though it were in a processor 

register. 

Communication between two devices on the bus is in the form of a 

master-slave relationship. At any given time, there is one device that 

has control of the UNIBUS. The controlling device is called the 11 bus 

master 11 • The device communicating with the bus master is called the 

11 Slave 11 • A typical example of this relationship is the processor as 

the master device fetching an instruction from memory which is always 

the slave. 

The master-slave relationship is interlocked or asynchronous. For 

each control signal issued by the master, there must be a response 

signal from the slave to complete the transfer. This does away with 

time constraints usually enforced on devices allowing operations at 

maximum possible speeds. 

The Instruction Formats. Unlike conventional minicomputers which 

usually have three classes of instructions (memory reference, register 

operate, and input/output), all operations in the PDP 11/40 are accom­

plished with one set of instructions. This is due to the fact that 

processor registers, main memory locations, and peripheral device 

registers are processed in the same manner. Thus, the CPU can add data 

directly to a peripheral_ device register without bringing the device 

data iQto the memory or disturbing any of the general purpose registers. 



71 

In the same manner, data in main memory may be rotated as if it were in 

a processor register. The word formats for the PDP ll/40 instructions 

are shown in Figure 25. The addressing modes are listed in Table X. 

0 4 8 12 15 

OPCODE MODE I REG I 
(a) Single Operand Group 

OPCODE I MODE REG I MODE REG 

(b) Double Operand Group 

OPCODE REG I MODE REG 

(c) Register-Source or Destination Group 

OPCODE OFFSET 

{d) Branch Group 

Figure 25. PDP 11/40 Instruction Formats 

The Automatic Priority Interrupt System. The PDP 11/40 has a multi­

line, multi-level priority interrupt structure which is illustrated in 

Figure 26. Bus requests from external devices can be made on one of 
\ 

five request lines. Highest priority is assigned to non-processor 

requests (NPR). These are direct memory access tran'sfers allowed by the 

processor between bus cycles of an instruction execution. Bus request 7 

(BR7} has the next highest priority, BR4 has the lowest. Requests on 

lines BR4 through BR7 are honored between instruction executions. On 

each request line, higher priority is given to devices closer to the 



72 

TABLE X 

PDP 11/40 ADDRESSING MODES 

Mode Bits General Register Program Counter Meaning 

000 Register Not used Register contains 
operand 

001 Register def~rred Not used Register contains add-
ress of operand 

010 Auto-increment Immediate Register contains add-
ress of operand then 

011 Auto-increment Extended 
incremented by two 
Register contains add-

indirect ress of operand then 
incremented by two 

100 Auto-decrement Not used Decrement register by 
two, result is address 
of operand 

101 Auto-decrement Not used Decrement register by 
indirect two, result is address 

of operand address 
110 Index Relative Operand address is the 

sum of register and 
contents of memory 
location following 
instruction word 

111 Index deferred Relative Operand address is in-
deferred direct of address 

calculated by mode 6 
scheme 

UNIBUS. Thus, the priority system is two dimensional and provides each 

device with a unique priority. 

Raytheon Data Systems RDS-500 

The Raytheon Data Systems RDS-500 is a fast, general purpose regis­

ter machine with unique characteristics. Its architecture allows for 



73 

Priority Request Lines 

< NPR ------
7 

< BR7 ----I I 
6 I 110 ] I I/0 

. Device . Device 
< BR6 I ---- Increasing 
5 I I/0 I 

Priority 
. Device 

< BR5 ·--- --
4 

~-- BR4 

Te~e-I I I 
0-3 I Card I Line I CRT 

I" I . Reader . Printer . t~ e 
Increasing Priority 

Figure 26. Automatic Priority Interrupt Structure 

multiprogramming systems where real-time and batch operations can be 

processed simultaneously. Other applications include seis~ic data 

processing, production automation, communication systems, and business 

data processing. The RDS-500 functional characteristics are given in 

Table XI. The following sections describe its unique set of instruc­

tions and dual bus structure. 

The Instruction Set. As mentioned in Chapter III, the type of 

instructions that a syst~m uses usualJy depends on the organization of 

its programmable registers. In an RDS-500 system there are eight 

programmable registers -- one accumulator, one index register, and six 

general purpose registers. There is also a 6-bit extension register 



TABLE XI 

RDS-500 FUNCTIONAL CHARACTERISTICS 

Components 

Processor 
Programmable Registers 

Control Unit 
Instructions 

Arithmetic/Logic 
Register Operate 
Control 
Interrupt and I/0 
Shifts and Rotates 
Conditional Skips 

Addressing 
Direct 
Direct with extension 
Index 

·Interrupt System 
Type 
Internal 
External 

Memory 
Type 
Word length 
Cycle time 
Capacity 

Minimum 
Maximum 
Increment 

Input/Output 
Maximum number of devices 

DMA 
Non-DMA 

Maximum DMA rate 

Characteristics 

6 general purpose 
1 accumulator 
1 index 
hardwired 
103 
26 
10 
18 
8 
20 
21 

2048 words 
65,536 
65,536 

polling 
4 levels 
13 levels 

Magnetic Core 
16-bits 
500 nanoseconds 

8192 words 
65,536 
8192 or 16,384 

16 
16 
2000K words/sec 

74 



75 

used in effective address calculation. 

In its basic instruction set, the RDS-500 has eleven classes of 

instructions described in the user•s manual (23). Each class of 

instructions is associated with an instruction format. The association 

is illustrated in Figure 27. It is interesting to note that the follow­

ing classes of instruction use only the accumulator and/or the index 

register: 

Memory Word Address 

· Memory Byte Address 

· 4-Bit Operand 

· Shift 

No Operand 

Literal Byte Operand 

· Input/Output 

· Byte Page Specification 

If there were no single register and two register classes of instructiom 

the resulting instruction set would define a system using only fixed 

purpose registers -- the accumulator and the index register. 

The Dual Bus Structure. Certainly a strong point in the RDS-500 

design is its dual bus architecture illustrated in Figure 28. Superbus 

I connects the CPU, memory, programmed I/0, and eight DMA channels. 

Superbus II is attached to a second memory port and connects eight more 

DMA devices that can access memory simultaneously with the CPU. The 

optional Floating Point Processor is attached to Superbus I. The high 

speed devices are attached to a DMA multiplexer on either bus. The low­

speed devices are attached to the' programmed I/0 channel that is 



76 

0 4 8 12 15 
Memory Word Address I Ope ode I X I Word Address I 

X = Indexed Addressing 

Memory Byte Address Opcode I X I Byte Address 

4-Bit Operand 0000 0000 !Function I Level 

Shift 0000 Type loirection I Length 

Halt 0000 0000 0000 I 0000 

No Operand 0000 Type Item I(Not Used) I 



77 

connected to Superbus I through the I/0 and Interrupt Processor. With 

such a design the RDS-500 is capable of fast and powerful I/0 operations. 

CPU 

L 
Floating 

Point 
Process:> 

Optional 
Features 

SUPERBUS I 

Memory 

I/0 and 
nterrupt 
Processor 

DMA 
MULTI­
PLEXER 

DMA 
MULTI­
PLEXER 

ag Tapes 

Comm. 
quipment 

CRT KB/Displays 
- On-Line Printers d 

Comm. Equipment 
Line Printer . 
Card Reader/Punch 
Paper Tape Reader/Punch 

Figure 28. RDS-500 Dual Bus Architecture 



78 

Interdata Model 8/32 

The Interdata Model 8/32 is a general purpose register machine 

marketed by Interdata as a high performance minicomputer (16). A look 

at its system block diagram (Figure 29) and functional characteristics 

(Table XII) reveals that the 8/32 is a system that can compete with 

medium and large-scale computers. The following sections describe the 

important features of the Interdata 8/32. 

The 32-bit Architecture. The Interdata 8/32 provides a full 32-bit 

parallel structure. The memory word size, the general purpose registers, 

and the data paths are all 32-bits in length. Such an architecture is 

obviously superior to that of the typical 16-bit minicomputer. For 

example, the range of the integers used in a 16-bit machine is ~ 32,768, 

in a 32-bit machine the range is~ 2,147,483,648. Another example 

involves the respective addressing capabilities. A 16-bit machine can 

address (directly, indirectly, or with indexing) at most 65,536 bytes of 

memory. In order to expand its addressing capabilities beyond 65,536 

bytes, the 16-bit system must resort to some type (hardware, firmware, 

or softward) of a memory management package. The 32-bit system can 

address 1,048,576 bytes without the aid of a memory management package. 

How does Interdata justify calling a 32-bit machine a minicomputer? 

Interdata•s contentions are twofold. First is the fact that the proces­

sor and memory fit in a 19 x 14 x 28 inch mainframe. The typical mini­

computer fits in a 19 x 11 x 21 inch mainframe (5) (26). The second of 

Interdata•s contentions is that an Interdata 8/32 can be purchased at a 

· competitive price. Whether or not this machine actually belongs in the 

minicomputer .class is debatable. In either case the machine has very 



EIGHTH 128KB MODULE 
(1 MB OF STORAGE) 

SECOND 1 28KB MODULE 

FIRST 12 8 KB MODULE 

MULTIPL~X OR BUS 

lh 
UNIVERSAL CLOCK 

!TAL DIG 
MULT !PLEXOR 

HIGH 
PAPER 

CON 
TELE 

CA 
REA 

LINE P 

SPEED 
TAPE 

SOLE 
TYPE 

RD 
DER 

RINTER 

..... 
7. 

I 

I 

: 32 KB: [32 KB: 
'-- ___ I ;_--_I 

,--, ,----r 
!3 2 KB I 1 3 2 KBI 
I_ - - _I 1_ - - _ _i 

I 

~ 32 KB 32 KB 32 KB 

32 KB B 132 KB 32 KB 

+ 16 16 16 f 16 
MEMORY MEMORY 

INTERFACE INTERFACE + 3-2- } 32 
I 

MEMORY BUS CONTROLLER 

I [ LOOKAHEAD STACK 
(2 x 64 BITS) 

~ 
INSTRUCTION REGISTER 

OPCODE - jRl lx2l ADDRESS I 
PROGRAM STATUS WORD 

STATUS I PC I 
MODEL 8/32 PROCESSOR 

8 SETS OF 16 32-BIT REGISTERS 

CUSTOM I/0 
INTERFACE 

) r-. 
DMA BUS ' 

/ 

\ ~ 

SELECTOR 
CHANNEL 

I ' 16 
DEVICES 

MAGNETIC 
TAPE 

CARTRIDGE 
DISC 

ANALOG 
CONVERSION 

EQUIPMENT 

J 
Figure 29. Model 8/32 Processor Block Diagram 

79 



80 

TABLE XII 

MODEL 8/32 FUNCTIONAL CHARACTERISTICS 

Components 

Processor 
Programmable Registers 

Control Unit 
Instructions 

Load and Store 
Fixed Point Arithmetic 
Shifts 
Floating Point 
Status and Control 
List Manipulation 
Input/Output 
Byte Manipulation 
Branch on Condition 
Communications 
Bit Manipulation 
Microprogramming 

Addressing 
Direct 
Relative 
Indexing 

Interrupt System 
Type 
Levels 

Memory 
Word Length 
Cycle Time 
Memory Capacity 

Minimum 
Maximum 
Increment 

Parity 

Characteristics 

2 or 8 sets of 16 32-bit general 
purpose registers 

8 32-bit floating point registers 
8 64-bit double precision floating 

point registers 
microprogrammed (50 ns ROM memory) 
165 
14 
27 
14 
30 
4 
4 
18 
6 
13 
4 
5 
4 

1 ,048,576 bytes 
+ 16,384 bytes 
1,048,576 bytes 

vectored priority 
4 

32 bits 
750 nanoseconds (CORE) 

131 ,072 bytes 
1 ,048,576 bytes 
131,072 bytes 
optional 1 bit per 16 data bits 



TABLE XII (Continued) 

Components 

Input/Output 
Maximum number of devices 
Number of DMA ports 
Maximum transfer rates 

Programmed 
Block 
DMA 

1024 
7 

Characteristics 

166 bytes/sec 
387K bytes/sec 
3.2M bytes/sec 
6.0M bytes/sec (burst mode) 

interesting features. These features are discussed below. 

81 

Multiple Register Sets. A Model 8/32 machine has at least two sets 

of 16 general purpose registers. Optionally the number of register sets 

may be expanded to eight. The 8/32 has a Program Status Word (PSW) that 

defines the state of the processor at any given time. Bits 24-27 of the 

PSW are used to designate the current register set. If only two sets 

are implemented then Bit 24 is used to select one of the two sets. If 

eight sets are implemented bits 25-27 are used to select a register set. 

Figure 30 illustrates the numbering of the register sets. 

Basically the 8/32 is in one of three states when executing, the 

operating system state, and input/output state, or a user state. 

Multiple register sets simplify programming in switching from one state 

to another. In a system with one register set, changing from one state 

to another involves storing and restoring of the one register set. With 

multiple register sets, each state or levels within a state {see Figure 



82 

BITS 24-27 REGISTER I/0 
OF PSW SET NUMBER PRIORITY 

LEVEL 

0000 0 EXECUTIVE SET 0 

0001 1 1 

0010 2 OPTIONAL 2 

0011 3 ·REGISTER 3 
0100 4 SETS 
0101 5 

0110 6 
\ ' 

7 

8 

9 

10 UNIMPLEMENTED 

11 SETS 

12 

13 

14 

1111 15 USER SET 

Figure 30. Register Set Numbering 



83 

30) may be assigned a specific register set. Furthermore, assigning two 

or three register stacks to the I/0 system allows the 11 nesting 11 of 

device response on a hierarchical priority basis. State switching is 

thus rapid and straightforward. 

High Speed Processing. One of the primary emphasis in the design 

of the Interdata Model 8/32 is speed. Two key features in the 8/32 

design are the four-way interleaved memory and the lookahead stacks. 

With the four-way interleaved memory, a 750 nanosecond core memory can 

have an effective cycle time of 300 nanoseconds. The lookahead stacks 

(see Figure 29) act as a high speed dual memory buffer allowing the CPU 

and the memory to run largely in parallel. In systems where the CPU is 

executing varying length instructions of varying execution times, either 

the memory is waiting on the CPU or the CPU is waiting on the memory. 

With the lookahead stacks, the memory can anticipate the cpu•s memory 

requests (since program execution is primarily sequential), fill these 

request in the dual 64-bit lookahead stacks, and go on to perform other 

memory functions such as DMA memory requests. 

The Instruction Formats. The Interdata 8/32 has an instruction 

repertoire of 165 commands defining bit, byte, halfword and multi-word 

operations. The seven basic formats are shown in Figure 31. The abbre­

viations used have the following meanings: 

OP Operation code 

Rl First operand register 

R2 Second operand register 

N A four bit immediate value 

X2 Second operand single index register 
' ' 

02 Second operand displacement 



FX2 

SX2 

A2 

I2 

Second operand first index register 

Second operand second index register 

Second operand direct address 

Second operand immediate value 

REGISTER TO REGISTER (RR) 
0 7 11 15 
I OP I Rl I R2 I 
SHORT FORMAT (SF) 
0 7 11 15 
I OP I Rl I N I 
REGISTER AND INDEXED STORAGE 1 (RXl) 
0 7 11 15 18 31 

I oP I Rl I x2 jol~ D2 I 
REGISTER AND INDEXED STORAGE 2 (RX2) 
0 7 11 15 17 31 I OP I Rl I X2 ,,, D2 I 
REGISTER AND INDEXED STORAGE 3 (RX3) 
0 7 11 15 17 20 24 
I OP I Rl 1 FX2 jolllolq sx2 1 A2 

REGISTER AND IMMEDIATE STORAGE (Ril) 
0 7 11 15 31 
I OP I· Rl I X2 I I 2 I 
REGISTER AND IMMEDIATE STORAGE 2· (Rl2) 
0 7 11 15 
I OP I Rl I X2 . I I2 

Figure 31. Model 8/32 Instruction Formats 

84 

47 

r 

47 

J 



85 

A Stack Machine--The Microdata 32/S 

The Microdata 32/S is a push-down architecture computer implemented 

via firmware on the microprogrammable Microdata 3200 computer (11). Its 

architecture is designed in conjunction with the design of the Microdata 

Programming Language (MPL), a high-level language based upon the exten­

sive and sophisticated language PL/I. In effect the MPL Compiler is 

used as a replacement for a 32/S assembler. Since the structures of MPL 

and 32/S are coordinated, the machine code produced by the MPL compiler 

is as efficient as the code which can be obtained with assembly language 

programming on a conventional architecture computer. The relationship 

of the 3200 microprocessor, the 32/S Computer, and the MPL machine are 

summarized in Figure 32. 

SYSTEM LOGICAL MACHINE PROGRAMMING METHOD 

3200 MICROPROGRAMMABLE MICRO INSTRUCTION (32 BITS) 
MACHINE 

32/S 3200 + 32/S FIRMWARE MACRO INSTRUCTION 
(VARIABLE LENGTH) 

MPL 32/S + MPL COMPILER MPL STATEMENTS 
MACHINE 

Figure 32. The 3200, 32/S, MPL Heirarchy 



86 

The 3200 Microprocessor 

The 3200 Microprocessor is a 16-bit machine with 4K to 128K words 

of 300 nanosecond MOS semiconductor main memory, addressable to the 

8-bit/byte level. It is microprogrammed with a bipolar 32-bit control 

memory which is expandable to 4K words, and which operates with 135 

nanosecond cycle time. A common bus (Monobus) is implemented for 

connecting the microprocessor with all main memory modules and I/0 

device controllers. Like the UNIBUS or the PDP 11/40, the Monobus is 

asynchronous allowing memories and controllers of various speeds to be 

mixed and uniformly accessed with standard memory reference instructions. 

Input/output can be byte or word oriented under program control, or 

block oriented under computer control (concurrent ~/0) or DMA control. 

Four external interrupt lines establish the relative priorities of 

groups of I/0 device controllers. Relative priority among the control­

lers on each line is established by their positions along the Monobus. 

Each I/0 device controller may be manually assigned a specific address 

and interrupt line. Thus for each I/0 device address, a unique inter­

rupt processing procedure and environment is specified. 

The 32/S Architecture 

The Microdata 32/S is a firmware implemented 16-bit, 350-450 nano­

second MOS memory cycle, push-down stack architecture computer. Figure 

33 is a simplified block diagram of the 32/S system configuration. Its 

functional characteristics are given in Table XIII. 



87 

PROCESSOR 

MICROPROGRAMMED CONTROL MEMORY 

l PROCESSING REGISTERS 

INSTRUCTION CONCURRENT 
PROCESSING DATA STACK I/0 

FIRMWARE FIRMWARE 

INSTRUCTION NORMAL MEMORY 
LOOK-AHEAD INTERFACE 

MONOBUS INTERFACE 

4~~ 

MONOBUS (128K word, 256K byte address) asynchronous 

.~ ·~ ~ 
\ 

MAIN MEMORY PERIPHERAL OTHER PROCESSORS 
300 nsec MOS DEVICE AND BUS 
4K/8K modules CONTROLLERS INTERCONNECTORS 

Figure 33. 32/S System Configuration 



TABLE XI II 

Microdata 32/S Functional Characteristics 

Components 

Processor 
Programmable Registers 

Control Unit 
Control Memory 

Word length 
Cycle time 
Maximum size 

Instructions 
Memory reference 
Stack operate 
Branch 
Control 

Addressing modes 
Global direct 
Local direct 
Indexed 
Indirect 

Interrupt system 
Type 
Extern a 1 

Memory 
Type 
Cycle time 
Word length 
Capacity 

Minimum 
Maximum 
Increments 

Input/Output 
Maximum number of devices 
Maximum transfer rate 

Characteristics 

program base 
program pointer 
program length 
stack base 
environment pointer 
stack pointer 
stack length 
5 stackhead registers 

microprograrruned 

32 bits 
135 nanoseconds 
4096 words 
151 
15 
88 
17 
22 

64K bytes 
256 bytes 
64K bytes 
64K bytes 

vectored priority 
4 lines 

MOS Semiconductor 
300 nanoseconds 
16-bits 

8K bytes 
256K bytes 
8K or 16K bytes 

1024 
5M bytes/sec 

88 



89 

The Monobus. The Monobus has an addressing range of 256K bytes. 

Modules on the Monobus include main memory, I/0 device controllers, and 

control memory (see Figure 34). The 256K byte addressing range is divi­

ded into four 64K-byte banks. This division into banks results from the 

fact that all address arithmetic is performed on the least-significant 

bits of the 18-bit byte-level Monobus addresses. No carry from this 16-

bit arithmetic'is propagated into the most significant 2-bit field of 

the Monobus addresses. Therefore, addresses which should cross into the 

next bank when incremented or when increased by a displacement or index 

11 Wraps around .. to the beginning of the same bank. 

Main memory is provided in 16K byte modules. Each module has a 4-

bit switch to select the 16-K range of Monobus addresses for that module. 

Modules are assigned sequential l6K ~anges starting at Monobus address 

0 to form a contiguous memory. The first 32 bytes are reserved for 

special purposes. In addition, up to 1024 bytes beginning at location 

32 are reserved for the program library (PLIB), a table of pointers to 

program segments. The remainder of main memory is assigned (by the 

loader and/or software operating system) to program segments and data 

stacks. 

The control memory interfaces with the CPU for control purposes via 

the control memory bus. In addition, however, control memory provided 

on an optional read-only memory board can be read through the Monobus, 

and control memory provided in optional writeable control memory modules 

can be read or written through the.Monobus. Starting at location 224K 

on the Monobus, control memory may be addressed. 

I/0 device controllers are assigned 16 byte blocks of Monobus add­

resses, referred to as Device Register Blocks (ORB). A multi-channel 



BYTES MONOBUS 

0 

64K 

l28K 

192K 

224K 
240K 
256K · 

90 

RESERVED LOCATIONS - 16 WORDS 
PLIB - PROGRAM LIBRARY 

~ INDEX TABLE TO PROGRAM SEGMENTS 
UP TO 256 SEGMENTS 

PBTT .....-'l-- PROGRAM PP SEGMENT ACTIVE 

PL L PROGRAM 
BANK DATA 

I~, 
SEGMENT 

STACK 
PROGRAM 

~ 
SEGMENT 

SB[1lE: DATA y p 

\ 
STACK ACTIVE 

SL DATA 

1 UNASSIGNED STACK 

I 
CONTROL MEMORY 4K 32-BIT LOCATIONS 
I/0 DEVICE CONTROLLER REGISTERS 

I ' 

lK a~WORD DEVICE REGISTER BLOCKS 

Figure 34. Monobus Organization 

controller has a ORB for each device it controls. The Monobus addresses 

for the DRB•s begin at location 240K. A switch is provided on each con­

troller to select one of 1024 device numbers for each DRB associated 

with a controller. 

Active Program and Data Stack Registers. At any given point in the 

operation of the 32/S machine there is an active program segment and an 

data stack. A program segment contains the code generated for one or 

more MPL procedures, literal and constant data, and an indirect address 



91 

table to entry points within the procedure code. Three registers define 

the active program segment: the program base (PB) specifies the base 

address of the segment; the program pointer (PP) specifies the address 

of the instruction to be executed; and the program length (PL) specif­

ies the size of the segment. A data stack is an area in memory allocat­

ed for data of a user. Four registers define the active data stack: 

the stack base (SB) specifies the base address of the stack; the environ­

mental pointer (EP) specifies the beginning location, relative to SB, of 

the current environment in the stack; the stack pointer (SP) specifies 

the location, relative to SB, of the top of the stack in main memory; 

and the stack length (SL) specifies the maximum size allocated to the 

stack. Figure 34 illustrates the use of these registers. 

The Stack Head Registers. The data stack head registers consist of 

five high-speed registers. The number of active stack head regis~ers is 

variable. Hardware logic maintains a record of which stack head regis­

ters are empty and which one (if any) is the current top of the stack, so 

that data can be pushed into the stack or popped from the stack without 

transferring data between r'egi sters. Most data stack operations as a 

result, actually can be performed within 135 nanosecond clock time. 

The processor operates in such a way as to use the stack head 

registers to minimize accesses to main memory. When data is pushed into 

the data stack, it goes into a stack head register rather than into main 

memory as long as there are any empty stack head registers. If the 

stack head registers are filled, or become filled during a push operation, 

the deepest entry in the registers overflow into main memory. Both 

situations are illustrated in. Figure 35. Note that the stack pointer 

(SP) always points to the highest stack location in main memory. 



MEMORY 

SP: A 

MEMORY 

SP: A 

~ros: 

TOS 

MEMORY 
STACK HEAD STACK HEAD 

REGISTERS SP: A REGISTERS 
B IJ B 
c c 
D D 
~-- TOS: E 
--. --

(a) With Empty Stack Head Registers 

MEMORY 

STACK HEAD 
SP: A REGISTERS t-----1 SiACK HEAD 

REGISTERS B B 

c c 
D D 
E E 

. F . F 
TOS G 

(b) All Stack Head Registers Filled Initially 

Figure 35. Push Stack Operation 

92 

During the operation of popping data from the stack, the processor 

pops data from the stack head registers without accessing main memory 

as long as data is available within the stack head registers. A pop 

operation occuring with the stack head empty simply causes the contents 



of the SP register to be decremented. No data is moved. The pop 

operation is illustrated in Figure 36. 

93 

Machine Instructions. The Microdata 32/S Computer Reference 

Manual (11) divides the 32/S non-input/output machine instructions into 

the following five categories: 

MEMORY MEMORY 

STACK HEAD STACK HEAD 
SP: A SP: A REGISTERS 

B. 0 B 

c TOS: c 
TOS: D --

--
--

(a) Filled Stack' Head Registers Initially 

MEMORY MEMORY 

STACK HEAD 
SP: A TOS: REGISTERS 

1-----1 A STACK HEAD 
SP: B TOS: REGISTERS 

1------f 

(b) All Stack Head Registers Empty Initially 

Figure 36. Pop Stack Operation 



94 

· Memory Reference 

· Stack Operate 

· Branch 

· Control 

· String 

This section describes the basic characteristics of each of the five 

categories. 

The memory reference instructions perform operations that load and 

store data of varying lengths, add and subtract a word to a data stack, 

and add a word to a memory location. Three formats, shown in Figure 37 

are used to accomodate eight addressing modes for each of the 15 types 

of instructions. The addressing modes are listed in Table XIV. Defini­

tions of the terms used in the effective address expressions are: 

SB Stack Base register value, 18 bit absolute address of 
base of data stack. 

EP Environmental pointer register value, 16 bit address of 
the base of the current Mark, relative to SB. 

08 8-bit address displacement field of instruction. 

016 16-bit address displacement field of instruction. 

TOS(X) 16-bit index contained in TOX, the top level of the 
stack. This index specifies a number of data items, 
independent of data length; e.g., number of bytes, 
number of words, etc. It is converted to a byte­
level index when the memory reference instruction is 
executed. For example, if an indexed doubleword 
instruction is executed, the index value is multi­
plied by 4. 

TOS(Dl6) 16-bit address displacement contained in TOS, the top 
level of the stack. 

T0Sl(Dl6) 16-bit address displacement contained in TOSl, the 
second to top level of the stack. 



95 

TOSl(DlB) lB-bit base address contained in TOSl, the second to 
top level of the stack. NOTE: Only the most signi­
ficant 16 bits of the OlB-alSplacement are stored in 
TOSl ~ the least significant 2 bits are assumed to be 
zeroes. The TOSl(DlB) is multiplied by 4 (as shown 
for mode 7) when calculating the effective address. 

0 1 5 7 

1 1 I OPCODE I MODE I 
0 1 5 B 15 

[11 OPCODE I MODE I DB I 
' 0 1 5 B 23 

1 1 I OPCODE I MODE I D16 ~~ I 

Figure 37. Memory Reference Instruction Formats 

TABLE XIV 

ADDRESSING MODES AND EFFECTIVE ADDRESSES 

ADDRESSING EFFECTIVE 
MODE ADDRESS USE 

0 SB + D16 GLOBAL DIRECT 

1 SB + D16 + TOS (X) GLOBAL DI RE~T, INDEXED 

2 SB + EP + DB LOCAL DIRECT 

3 SB + EP + DB + TOX (X) LOCAL DIRECT, INDEXED 

4 SB + TOX (16) INDIRECT THRU TOS 

5 SB + TOX (X) + TOS 1 (D16) INDIRECT THRU TOS, INDEXED 



ADDRESSING 
MODE 

6 

TABLE XIV (Continued) 

EFFECTIVE 
ADDRESS 

PB + Dl6 + TOS (X) 

USE 

CONSTANT DIRECT, INDEXED 

7 TOS (X) + 4 * TOS 1 (Dl8) ABSOLUTE, INDEXED 

96 

The stack operate instructions operate on one or two operands in 

the top of the stack, or push a literal operand into the stack. The 

stack operate instructions may be categorized as follows: 

· arithmetic, word operand 

arithmetic, double word operand 

logical 

· comparison, arithmetic word and double word, logical, floating 

· shift word and double word 

1 oad 1 iter a 1 

· stack modifications 

· field description generation 

The stack operate instruction formats are shown in Figure 38. The top 

two formats, which consist only of one or twp-byte operation code, are 

used for all instructions except the load literal instructions. All 

operands for the instructions using these two formats are popped from 

the top of the stack during execution of the instruction. The result 

produced is pushed into the top of the stack. The last five formats in 

Figure 38 are used for the load literal instructions. The L field (one 



97 

0 7 

I OPCODE I BOTH OPERANDS 
IN TOP OF STACK 

0 15 

I OPCODE I 
0 4 7 
1 oc I L I 
0 8 ]5 

I OPCODE I L I 
0 a 23 

I OPCODE I L I 
0 8 39 
,. 

OPCODE I L I 
0 8 16 VARIABLE 

I OPCODE I WORD CNT I L I 
Figure 38. Stack Operate Instruction Formats 

or more bytes) is the literal to be pushed into the stack. 

Three categories of 17 branch instructions are shown in Figure 39. 

Branch backward instructions use a two byte format, with the rightmost 

byte being an eight bit displacement (D8). The effective address to be 

placed in the program pointer (PP) is computed by subtracting the dis­

placement D8 from the current value of PP which is the address of the 

next instruction. Branch long instructions use a three byte format, with 

the rightmost two bytes being a 16-bit address (ADDR). Branch indirect 

via the top of the stack (TOS) register instructions use a one-byte 

format. 



0 8 15 

I OPCODE [ D8 I BRANCH BACKWARD 

0 a 23 

I OPCODE I ADDR I BRANCH LONG 

0 7 
1 ooonn1 I BRANCH INDIRECT VIA TOP OF STACK 

Figure 39. Branch Instruction Formats 

Control instructions involve complex operations such as the 

following: 

· Begin block entry and exit 

Procedure call and exit 

Interrupt exit 

Wait for interrupt 

Supervisor call 

Initiate microprogrammed procedure 

Pushing and popping procedure or block environments 

98 

For details on such instructions refer to the Microdata 32/S Computer 

Reference Manual (11). 

The 32/S provides two groups of string instructions, move and 

compare. The pairs of string oper.ands for these instructions are each 

defined by a two-word string descriptor illustrated in figure 40. 

String move instructions move a source string into the string locations 

designated by the destination string descriptor. The move is complete 



99 

whenever either string is decremented to zero. String compare instruc­

tions scan two strings from left to right the end of one or both strings, 

or until a difference (bytes do not match) is found. Comparisons are 

made on 8-bit bytes as positive integers. If the strings are equal byte 

by byte up to the end of one string, the shorter string is considered 

less than the other string. Strings are equal only if they have ident­

ical lengths and each character equals its corresponding character in 

the other string. 

I STRING START ADDRESS 
0 ' 16 31 

STRING LENGTH 

Figure 40. String Descriptor 



CHAPTER V 

SUMMARY 

Since Digital Equipment Corporation first released the PDP 5 

(predecessor of the PDP 8) in 1963, minicomputers have gained wide­

spread popularity. They have become widely available at relatively low 

costs and they cover a wide range of applications. With the help of 

medium- and large-scale integration, sophisticated processing capabil-

ities previously found only in larger computer systems have become 

common in minicomputer design. In this paper, features of ten currently 

marketed minicomputer systems have been discussed. Table XV summarizes 

the distinctive characteristics of each of the ten machines. 

Trends in the minicomputer industry include continued size and 

cost reductions with improvements in performance. The emphasis, how­

ever, is shifting towards improving current applications and finding 

new ones. Cost reduction and hardware improvements is predicted to 

follow an evolutionary rather than a revolutionary trend (7). 
! 

On a one-for-one basis, large scale computer systems face no 

immediate threat of being replaced by minicomputer systesm. If the 

threat exists, however, it is in the.form of distributed systems where 

the processing and information ?torage are resident within various 

operating components of an organization. For each component there is 

a complete minicomputer system. The appli~ation programs at each site 

are accessible to the minicomputers of the other sites. Thus each 

··1 00 



101 

TABLE XV 

SUMMARY OF MINICOMPUTER CHARACTERISTICS 

Minicomputer 

Digital Equipment Corporation PDP 8/e 

Cincinnati Milacron CIP/2200 

Computer Automation ALPHA LSI-2 

Texas Instruments 9808 

Digital Computer Controls D-116 

Data General ECLIPSE S/200 

Distinctive Characteristics 

fixed purpose registers 
12-bit word length 
OMNIBUS 
multifunction register 

operate instructions 

fixed purpose registers 
microprogrammed 
decimal arithmetic 
control stack facility 
variable length binary 

arithmetic 

fixed purpose registers 
general stack processing 
automatic memory scan 
memory interleaving 
memory banking 
MAXIBUS structure 

fixed purpose registers 
standard hardware multiply/ 

divide 
standard programmable memory 

protect 
standard power fail/restart 
MOS semiconductor memory 

multi-accumulator 
multi-function arithmetic/ 

logic instructions 
overlapped inst~uction proces~ 

sing 

multi-accumulator 
memory error checking and 

correction 
general stack processing 
memory interleaving 
memory cache system 
microprogramming 



102 

TABLE XV (Continued) 

Minicomputer Distinctive Characteristics 

Digital Equipment Corporation PDP ll/40 general purpose registers 
UNIBUS structure 
generalized instruction set 
automatic priority interrupt 

system 

Raytheon Data System RDS-500 general purp·ose registers 
dual bus structure 

Interdata Model 8/32 general purpose registers 
32-bit word length 
multiple sets of registers 
instruction lookahead 
memory interleaving 

Microdata 32/S push-down stack architecture 
MONOBUS structure 
high level lan~uage implemen­

tation (MPL) 

site is generally not dependent on the operations of the minicomputers 

of the other sites. In a system centralized around a fast large-scale 

computer, remote job-entry terminals are used to allow computer proces­

sing at the different sites. 'Management of such systems requires teams 

e>f highly skilled experts providing the necessary coordination and 

control. Operations at each site are dependent on the operations of 

the main computer. 

At the ather end of the spectrum, do the microcomputers, equipped 

with microprocessors mounted on silicon chips, pose a threat to the 

minicomputer industry? Hobbs and McLaughlin (7} say they do not. 



Microcomputers have merely relieved minicomputers of smaller scale, 

lower cost applications. 

103 

Each class of computers (microcomputers, minicomputers, and maxi-

computers) in general pose no real threat to the other classes. It is 

much more feasible to think that in the development of networks of 

computers, computers of each class can serve separate specific purposes 

interacting with computers of the other two classes. 

Two conclusions are drawn from this study: 1) Minicomputers can 

be classified according to the organization of the processor registers. 

Such a classification yields three general classes -- fixed purpose 

register machines, multi-accumulator machines, and general purpose 

register machines. 2) Minicomputers today are versatile and powerful 

because of the widespread'implementation of features such as micro­

programming, multiple general purpose registers, universal bus archi­

tecture, stack processing, and semiconductor memories. The following 

are some suggestions for future work in the area of minicomputers: 

A study of the organization, operation, and concepts used in a 
distributed system or any type of a network of minicomputers. 

A simulation of a minicomputer with a push-down stack archi­
tecture such as the Microdata 32/S. 

A similar study of the concepts used in the design of micro­
computers (computer with processors mounted in silicon chips). 

A study of minicomputer interfacing techniques and a survey of 
minicomputer peripheral devices. 



SELECTED BIBLIOGRAPHY 

(1) 21MX Computer Series Reference Manual. Cupertino, Calif: 
Hewlett-Packard Company, 1974. 

(2) Butler, J. L. 11 Comparative Criteria for Mini Computers. 11 

Instrumentation Technology, XVII (October, 1970), 67-82. · 

(3) CIP/2200 Computer Reference Manual. Lebanon, Ohio: Cincinnati 
Mil i cron, 1973. 

(4) D-116 16-Bit LSI/MSI Computer Handbook. Fairfield, N. J.: 
Digital Computer Controls, 1972. 

· (5) Gruenberger, Fred and David Babcock. Computing With Mini 
Computers. Los Angeles: Melville Publishing Company, 
1973. 

( 6) Hi 11 , Frederick J. and Gera 1 d R. Peterson. Di gita 1 S*stems: 
Hardware Organization and Design. New York: Jo n Wiley 
& Sons., 1973. 

(7) Hobbs, L. C. and Richard A. Mclaughlin. 11 Minicomputer Survey ... 
Datamation, X (1974), 50-61. 

(8) Iverson, Kenneth E. A Programming Language. New York: John 
Wi 1 ey, 1962. 

(9) Kenney, Donald P. Minicomputers. New York: Amacon, 1973. 

( 10) Korn, Granino A. Minicom,uters for Engineers and Scientists. 
New York: McGraw Hi 1 Book Company, 1973. 

(11) Microdata 32/S Computer Reference Manual. Irvine, Calif.: 
Microdata Corporation, 1975. 

(12) Microtrogramming 21MX Computers Operating and Reference Manual. 
upertino, Calif.: Hewlett-Packard Company, 1974. 

( 13) Microprogramming Handbook. 
Corporation, 1971. 

Santa Ana, Calif.: Microdata 

(14) 11 1975 Minicomputer Market Survey. 11 Hudson, Ma.: Modern Data 
Service, Inc., 1975. 

104 



105 

(15) 11 The Mini-Computer's Quiet Revo1ution. 11 EDP Analyzer, X (Dec., 
1972)' 1-13. 

(16) Model 8/32 Processor User's Manual. Oceanport, N.J.: Interdata, 
Inc., 1975. 

(17) Model 960 B Computer Systems Characteristics. Houston: Texas 
Instruments, Inc., 1974. 

(18) Model 980 B Computer System Characteristics. Houston: Texas 
Instruments, Inc., 1974. 

(19) Naked Mini LSI Series Computer Handbook. Irvine, Calif: 
Computer Automation, 1973. 

(20) PDP 8E, PDP 8/M, And PDP 8/F Small Computer Handbook. Maynard, 
Massachusetts: Digital Equipment Corporation, 1973. 

. . \ 

(21) Processor Handbook PDP 11/40. Maynard, Mass.: Digital Equipment 
Corporation, 1972. 

(22) Programmer's Reference Manual ECLIPSE Line Computers. Southboro, 
Mass: Data General Corporation, 1974. 

(23) Raytheon Data Systems RDS-500 Central Processor User's Manual. 
Norwood, Mass.: Raytheon Data Systems, 1975. 

(24) SPC-16 Computer Family. Anaheim: General Automation, Inc., 1975. 

(25) Sue Lockheed Electronics Computer Handbook. Los Angeles: Lockheed 
Electronics Company, Inc., 1973. 

(26) Stein, Philip G. and Don R. Boyle. 11 How to Cope with Nickel and 
Diming in your Minicomputer. 11 Mini Computer Trends and Appli­
cations. New York: Institute of Electrical and Electronics 
Engineers, Inc., 1973, 5-7. 

(27) Systems Design Handbook. Ft. Lauderdale: Modular Computer Systems, 
Inc., 1975. 

(28) Theis, D. J. and L. C. Hobbs. 11 Mini-Computers for Real-Time 
Applications. 11 Datamation, XV (March, 1969), 39-61. 

(29) Thompson, Glenn Ray. 11 A Microprogrammed Simulation System for 
General Purpose Register and Fixed Purpose Register Mini­
computers.•• (Unpublished Master of Science thesis, Oklahoma 
State University, Stillwater, Oklahom~, 1976.) 

(30) Vosatka, G. J. 11 The Minicomputer--Evolution or Revolution. 11 

Minicomputer Trends and Applications. New York: Institute 
of Electrical and Electronics Engineers, 1973, 1-4. 



APPENDIX A 

INSTRUCTION EXECUTION TIMES (IN MICROSECONDS) 

106 



MNEMONIC 

ADD 

AND 

CLR 

CMP 

DIV 

INC 

ISZ 

JMC 

JMP 

JMS 

LDR 

MUL 

SKP 

SLL 

STR 

TRR 

MEANING 

add the contents of a specified memory location to a 
register 

logically 11 and 11 the contents of a specified memory 
location to a register 

clear a register 

complement the contents of a register 

107 

divide the contents of a register by the contents of a 
specified memory location 

increment the contents of a register 

increment (and skip if zero) the contents of a specified 
memory location. 

conditional transfer of control 

unconditional transfer of control 

transfer of control to a subroutine, store return add­
ress in a specified memory location 

replace the contents of a register by the contents of a 
specified memory location 

multiply the contents of a register by the contents of 
a specified memory location 

conditional skip of next instruction 

shift left logical one bit 

replace the contents of a specified memory location by 
the contents of a register 

replace the contents of a register by the contents of 
another register 



108 

MINICOMPUTER ADD AND CLR CMP DIV INC ISZ JMC 

PDP 8/e 2.60 2.60 1.20 1. 20 7.40 1.20 2.60 

CIP/2200 11.70 12.10 6.60 6.60 232.50 7.00 12.50 12.80 

ALPHA LSI-2 8.55 8.55 5.40 5.40 128.40 5.40 12.10 7.00 

TI 980B 1. 75 1. 75 1.00 1.00 7.75 1.00 2.75 

D-116 1.35 1. 35 1.35 4.50 

ECLIPSE S/200 0.60 0.60 8.20 0.60 1. 50 

PDP ll/ 40 2.38 0.99 0.99 13.08 0.99 2.53 1. 76 

RDS-500 1.00 1.00 0.50 0.50 6.00 0.50 

INTERDATA 8/32 . 1. 25 1.25 1.25 1. 25 5.80 1.25 1. 95 

MINICOMPUTER JMP JMS LOR MUL SKP SLL STR TRR 

PDP 8/e 1. 20 2.60 7.40 l. 20 1.20 2.60 1. 20 

CIP/2200 10.10 13.00 12.10 328.50 8.40 9.60 12.00 7.30 

ALPHA LSI-2 6. 80 10.10 7.00 136.40 5.40 6.90 5.40 

TI 9808 1.25 1.50 1. 75 6.25 1.00 0.75 2.00 1.00 

D-116 1.35 1.35 2.55 2.55 2.55 1.35 

ECLIPSE S/200 0.65 0.65 1.00 7.20 1.00 1.00 1.00 0.60 

PDP 11/40 1.80 2.94 2.24 9.66 1.25 2.42 0.90 

RDS-500 0.50 0.50 1.00 5.00 0.50 0.50 1.00 0.50 

INTERDATA 8/32 1.95 2.19 1.25 4.50 0. 70 2.00 0.80 



APPENDIX B 

I 

APL DESCRIPTION Of EFFECTIVE 

ADDRESS CALCULATING SCHEMES 

109 



SYMBOL 

E(n) 

O(j 

DEC 

GR 

INC 

IR 

IX 

M 

MA 

MD 

PC 

PR 

SR 

TOS 

TOSl 

WL 

110 

MEANING 

A vector of n bits, all zeros 

Prefix vector, used for isolating the leftmost 
j bits of a vector 

Suffix vector, used for isolating the rightmost j 
bits of a vector 

Decrement logic subroutine 

General purpose registers 

Increment logic subroutine 

Instruction register 

Index register 

Memory 

Memory address register­

Memory data register 

Program counter 

Page register 

Status register 

Top of the stack pointer 

Next to the top of the stack pointer 

Instruction word length register 



111 

PDP 8/e 

instruction fetch 

instruction decode 

MA ~ /E(5) ,u.l/IR; IR3 ;(c:Xt;iPC),u://IR/ AD 

0: IR4 Al = -
MD~ MlMA A2 

MA~MD A3 h 

instruction execute k-



112 

CIP/2200 

instruction fetch 

instruction decode 

l:IR1,-
AO --=--.. 

MA ~· /E(8) ~ws I o<'~, /IR; IR8 ; (16)T(1PC)+uF/o<1t- /IR/ Al 

0: IR" A2 

MD+- MlMA A3 

MA +- MD A4 

1 : I R" AS 
~ 

,...=:... 

MA +- (16)T{l.IX)+(IR7 xW~/o<.'"'!IR) A6 - ~ 

MA +- /(16)T(l uJc,; /d;l.lf/IR)+(IR.;xliX); I R7 ; 
~ 

(16)T(lPC) -lWL+l/ ~ A7 
~ 

instruction execute 



113 

ALPHA LSI-2 

instruction fetch 

instruction decode 

instruction execute 



114 

ECLIPSE S/200 

instruction execute 

instruction decode 

•. 



PDP 11/40 

instruction fetch 

instruction decode (MODE <E- 3 bit addressing mode) 
(REG+- 3-bit register designation) 

O:v/MODE 

~ (A2, A3, A5, AT) MODE 

MA -E- GRlREG 

MA <---· GRlREG 

GRlREG ._ INC{G~REG) 

GR.LREG ~ DEC(GRLREG) 

MA +-- GR1REG 

MA ~PC 

PC ..c- INC (PC) 

MD ~ M!MA 

MA <E- ( 16 )T (!MD)+ lGRlREG 

MD~ MlMA 

MA· +- /MA: MODE3 ; MD/ 

instruction execute or another memory reference 
(for two operand instruction) 

115 

AO r-=-
Al 

A2 --
A3 

A4 ,._ 
A5 

A6 
~ 

A7 

A8 

· A9 

AlO 

All foE-

Al2 
~ 



116 

RDS-500 

instruction fetch 

instruction decode 

PR +- /PR; SR8; E(6)/ AO 

MA +- /(ws/PR), c_,j' !IR; IR,1 ; 

( 16 )T (l.I X )t.!( wsj PR) , w''!I R) / Al 1--

instruction execute 



APPENDIX C 

APL DESCRIPTION OF INTERRUPT OPERATIONS 

117 



SYMBOL 

O(j 

Ej(n) 

E(n) 

wj 

e 

i 

level 

mask 

prev 

ADDR 

E(n) 

INC 

INT 

I0 

IR 
.M 

MA 

MD 

MR 

PC 

SP 

SR 

118 

MEANING 

Prefix vector 

Unit vecotr, all zeros except at the jth position 

Full vector, all ones 

Suffix vector 

Master enable/disable interrupt indicator 

Single interrutp request line 

Logic subroutine, resolves priority and returns 
level of interrupt 

Logic subroutine - resolves masking of external 
device interrupts 

Priority level of previous interrupt 

Logic subroutine - returns vector address of 
interrupt to be processed 

Vector of enable/disable indicators for n+l 
devices 

Logic subroutine - increments a register 

Vector of interrupt request lines 

I0 device address register 

Instruction register 

Memory 

Memory address' register 

Memory data register 

Mask register for interrupt processing 

Program counter 

Control stack pointer 

Status register or registers 



instruction fetch 

instruction decode 

PDP 8/e 

effective address calculation 

instruction execute 

0: il\e 

i,e+- 0,0 

IR +-E"(l2) 

IO 

I 1 

12 

119 



____, 

-=-

LINE 

CIP/2200 

INTERRUPT TYPE 

Console 
DMA channel 
Interval timer 
Memory parity 
Control stack underflow/overflow 
Power fai 1 
Power restart 

120 

INTc 
INT, 
INT,. 
INT.3 
INT~ 
INT~ 
INT"' 
INT 7 Multiple I/0 devices and other external 

signals 

instruction fetch . 
instruction decode . 
effective address calculation . 
instruction execute . 

. 
. 
. . 
. 

0: (v!o? liNT) v ( INT 7 A e) IO 

j ~ level (INT) Il 

c(J."JIR +-- (01101000), ADDR(j ,IO) 12 



LINE 

ALPHA LSI-2 

Power fail 
Trap/console 

INTERRUPT TYPE 

Single high speed I/0 device 
Single high speed I/0 device 

121 

INTc 
INTI 
INT.:. 
INT5 
INT>t Multiple I/0 devices and other external signals 

~ instruction fetch . 
instruction decode . 

. 
effective address calculation . 

. 
instruction execute 

. 
. 
. 

-=- 0: (v/INT) A e IO 

j +-- level (!NT) I 1 

I NT j , e .__.. 0 , 0 !2 

IR ~ (11111000), wS/AbDR(j, !0) I3 

E(n+l) +--- jE;(n+l); j>2; f(j-2),E(n+l-(j-2))/ !4 
I 



~ 

~ 

'---

LINE 

INT0 

I NT a 

INT.:. 
INT.~ 

instruction fetch 

instruction decode 

TI 9808 

INTERRUPT TYPE 

Internal 
External signals (real time devices) 
DMA device 
Multiple I/0 devices 

. 

. 
effective address calculation 

instruction execute . 
. 

. 

. . 

. 
eo ,e, +-- SR7 ,SR1;_ IO 

0: INT0 v INT1 v (INTz. t\ e 1 ) v (INT3 1\ e0 ) Il 

j ~ level (INT) I2 

INT j ,e.1 ,e~~ 0,0,0 I3 

MA ~ ADDR(j ,IO) 14 

MD~ rf-MA 15 

1R ~-MD 16 

122 



123 

ECLIPSE S/200 

instruction fetch . ... 

instruction decode . 
effective address calculation . 
instruction execute 

. . . . . 
J 0: il\eA"'mask(i) 10 

::: 

i ,e ~ 0,0 . 11 

MA~E(l6) 12 

MD~ PC 13 

~MA ~MD 14 

MA~ E1~-( 16) 15 

r-' MD~ w-MA 16 

MA +- MD ' 17 

-~ 0: MOO 18 

- PC~ MA 19 



LINE 

INT0 
INT1 
INTz. 
INT? 

PDP 11/40 

INTERRUPT TYPE 

Odd addressing 
Trap instruction 
Power fail/restart 
Reserved instruction 

124 

INT4 -INT 1 Multiple I/0 device (separate levels) 

~ instruction fetch 
instruction decode 
effective address calculation 
instruction execute 

k-: 0: (virNT)A(lu.-?jcx 1;/SR) <level (INT) IO 

j +-level (INT) Il 

TR 0 'TR I .f:- SR ,PC I2 

MA .e.- ADDR(j ,IO) I3 

SR ~ MlMA I4 

MA ~ (16)T(lADDR(j,I0))+2 IS 

PC+- MlMA I6 

MA -t- SP I7 

W-MA ~ TRC I8 

MA,SP ~ INC(MA) ,INC(SP) I9 

M MA +- TR 1 Il 0 
r.,..._ SP ~- INC (SP) Ill 



!NT 
!NT 
!NT 

LINE 

RDS-500 

INTERRUPT TYPE 

Power fail 
Memory protect 
Memory parity 
I~ devices and console 

125 

!NT -!NT 
!NT Paper tape reader/punch or teletype 

B-F' instruction fetch 

instruction decode 

effective address calculation 

instruction execute 

--- 0: v/ (INTI\MR) 1\ prev < 1 eve 1 ( INTI\MR) 

j +- level (INTAMR) 

!NT j +- 0 

prev ~ j 

MA +- (16)T4x.lADDR(j ,10) 

MD~ PC 

MlMA 'E- MD 

MA .(:- INC (MA) 

PC ~ M.LMA 

MA ~ INC(MA) 

IO 

I1 

12 

13 

14 

15 

16 

17 

18 

19 _.,.A 



126 

RDS-500 (Continued) 

A.~ MD o0t- SRO IlO 

M.lMA ~ MD Ill 

MA -t- INC (MA) 112 

MlMA -t-- SR 1 113 

SR~ ~ 1 I 14 ~B 



VITA 
\ 

C-4 

Benedicta Cacho 

Candidate for the Degree of 

Master of Science 

Thesis: MINICOMPUTER CONCEPTS 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Banguio City, Philippines, January 13, 
1950, the son of Mr. and Mrs. Modesto Cacho. 

Education: Graduated from Atoka High School, Atoka, Oklahoma, in 
May, 1969; received Bachelor of Science degree from 
Southeastern Oklahoma State University, Durant, Oklahoma, in 
May, 1973, with a major in Mathematics and with a minor in 
Physics and Computer Science; completed requirements for the 
Master of Science degree at Oklahoma State University, 
Stillwater, Oklahoma, in July, 1976. 

Professional Experience: Graduate Assistant, Oklahoma State 
University, Computing and Information Sciences Department, 
Stillwater, Oklahoma, August, 1973, to December, 1975. 




