INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper leffi-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI

A Bell & Howell Information
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B TSy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEARNING PROGRAMMING IN COMPUTER LABORATORIES
-= A CASE STUDY

by
Reggie Ching-Ping Kwan

A thesis submitted in partial fulfillment
of the requirements for the degree

of
Doctor of Education
in

Adult and Higher Education

MONTANA STATE UNIVERSITY
Bozeman, Montana

December 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9815939

UMI Microform 9815939
Copyright 1998, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii

APPROVAL
of a thesis submitted by
Reggie Ching-Ping Kwan
This thesis has been read by each member of the thesis
committee and has been found to be satisfactory regarding
content, English usage, format, citations, bibliographic

style, and consistency, and is ready for submission to the
College of Graduate Studies.

1= 19-97 ﬂt«u-, Q g"""&

Date Chairperson, Graduate Committee

Approved for the Major Department

_JW%, .-J:' P75

Date 74

Approved for the College of Graduate Studies

Date

_ Y s - t7én 74/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the
requirements for a doctoral degree at Montana State
University--Bozeman, I agree that the Library shall make it
available to borrowers under rules of the Library. I
further agree that copying of this thesis is allowable only
for scholarly purposes, consistent with the “fair use” as
prescribed in the U.S. Copyright Law. Requests for
extensive copying or reproduction of this thesis should be
referred to University Microfilms International, 300 North
Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted
“the exclusive right to reproduce and distribute my
dissertation in and from microfilm along with the non-
exclusive right to reproduce and distribute by abstract in

any format in whole or in parxt.”

Signature ;gé%?7é£2]§;£g:h

Date (/ 9/9€

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

TABLE OF CONTENTS

page

LIST OF TABLESc.ccccecescsccennssnnsss e meseomecens viii
LIST OF PIGURES.cccocescssencnssncssssasscscssocacs ix
ABSTRACT cccoveeesoesnososecsaseaasccsnsscaocnsacsscsscass x
1. INTRODUCTION. ccccecocsocsosocsosccsossscasosssssscscscs 1
Living with Computers.o, 1l
Computer Programming.cccceceeeoecsosocsacaes 4

An Introductory Course in Computer Science...... 7
Montana Tech’s Computer Science Program......... 11

The New CS1l course at Montana Tech.......... 12

The New Laboratory in CS1................... 14

Problem.cicttetceeeracssncscasccssscnnas 16
PUZPOS®.ottt t it casceanccsserseencrsenaen 17
Rasearch Questions. ittt eeeecencecncnns 17
Significance of Study...........itti ittt 17
Definition of Terms.........ccictecececocccccnns 19
Limitations.................... ceoccsrsssensenna 21
Delimitations............c.tttereccecnsoccnocncs 21
ASSuUmMPtioNS.cccettererccscccsoscssocnnsnans 21

2. BACKGROUND AND REVIEW OF LITERATURE................ 23
History of Computing.......ccccciteeceeccceccnnes 23

The Birth of the Computer.............cccc... 23
Generations of Languages and Hardware....... 25

The C LANQUAG®. . . . c . .t tccescssoccscoacsnsans 30

Computing As A Discipline...........cciceennennns 33
Laboratory Activities....................... 35

Record and Explain........cccceeeececeas 35

Experiment and Discover........... e 38

Design and Justify...........cccceeeun. 40

Computers and Cognition.........ccceiveeeenecnaas 42
Technology and Education......... ceeceeceens 42

Computers in BEducation..............cccueun 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

TABLE OF CONTENTS--Continued

page
Adult Learners in Computing Science......... 45
Educational Objectives...................... 47

Model of Instructions: Andragogy and
PEABRGOGY .. ccccvoeeescsoceccsoscccocncns 50
Laboratory Learning........cccecceeeeccocccens 53
3. METHODOLOGY . . . c c c cccoevecccosocosasoscscsossssscssas 55
Naturalistic InQUiZY.....c.cccceceecccscscsoconcas 55
Case Studies..........c.ceittetecertoccscsccsaccans 59
Reseaxch Population...............ciii e cnn. 61
Procedures.ccccctteeeesnccsecrasasnsnseces 64
ObServation.........cccccteeececccoscssencens 66
The Physical Environment............... 66
The Programming Environment............ 69
TOAMSBccccceeecesecnsscasscnconses 72
Lab Asgistants.................c.0c.... 72
Interview Questions.............ccciteeee.. 73
4. FINDINGS.......cco0cceesceeasssesasosssscsoesnscsnncnss 78
Beginning of Semester Survey..........cccoceecen.. 78
End-of-Semester SUurveyY.......:ccceeeeccsceceocens 79
Observation and Intexview Results 80
The Physical Environment.................... 81
The Cizxcular Lab..........cetveveecnnas 81
The Rectangular Iab.................... 84
The Programming Environmment................. 87
Learning Strategies.............ccitencennn. 89
Working in Teams..........c.cececeeeesen 89

Less Experienced w;th More
Experience Team Pairings..... 91

Similar Experience Tean

PRiPING. ...t ertienencecnnns 94
Lab Assistants.................... oo 96
Students’ Point of View........... 97
Lab assistants’ Point of View..... 99
Lab Manuals.........cccccetnosnncccaces 101
The Time Factor..........ccveveencennn. 102
Background in Mathematics.............. 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS--Continued

Cooperative Learning Environment.....
Gender Differences..............cc...
The Age Factor............cciviereee.
The Language C...............c0tveenen
Write~ups®........cctcivrivensnnensnnens
Teaching and Learning Activities..........
Record and Explain...........cccc0...
Experiment and Discover..............
Design and Justify............c.cc0un
Interview Summary............. cececncsancs

5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS.......

Conclusions and Recommendations................
Beginning-of-Semester Assessment..........
End-of-Semester Assessment................
Partners and Neighbors....................
Physical Environment..............ccc00eun
On-line Help Versus Printed Manual........
Post-lab Write-ups.........ccteeeeecencenn
Teaching and Learning Activities..........
Lab Assistants...........c.citieteenecncnan

Weekly Meetings............cccceveenn

Same Day Labs.ccccttteececccncens
Recommendations for Further Research...........
The FutUre. ittt ereroesssccncsasocanees

APPENDICES.......cccoteteesnscsnnssscsssssscsnanssscnns
Appendix A Beginning-of-Semester Survey.......
Appendix B End-of-Semester Survey.............

Appendix C Lab Exerxrcise with Record and

Explain Activities.................

Appendix D Lab Exercise with Experiment and

Discover Activities...........c....

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

TABLE OF CONTENTS--Continued

Appendix E Lab Exercise with Design and
Justify Activities.............

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

LIST OF TABLES

Table Page
1. Generations of Computer Hardware..... cecansrees 29
2. Assumptions of the Andragogical and

Pedagogical Models...........ccoceveececcecoces 51
3. Program Design for the Pedagogical Model

and Andragogical Model..............ccoceveveun. 52
4. Profiles of Students..............ccieivneenn. 62
5. End-of-Semester SuUrvey.............eceeeneenen. 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page
l. Machine and Assembly Languages................ 26
2. The Result of the Program Logical And......... 36
3. Scenarios of a Ham and Cheese Sandwich........ 37
4. The Result of the Program lLogical Or.......... 39
5. Bloom’s Classification of Educational

Objectives.............iitietioenoccoennncecnns 47
6. Steinaker’s Classifications of the

Experimental Domain.........c.ceteeenceececans 48
7. Gagne’s Learning EBierarchy.................... S0
8. The Layout of the Rectangular Lab............. 68
9. The Layout of the Circular Lab................ 70

10. Program Segment that Produced the Wrong
SUmM.cuotiteseersesasosssesscsasscncanensencess 124

11. Program Segment that Produced the Right

SUMttt eecerscancorsscsassssoasocsccccnonss 126
12. Algorithm 1 for the Lottery Program........... 129
13. Algorithm 2 for the lLottery Program........... 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The Computer Science Department at Montana Tech of the
University of Montana has designed and implemented a
programming laboratory for the introduction to computerxr
science course. The purpose of this study was to
investigate how students utilized the newly designed
laboratory in learning how to program and to analyze the
strengths and weaknesses of the setup in the laboratory
physically as well as different teaching and learning
activities in the lab.

The study was done by observing approximately 150
students in the laboratory for 15 weeks. Assessment surveys
were administered in the beginning of the semester and again
at the end. Two rounds of in-depth interviews were
conducted in the middle of the semester and then again at
the end with 21 participants.

The study concentrated on students’ learning strategies
and lab learning activities. Results from the survey and
interviews indicated the laboratory portion of the course
was a major part of students’ learning.

The study also revealed the importance of the physical
layout of the laboratory. Most students preferred working
alone or having a partner with similar prior experience.
Students also considered classmates in their vicinity to be
a good source for discussions. Most students felt
comfortable seeking help from lab assistants. Gender made a
small difference in terms of the number and the type of
questions asked. All students considered printed lab manuals
to be useless and preferred on-line manuals. The language C
and the Turbo programming environment did not present any
problem in the lab. The Turbo debugger was the most popular
tool in the Turbo environment.

The lab activities record and explain as well as
experiment and discover were well received. The design and
justify activities received some complaints and caused most
problems in students’ lab reports. However, students regard
all three activities instrumental in their learning. The
time needed for the design and justify activity was
unpredictable.

Many participants of this study suggested a different
format of the lab. Some also recommended modifications of
the lab report especially the write-up portion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Living with Computers

Television, telephone, automcbiles, and other modern
technological developments have revolutionized the way
peocple live, work, and play. The computer is doing no less.

The typical computer user today is no longer the
stereotype Ph.D. who works in an underground laboratory with
a 4-foot steel door. Whether making a phone call, driving
an automcbile, or adjusting a programmable thermostat,
peocple unknowingly use the computer and its programs. The
benefits of using computers are taken for granted. Unless
something goes wrong, pecple seldom realize how much they
rely on computers. In fact, it is hard to escape computers,
and they are even changing the way people think.

Computers provide tools that most people cannot imagine
to live without. These include devices such as word
processors, database systems, multi-media systems,
electronic spreadsheets, desktop publishing, and the

Internet. These are tools that professional use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The impacts of computers on sociological aspects of the
human condition has drawn much attention. Jastrow tried to
address the growth of computing power and relate this growth
to human evolution (1987, pp. 512-513) by pointing out that
computers are part of many jobs, if not all. Computers
monitor our financial activities, provide diagnoses and
treatments, guide missiles, print payroll checks; the list
goes on and on. Information is being exchanged
electronically around the world at an astonishing speed.
People have the opportunity to be more "informed" than at
any time in history. The future may, indeed, consist of
symbiotic relationship where computers minister to human's
social and economic needs.

Besides speed and storage, computers are acquiring more
and more human capabilities such as speech and virtual
reality, or other simulation-related advances. The
technology of computing is moving so fast that the present
way of doing computing such as the using a keyboard could be
rapidly becoming obsoclete (Kahn, 1996, p. 49). As userxr-
computer communication becomes more natural, some people
find, especially the “MTV generation,” computers so
interesting and stimulating that they prefer the company of

computers over human (Saffo, 1994, pp. 16-17).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Living with the good provided by computers also means
living with the dangers created by them. Like any major
innovation, computers are not without problems. Computer
game addiction, electronic embezzlements, as well as relying
too much on computers are some of the hazards of living with
them.

The trust society places in computers should be
alarming. It is one thing to rely on a computer to add up
scores for the Miss America Pageant, but trusting a computer
to decide cases in "the computer court” is another (Gersting
& Gemgnani, 1988, pp. 270-271).

With both this good and the bad characteristics,
computers are everywhere, and their use is increasing.
Regardless of the potential harms of computers, they can no
doubt help in every imaginable way, and are stimulating
diverse changes in society. For example, to compete with MTV
on a fair playing field, teachers from K-12 have started
using digitized motion video in the classroom (Mageau,
1990, p. 27). The Internet has already become an
indispensable learning tool because it is such a massive
information delivery vehicle (Parker, 1996, p. TSW 1-11).

It is obvious that they are unavoidable and play an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

important role in daily life. Consequently, people ought to

know more about them.

Computer Programming

For a computer to function, it must have its
hardware and software working properly. While hardware
refers to physical devices, software consists of the non-
physical parts or programs. Programs are step by step
instructions that direct the computer to do the tasks
desired by the operator and to produce the desired results.

Programming, the writing of software, is a process
which programs are designed, written, and tested. It was
once considered an art, sometimes a dark art, which was
understood only by a brilliant few who took great pride in
their craft and which others could not comprehend. However,
as one of the most famous computer scientists wrote as the
first statement of his seven-volume series, entitled The Art
of Computer Programming,

The process of preparing programs for a digital

computer is especially attractive, not only

because it can be economically and scientifically

rewarding, but also because it can be an aesthetic

experience much like composing poetry or music.
(Knuth, 1973, p. v)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

]

Though his books became the “bibles” of computer
science the art of programming has migrated, through the
ongoing revolution of computing, into a mixture of art,
craft, and science in the 1980's (Starkey & Ross, 1984, p.
1) . The revolution continues and so does the debate of what
computer science is. As far back as 1971, Weinberg pointed
out that software should be developed according to the ego-
less programming paradigm (pp. 47-65). It was suggested
that programs should be developed according to standardized
methods that are understandable to keep “artist” from
developing “in-maintainable” programs. Weinberg even went
as far as describing programming as a “social activity”
(1971, pp. 67-93). Nevertheless, even in the design stages
today, there are numerous methods, both simple and
sophisticated, to describe a solution. Methods range from
the traditional flow-charts to the formal and mathematical
description of Z-method (Abrial, 1980), and
Class/Responsibilities/Collaborators (CRC) Cards (Booch,
1994, p. 159, pp. 237-239, Lorenz, 1993, p. 118) in object
oriented programming. Compared to the early days,
programming takes a very different approach today (Dijkstra,
1980, pp. 571-572). New methods still come up constantly.

As the 1989 report of the Association for Computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
Machinery (ACM) Education Board asked, "Is computer science
a science? An engineering discipline?" (p. 9). Even the
Institute of Electrical and Electronic Engineers (IEEE) is
having more and more influence on computer science
curriculum. The close association between these two is
demonstrated by the fact that more than 35 universities with
computer science programs recently added a software
engineering program in the United States (Gibbs, 1989, pp.
601-604) , and most of them still have strong ties with their
respective computer science program.

Programming is a major part of computer science or
software engineering. The most common introductory course
in the computer science and software engineering curricula
is programming (p. 9). It is true that computer science
encompasses far more than programming, and yet every
computing major should achieve competence in it (p. 11).

Basic elements of learning how to program includes, at
least, the learning of a programming language and problem-
solving skills in computing. Designing, implementing,
testing, and maintaining a program are all activities in
programming. Thus, computer programming is a continuous
process in which problem or problems are solved through some

systematic steps. The steps are usually referred to as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
“software life cycle.” The programming language is used

solely in the implementation step of the cycle.

An Introductory Course in Computer Science

CS 1, Computer Programming I, introduced by ACM
Curriculum Committee (ACM, 1978) is a generic course for
introduction to computer science in most colleges. It
covers both problem solving in computing and at least one
high-level language. A high-level language in computing
refers to a programming language which resembles natural
languages while a low-level language refers to a programming
language which is close to machine codes, i.e. 1's and 0's.
Problem solving skills in CS 1 are the development of simple
algorithms which are step by step solutions to problems. A
good algorithm described in pseudolanguage program (Starkey
& Ross, 1984, pp. 41-43) can be easily translated into a
high-level language. Students are expected to study
existing algorithms as well as develop their own. They then
implement the algorithms into a tarxget language.

Although the first electronic computer was introduced
over 40 years ago, most computer science departments were
founded only in the last 20 years. A computer science

department usually emerged from a mathematics department,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
and many are still part of a mathematics department. Once
in a while, a computer science program is offered through
the college of engineering or business.

CS 1 has gone through major changes in both the
languages used and the concepts covered in the last 18 years
since the first comprehensive guideline from ACM. However,
one thing which has remained quite constant is the historic
tie between mathematics and computer science. As a result,
courses in computer science are taught very much like
mathematics. Instructors lecturing and students taking note
passively are common scenes in computer science courses.

Despite this historic linkage, a fundamental separation
between computer science and mathematics is inevitable at
least in ideoclogy because "curriculum needs often stem from
the nature of the content itself"” (Conti & Fellenz, 1991, p.
21) . Furthermore, "teachers who do not vary their
strategies according to the content will fail to stimulate
the participants sufficiently to achieve their teaching
goals" (Seaman & Fellenz, 1988, p. 15). Even some
mathematics professors are using packages like Mathematica
or Maple to better the learning of different mathematical

concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Owing to the practical aspects of computer science as
well as the inadequacy of the "traditional” lectures and the
availability of hardware, more and more educators are
examining the emerging idea of "closed laboratories" which
are often used in the teaching of physics as a method of
teaching computer science. Indeed, 53% of computer science
instructors in 4-year programs favored more supervised
laboratories (closed labs) with computer science students as
in the "physics model" (Dey & Mand, 1992, p. 13). Only 12%
of them remained happy with the "mathematics model" which
has been dominant in many computer science departments.

"Closed labs" are scheduled and supervised laboratory
learning experience. Students are captive as in lectures,
and they are expected to perform some tasks in the lab. Lab
reports may also be required. On the other hand, "open
labs" are unscheduled and unsupervised. Until recently,
they were just called programming assignments.

Physics, chemistry, and most engineering fields have
been running their laboratories for decades to provide
hands-on experience, to promote critical observation skills,
to encourage interactions among students in a controlled
environment, to get familiar with equipment similar to those

in the real world, and ultimately to enhance learning.

|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
Computer science, on the other hand, is a very young field
which goes through major changes almost annually. However,
one trend that most computing educators agree on is the
increase utilization of laboratories.

Some of the pioneers who utilize labs in computing
believe that they are not achieving the full potential of
laboratory experience:

Lab assignments are not designed to allow

students to discover important principles of

computing. Thus, students receive training

in program implementation rather than in the

process of experimentation, discovery and

evaluation which is more typical of advanced

work in computing. (Tucker & Garnick, 1991,

p. 46)
Though more and more schools have incorporated their
introductory course with a laboratory component, little is
known about how learning is enhanced by this classroom
component. However, Thweatt pointed out that closed lad “make
a positive difference” in examination scores (1994, pp. 80-
82) .

A new paradigm is emerging for education practitioners
in computer science knowledge and skills (Denning, 1992, p.
83) . The current model of education can be criticized

because it treats "learning as acquisition of knowledge, and

as an individual process" (p. 85). The "shifts in clearing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
of education" (p. 85) should treat learning as a social
process and competence should be demonstrated in action (p.
85). Instructors should not just be presenters or providers
of instructional services, they can be coaches, guides, and
facilitator (Brookfield, 1986, pp. 123-146; Denning, 1992,
Pp- 86-89). In fact, new approaches such as breadth first
(Paxton, Ross, & Starkey, 1994, pp. 1-5), and software
engineering (Leonard, 1991, p. 23) are being tried in various

settings.

Montana Tech's Computer Science Program

Montana Tech is a small engineering college with a good
regional and international reputation especially in mining
and petroleum engineering. The use of laboratory in a
programming course is consistent with Montana Tech'’s
pragmatic hands-on approach in its other engineering
programs.

The Computer Science Department at Montana Tech was
founded in 1980 by a group of mathematicians with little or
no industrial and computing experience. It was modeled after
other computer science departments in that era. The design
of the program reflects an assumption in the department was

that anyone with a doctorate in mathematics can teach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
anything. The situation at Montana Tech is far from unique.
Most computer science departments had and still have strong
ties with their local mathematics departments.

The computer science curriculum at Montana Tech was
loosely based on Curriculum 78 (ACM, 1978). It was like a
science degree with two emphases; one was in computer science
and the other was in mathematics. Out of the 13 faculty
members in the department of mathematics and computer
science, ll were mathematicians, 1 was a computer scientist,
and 1 was an engineer. Owing to the necessity of getting
accreditation by Computer Science Accreditation Board (CSAB),
two major over-hauls have been done since 1993. One of the
major changes was the introduction of computer laboratories

in programming classes.

The CS 1 Course at Montana Tech

CS 210 Introduction to Computer Science I at Montana
Tech is equivalent to CS 1 described in Curriculum 78 (pp.
60-63) . CS 1 at Montana Tech has been a traditional three-
credit course that had three 50-minute lectures a week
traditionally at Montana Tech. It has been modified to two
SO-minute lectures plus the 3-hour closed laboratories each

week. There are other major modifications to the computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
science program at Montana Tech unrelated to this lab
concept.

The first language taught has been Pascal since the
birth of the computer science department at Montana Tech in
1981. However, this has been changed to the language C. This
language chosen for Tech's CS 1 courses because the language
C is the language of choice in the "real-world." It started
to be the first language introduced to students in the Autumn
of 1992. It is by no means the most teachable language, nor
the most popular language for CS 1. Only 14% of 4-year
colleges cover the language C at all (Dey & Mand, 1992, p.
11). In addition, less than 1% of the universities and 4-
year college surveyed use C as their introduction language
(p. 10). Tech is in a unique situation.

Although the lab idea was first introduced by the
Association for Computing Machinery in 1979, the
implementation of the concept did not catch on due to reasons
like availability of machines and to some extent the tie with
mathematics. Thus, the practice of laboratory
experimentation is relatively new, and there are not many lab
books on the market. Currently, there are no studies in
published form on what works and what does not from students'

point of view. Though Curricula 91 (ACM/IEEE-CS, 1991)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
suggests that the use if closed lab is a good idea, it falls
short of providing a concrete guideline. Some scientists even
go as far as suggesting that computer science is not a
science but an engineering discipline.

Although about 45% of the CS 1 students at Montana Tech
are computer science majors, less than 60% of them move on to
CS 2. Eventually, only 28% of the original group graduate
each year. Considering that about the same number of students
transfer into and out of the computer science program every
year, the retention rate in computer science is extremely
low. In CS 1, approximately over 40% of students are lost,
and from CS 2 to their second year, 40% of the remaining

students drop out of the program.

The New Laboratory in CS 1l

Because of the trends in the field and in orxrder to
address this retention problem, closed labs were introduced
as a requirement for CS 1 in the Autumn of 1996. Each lab
session is 3 hour long. Lab activities have been used at
Montana Tech in the computer literacy course to demonstrate
the use of computer packages such as Microsoft Word and
Excel. Laboratory activities in CS 1 included experimenting

with short programs written for students to execute in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
lab as well as programs that students will produce. The
activities can be divided into three stages of cognitive
processes of (a) Record and Explain where students will
record the results and report any expected and unexpected
phencmenon, (b) Experiment and Discover where students are
asked to modify working or semi-working programs to
investigate concepts learned in the lectures, and (c) Design
and Justify where students are also asked to design
algorithms from scratch. Students are required to include
design, analysis, implementation, and testing in their
reports. All 3 activities require a write-up. The write-ups
are design for students to demonstrate the application of
concepts they learn in the lab by reflection. The write-ups
are done within the 3 hour lab period. All documents,
including design, programs, and write-ups, are turned in at
the end of each lab.

There are usually about 160 students in CS 1. They are
divided into two to three sections in both the lectures and
the laboratories. With around 55 students in each lab., 30
machines are needed to anticipate the inevitable "down-time"
even if students are organized in learning teams. The
laboratory is set up in a room with 30 personal computers

arranged in two circles. The two circles are layered in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
which the inner circle has its computers on regular tables
and the outer circle has its computers on drafting tables
which are higher than the standard tables. The arrangement
is designed for easy obserxvation by the instructor. By
standing in the center of the circles, the instructor can
watch all screens without moving or disturbing the students.
By walking around the outside circle, the instructor can
observe all other laboratory activities like interactions
between partners and can look at the frustrations on

students' faces.

Problem

Computer science as a discipline has always been based
on the "mathematics model." However, the computing field has
matured sufficiently to have its own model as a separate
discipline. There are positive changes emerging as computer
science develops its own paradigm, and one of those being
promoted is "closed labs.” It is assumed that the added
contact-hours in a structured laboratory setting will benefit
students by leading to better learning. Montana Tech has
implemented closed labs in its introductory computer science
program. However, little is known about how students actually

leaxn in the new setting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17
Purpose
The purpose of this study was to describe how students
learn problem solving skills and the syntax and the semantics

of the language C in a closed computer laboratory.

Research Questions

The following general gquestions were used to explore
how students learn in a closed computer laboratory:
1. How does the transfer of concepts from lectures
to labs take place?
2. What learning strategies do students use to
learn syntax and semantics in the language C, and
what are the perxceptions of the result?
3. What are the students' attitudes towarxd
computer science as a result of the lab
experience?
4. Why does the lab work or fail from the
students®' perspective?
Specific questions (see p. 74) were used in the two

rounds of interviews.

Significance of Study

There are several areas that need insights for future

modifications of the newly developed “"closed lab."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Firstly, as more instructors get on the laboratory band-
wagon, it is vital to learn how students interact in a
programming lab. Such information will be helpful for
forming teams of students in the future. If working in teams
hinders learning, then this strategy should be avoided and
replaced by working individually. On the other hand, if a
collaborative learning team proves to be beneficial, the
investigation should go deeper to explore the advantages and
disadvantages of grouping students in different ways such as
with similar or different levels of expertise, with
different ages, with different gender, with different majors.

Secondly, the worthiness of the added contact hours
needs to be explored. At present, microcomputer labs are
used by a wide variety of courses at Montana Tech such as
freshmen writing and mine modeling. With the increasing
demands in the use of microcomputer labs, knowledge is needed
on the learning process in these labs so that informed
discussion can be made concerning the alleviation of this
expensive resource.

Thirdly, it is important for the computer science
department to know how different activities may affect the
learning of different programming topics. For instance, if

the technique "experiment and discover" takes too much time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

for the average student, it is critical to find out if the
technique "record and explain" is adequate in helping
students to better learn about concepts like arrays.

Fourthly, it is also important to know the students'
perceptions of the structured and predetermined activities.
As suggested by ACM (1989), programming is only part of
computer science; the lab component can only be successful if
students find it engaging. Determining students’ attitudes
toward the lab can reflect if the designed activities are
captivating.

Finally, the overall impacts of "closed lab" should be
investigated. Thus, insights related to how the learning

process takes place in the closed labs can be gathered.

Definition of Terms

The following terms will be used in later chapters:
Algorithm: A precise, unambiguous, step-by-step method of
doing a task in a finite amount of time. An algorithm

should be language independent.

Closed Lab: A scheduled and supervised laboratory in which

students are captive and expected to perform some

programming related tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

A Compiler: A translation program that rewrites high level

language instructions into binary instructions or
machine code which are then ready for execution.

A C Compiler: A compiler that translates programs in the

language C into the designated machine code.

Debugging: A process of finding and eliminating errors in a
progzram.

Open Lab: An unscheduled and unsupervised laboratory. Until
recently, an open lab was referred to as a programming
assignment.

Problem solving with the computer: A process from formulating

the algorithm to a computer program running
successfully for the prescribed problem.

Programming Environment: It is the collection of tools used

in the development of software. The collection may
only consist of a file systems, a text editor, and a
compiler (Sebesta, 1996, p. 3)

Pseudocode: It is a sequence of statements that are close to
a programming language, but more English-like, and free
of rigid syntax requirements.

Syntax of a programming language: A set of rules for forming

valid instructions of the language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Semantics: The meaning of statements in programming

languages.

Running of a program: The machine successfully follows the

instructions in the program.

Limitations

Participants in this study were chosen from 3 sections
of freshmen introductory to computer science course. The
language chosen was C. It is possible that students at other
institutes may respond differently to the learning of another

language in the lab.

Delimitations

Participants were chosen for this study for their
major, age, gender, and initial experience in programming.
Majors ranged from computer science to business. Ages ranged

from 14 to 49.

Assumptions

CS 1 labs at Montana Tech are only taught in the fall
semester and the summer semester. CS 1 lab is part of CS 1
the course, and it cannot be taken separately. The
prerequisite of CS 1 is high school algebra. Since there are

less than 15 students in CS 1 each of the last 4 summers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
observations were limited to the fall semester only

Students' participation was voluntarily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

CHAPTER 2

BACKGROUND AND REVIEW OF LITERATURE

History of Computing

Things that compute or simple calculating machines have
been around for millennia. The abacus has been used for
over 4000 years and is still being used in some parts of the
world. Other mechanical arithmetic or algorithmic devices
have been seen throughout history (Kidwell & Crruzzi, 1994,
PP. 13 - 23); for example, Pascaline was the first automatic
mechanical calculator invented by Blaise Pascal in 1642.
Yet, the first large-scale electronic computer ENIAC,
Electronic Numerical Integrator And Computer, was introduced

only 50 years ago.

The Bixth of the Computer

Although they are computers, the abacus and other bead
frames are all completely non-automatic (Moreau, 1984, p.
4). Right before the second World War, John Antanasoff, a
professor at Iowa State University, and Clifford Berry,
Antanasoff’'s assistant, tried to solve the tedious systems
of equations with 29 unknowns and 29 equations. No human,

no matter how focus, could accurately solve problems like

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24
this over and over again. They attempted to design an

electronic digital computer to do the task. Unfortunately,
no one at that time figured out how to represent numbers in
such a machine. Antanasoff eventually avoided the
difficulties of electronically representing numbers in base
10. He picked a voltage 0-2.3 to represent 0 and a voltage
2.3 and above to represent 1. Using this system,
Antanasoff and Berry built a prototype before 1940 and
called it Antanasoff-Berry Computer (ABC). World War II
pushed the need for calculating shell trajectories
accurately for new weapons. Trajectories tables were
produced by teams of women, who were called “computers,” by
performing the calculations by hand. Thus, the earliest
definition of “computer” was “‘one who computes.”

In 1944, the first general-purpose electronic digital
computer, ENIAC (Electronic Numerator, Integrator, Analyzer
and Computer) was finally introduced at the University of
Pennsylvania (p. 35). ENIAC was not completed until 1946
and it could compute a trajectory in 20 seconds. A person
needed 2 days for the same task. However, the machine
cost $500,000 and required 6 full-time technician to keep
it running. ENIAC operators set the machine to solve

problems by plugging in cables and switches. In fact,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

solving new problems at this era meant rewiring the machine
(Kidwell & Ceruzzi, 1994, p. 64).

Until recently, the use of electronic computer has been
very expensive. From ENIAC in 1946 through the first
supercomputer by Cray in 1972, and to all the mainframes in
the 1970's before the first commercial personal computer in
1976, electronic computers could be afforded only by a few.
However, today the $1000 computer with a Pentium chip has
far more computational power than the $500,000 ENIAC.
Computing technologies in hardware have evolved beyond most
pecple's imagination, and software evolves with hardware

every step of the way.

Generations of Lanquages and Hardware
Computers of the 1940's and early 1950's used vacuum

tubes and programming was done in machine language which
consisted of a small set of instructions recognized by and
executed on the intended machines. Machine language was and
still is difficult to use because it is written in binary.
In the binary language which uses the base 2 mathematical
system, everything is represented in 1’s and 0's. For
example, adding the contents of 2 registers requires the

following binary sequence: 0000 1111 0000 0000 0000 0100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26
0000 0111l. By nature, it is the furthest language from the

problems peocple try to solve among all languages. Thus,
assembly languages were developed to enhance the
communication between human and the computer. Assembly
languages can be characterized by the use of mnemonic codes
and symbolic addresses. Programs written in assembly
language are translated to machine language by assemblers,
and then the sequence of instructions can be executed by the
machine. A sample of machine language and the corresponding

assembly language is shown in Figure 1.

Figure 1. Machine and Assembly Languages.

Machine Language Assembly Language
represented using mnemonics
in hexadecimal

03 08 OA BC LOAD RS8, PRICE
03 07 OA BE LOAD R7, TAX

OF 00 08 07 ADD3 RO, RS, R7
ic 00 OB 01 STORE RO, TOTAL

FF 00 00 00 END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
Both programs above simply add the sale tax to the

price of any item. Such an application has undisputed use.
However, both machine languages and assembly languages are
cryptic. Even to experienced programmers, they can be
difficult to undexstand. To make matters worse, they are
also too closely related to the structure of the machine.
Programs written in one machine or assembly language can
only be executed on one particular machine, hence making
portability impossible. "Programming methods in that era
were the most time-consuming and costly road block to the
growth of computing" (Backus, 1976, p. 128). Languages in
this period are usually referred to as low-level languages.
The costs of programming and debugging far exceeded the cost
of running a program. These problems sparked the
development of high-level languages.

High-level languages, on the other hand, provides
English-like code. COBOL, Commercial and Business Oriented
Language, and FORTRAN, FORmula TRANslation, were the first
two widely used high-level languages since the late 1950's.
Though high-level languages during this period were
primitive by today's standard because of the lack of high-
level data structures other than arrays, they paved the road

for the evolution of programming languages (Knuth & Pardo,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
1976, pp. 264-266). They are much easier to follow than the

low-level languages. For example, a statement to accomplish
the same task as in figure 1 in COBOL is “assign Total the
value Price plus Tax”; in FORTRAN this could be accomplished
by “Total = Price + Tax.” In the more recent language C, it
would be “Total = Price + Tax;” with the semicolon
terminating the statement.

Words such as assign and value take on special meanings
as the symbols like = and + in FORTRAN and C.

With the introduction of transistors in the late 1950's
and the integrated circuits in the mid-1960's, computers
were able to be made much smaller and cheaper (Moreau, 1984,
PP- 89-92). However, it was the invention of a highly dense
integrated circuits by Intel known as the 4004 chip in 1971
that caused the revolution in the computer industry to
ensure the availability and the affordability of hardware.
The major periods in the evolution of hardware are in Table

1 summarized (Impagliazzo and Nagin 1995, p. 27).

Software followed the lead of hardware. Scores of
high-level languages came out to utilize the development of
new hardware. Three in particular have profound impacts in

the computing industry as well as computer science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
education. BASIC, Pascal, and C all came out in the early

Table 1. Generations of Computer Hardware.

Generations Time Period Principal Events
0 1642 - 1945 Mechanical calculators
1 1945 -1955 Vacuum tubes
2 1955 - 1965 Transistors
3 1965 ~ 1971 Integrated circuits
4 1971 - Present Computer Chips

1970's. BASIC, Beginners All-purpose Symbolic Inst-zuct:i.on
Code, is perhaps the most popular computer language in terms
of the number of users. It is a common first language
introduced to students learning computer programming in high
school. Pascal is the most popular language used in

beginning computer programming course throughout the world

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
(Levy, 1995, p. 21). C, on the other hand, is the language

of choice by software engineers and programmers. Today,
newer languages such as Ada, C++, and Java have been
developed for the fast changing field of computing.
Languages are related in such a way that older languages

help shape newer ones (Sebesta, 1996, p. 37).

The C Programming Language

C is one of the most popular languages among
programmers. Unfortunately, the awkward name of the
language C is because it is the successor of a short-lived
language B which was the successor of BCPL (Basic Combined
Programming Language). The name C does not stand for
anything. C was originally designed and implemented by
Dennis Ritchie in 1972 for the DEC (Digital Equipment
Corporation) PDP-l1ll computer. Thus, C is not a new
language by any means.

“C is a general-purpose programming language which
features economy of expression, modern control flow and
data structures, and a rich set of operators.” (Kernighan &
Ritchie, 1988, p. xi). C was strongly tied with the Unix
operating system because both Kernighan and his colleague

Ritchie worked on both Unix and C at Bell Laboratories. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
is a concise language with only 30 keywords. It is

. flexible, powerful, and well-suited for programming at any
level of abstraction (Friedman, 1991, pp. 374 -375).
Since the 70’s, it has been well-received in many
environments from personal computers to super computers.
Combined with the smallness of the language (Kernighan &
Ricchie, p. xi) and the standarxdization of C by Amercian
Nation Standard Institute (ANSI) made C the most portable
computer programming language. Essentially, C can be used
on any machine because C compilers are available on any
platform from a microcomputer using the Pentium chip to the
most powerful Cray supercomputer.

Although C is a high level language, it is so
expressive and efficient that it replaced assembly language
in many circumstances. As a result, C is the language of
choice for most software engineers and programmers and it
is perhaps the most dominant language in the field of
computing.

On the other hand, C is the not easiest language to
learn. It is also not the best language for beginners
because its flexibility sometimes causes unexpected results
that could be confusing especially for beginners. Some

statements in C could be confusing, redundant, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

frustrating to students. To simply add one to a variable
X, there are several statements that can accomplish the
job:

1.X =X+ 1;

2.X += 1;

3. X++;

4. ++X;

5. fun (&X) ; provided that function fun use one
of the above 4 statements to add 1
to X.

To make matters worse, when statements 3 and 4 are mixed
within other statements, there could be undesirable side

effects. For example, they could create

Y = +4+X;

does not equal to

X = 2;

Y = X++;

In the first case, both X and Y become 3. In the second
case, X becomes 3, and Y remains 2. The position of the ++

decides when the increment of X occurs. There are numerous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

other occasions that make C not the best choice as a first
language. Consequently, very few colleges use C as their

first language (Dey & Mand, 1992, p. 10).

Computing as a Discipline

As the information technology becomes more and more
important socially and economically in every community,
educators have to update the evolving computing discipline
to match the changing needs (Shaw, 1991, p. 9).

"Computation is joining the scientific paradigms of
experimentation and theory"” (p. 17). Computing courses are
now required in almost every major in college. Thus,
changes in the computing curriculum affect majors and non-
majors alike.

Even with all the changes, lab and programming will be
essential parts of the computing curriculum. While lectures
tend to concentrate on theoretical and abstraction
processes, the labs can help students learn and practice the
design, implementation and testing of software. Since
programming languages are regarded as tools for computing
professionals, to teach the use of a tool with hands-on
experiments in the labs seems logical. Some may go as far

as dropping the lectures all together and teach programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
in the labs entirely (Bruce, 1991, p. 30). No matter how

far one goes, labs will remain the fact of life in the field
of computer education for years to come.

Whether a course's concentration is software packages
(e.g. Microsoft Office), programming, or a breadth-first
approach such described by Paxton, Ross, and Starkey (1993,
Pp. 68-72), the lab component is inevitable. For software
developers or traditional computer scientists, Association
for Computing Machinery (1991) recommended 10 subject areas
in computer science: (a) Algorithms and Data Structures; (b)
Architecture; (c) Artificial Intelligence and Robotics; (d)
Database and Information Retrieval; (e) Human-Computer
Communication; (f) Numerical and Symbolic Computation; (g)
Operating Systems; (h) Programming Languages; (i) Software
Methodology and Engineering; (j) Social, Ethical, and
Professional Issues.

For non-majors such as architecture, business,
chemistry, education, and engineering, mere programming
skills may no longer suffice for their specialty.
Nevertheless, taking an introductory course in computer
science opens the possibility for those majors to appreciate
areas of computer science such as artificial intelligence,

data communications, or graphics. As a matter of fact,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

upper division computer science courses are constantly taken

by non-majors.

Laboratory Activities

Laboratories are used to support the learning process
by offering students well-chosen, short, well-paced exercise
(Hartel & Hertzberger, 1995, p. 15). In an introductory
programming course, laboratory activities can be divided
into the three major categories: (a) Record and Explain; (b)

Experiment and Discover; and (c) Design and Justify.

Record and Explain. One of the goals of the lab is to

make the programming concepts studied “operational and
allow students to ascertain that the material is
understood” (p. 15). To achieve such an cbjective,
students are given working programs to run. The results of
the run are recorded. Follow-up questions are then
answered.

This activity can demonstrate the students’
proficiency in the use of the programming environment,
such as with the editor, the compiler, or the network set-
up in the lab. The follow-up questions are designed to
test if the students can relate a particular concept to

the program. Step 1 of the lab in Appendix C demonstrates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

the process of “recording” the result of a program given
to students. All they have to do is to extract the
program from a network drive set-up by the instructor. In
other words, they do not even need to type in the program.
Once the results are recorded, they are asked to relate
the result to a concept related to simple logic. The

result of the program is illustrated in PFigure 4.

Figure 2. The Result of the Program Logical And.

Truth table of logical operation && (and)

0 0 0
0 1 0
b § 0 0
1 1 b §

Students learn from lectures and the text book that 0
means No and that 1 means Yes. In this example, they are
supposed to relate the result of the program to getting a

“‘ham and cheese” sandwich for the instructor. The example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

is a classic way to explain the logical “and” operation.
If a “ham and cheese” sandwich is ordered, they can bring
back four different kinds of sandwich:
1. A sandwich with no ham and no cheese, (e.g. a
roast beef and bacon sandwich).
2. A sandwich with no ham and only cheese, (e.g.
a roast beef and cheese).
3. A sandwich with ham but no cheese, (e.g. a ham
sandwich, or a ham and lettuce sandwich).

4. A sandwich with both ham and cheese.

The object of the lesson is for students to realize
that the four scenarios above correspond to the truth
table. If a ham and cheese sandwich is ordered, the

outcomes can be summarized in figure 5.

Figure 3. Scenarios of a Ham and Cheese Sandwich.

Ham Cheese Sandwich

No No No (not okay)

No Yes No (still not okay)
Yes No No (Still not okay)
Yes Yes Yes (okay)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Students are expected to relate the above activity to

the logical “and” operation.

Experiment and Discover. Experiment and Discover

activities encourage students to be adventurous. Once they
are confident enocugh, they are required to experiment in
order to complete the lab programs. Step 3 in Appendix C
requires students to modify the working program in Step 1.
In oxrder to make it work, they must make 6 modifications.
They must change all logical “and” or logical “or” (i.e.
“&&” to “||” operators). Missing just one will not get the
supposed result as in Figure 6.

Step 4 in the same lab requires even more
experimenting to discover the apparent logic that “not ham
or cheese” is the same as “no ham and no cheese.” In the
process of discovery, students should also realize the
difficulties of printing tables in which all columns align
pexfectly.

Another typical discovery experiment is to encourage
students to associate algorithms that they already know

from real life to computing algorithms. Appendix D is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
lab from Shiflet’'s (1993, pp. 314-315) text. In this lab

exercise, students are asked to guess a number within a

Figure 4. The Result of the Program lLogical Or.

Truth table of logical operation || (or)

0 0 0
0 1 0
b § 0 0
1 1 1

predetermined range, such as from 0 to 1022 which is
generated by a computer program.

First, they are asked to guess from 0, 1, 2, and so on
sequentially in one step. The method is called sequential

search in computer science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40
Then, they are instructed to guess the middle of the

range. The computer program keeps track of the number of
guesses they needed before the number is found. After
every guess, they are told to go higher or lower if the
guess is wrong. This provides “instant feedback to the
students” (Hartel & Hertzbexrger, 1995, p. 15). They are
told to keep the “higher” half or “lower” half and repeat
the same process until the number is found. This time the
algorithm is appropriately called binary search. Most
students actually learned both methods from past experience
or from the TV show “The Price is Right.”

When the range is from 0 to 9, there is little
difference between the performance of the two methods.
However, after they change the range to 0 to 1022, they
realize the superior efficiency of the binary search. 1In
the lab exercise following the experimentation, they are
asked to analyze the two algorithms mathematically. 1If
they cannot perform the analysis, at least the exercise
stimulates experimentation and raises questions for further

discussions (p. 15).

Design _and Justify. The two activities above are

excellent learning approaches in programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Nevertheless, they both lack the promotion of creativity.
Part of programming requires inventiveness within the
boundary of the language syntax and semantics. To foster
such learning, students must demonstrate the ability to
present solutions in an acceptable manner. Flow-charts,
mpl’s (Model Programming Language), and pseudo-codes have
been used by programmers to describe the solution of a
programming problem since the first program was written in
1940’s. Thus, design and justify activities allow students
“to concentrate on programming rather than the distracting
details” (Starkey & Ross, 1984, p. xx) of a programming

language.

A systematic approach to problem solving that involves
programming demands four basic steps of analysis, design,
implementation, and testing (Shiflet, 1995, p. 112).

Design and justify activities in the lab are used to “offex
the student the opportunity to discover solutions to
problems” (Hartel & Hertzberger, 1995, p. 15). 1Instant
feedback can be provided to guide students to one of the
solutions as well as to promote creativity to problem
solving (p.15). The justify part helps students to debug

the design of a program to ensure the program logic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

satisfies the requirements, is sound, and covers all
possibilities (Koffman, 1989, p. 95-96)

Appendix E is an example of “design and justify.”
Students are asked to design an algorithm to do the simple
task of figuring out all possible tickets in a lottery in
which 3 balls or numbers are drawn from 10. Students are
given the opportunity to discover or design the solutions

to the problem (Prather, 1992, p. 61).

Computers and Cognition

Technology and Education

Before humans invented reading and writing, pictures
and gestures were used to convey ideas (information).
Pictures later became ideograms. Gestures became sign
language. Educators have been using technology to enhance
teaching and learning for years. Technological changes
have taken many forms, which included the movement from an
overhead projector to a computerized grade book system,
from radio to television, and from personal computer to the
Internet, “We have new tools for learning and teaching
which change how our minds work” (White, 1988, p. 6).

In 1813, Thomas Jefferson envisioned that “‘books will

soon be ocbsolete in the school” (quoted by Cuban, 1986, p.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
11). Today, the whole library of Congress’ English-

language holdings can be stored on three 4.75-inch compact
discs. CD-ROM (Compact Disc Read Only Memory) provides the
ability to give teachers and students random access to
thousands of visuals in milli-seconds. It also allows
users to explore enormous amount of textual data. As
Mageau (1990) predicted, today digitized motion video is
almost as common as video tapes (p. 28).

Today, computer networks provide educational
institutions electronic mail systems as well as the
abilities to share information and resources through
various wide area networks. The prophecy that
“telecommunications one day soon may become an
indispensable learning tool in U.S. classrooms” (p. 29) is
already a reality.

Multi-media is the one of the few new lingo that
pexrfectly describes its meaning. Multi-media provides
sensational stimulants that integrate text, audio,
graphics, still images and moving pictures into a single,
computer-controlled product. Together with desk-top
publishing, reading definitely is taking on a whole new

meaning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
Computers in Education

The earliest electronic computers were installed in
colleges approximately S0 years ago. They were initially
used to solve multiple unknowns in equations or perform
other intensive calculations. Since John Kennedy developed
the BASIC language at Dartmouth College, computers and
higher education became even more inseparable. Learning
about the use of the micro-computer and its software
packages is required in almost every college degree
program. Computers can even replace physical instruments
in a chemistry lab (Ivey, 1992, pp. 4-8). Simulation
programs can be used to conduct experiments that may be too
dangerocus or expensive to perform (Parker, 1996, p. 14-17).
As computers get into every facet of life, they remain
instrumental in education.

Computer Assisted Instruction (CAI) helps students
learn at their own pace. The drill and practice set up in
the “remedial mode” is especially helpful in high school
algebra if the purpose is to help student increase math
scores in their Scholastic Aptitude Test (SAT). Though
adult educators might argue that students using CAI are too
passive in directing their own learning (Knowles, 1980, p.

48) , the potenital of computers in education is only in its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
early stages (Parker, 1996, p. 7).

Adult Learners in Computer Science

"Changing demographics is a social reality shaping the
provision of learning in contemporary American society."
(Mexrriam & Caffarella, 1991, p. 6) America is becoming a
nation of adults. It is estimated that by the year 2000,
the largest age group will be 30 to 44 year olds (Cross
1981, p. 3). With the large age group in their so-called
"most productivity years" and with the average American
making between 5 to 10 job changes in a lifetime,
continuing professional education is becoming more and more
critical. 1In order to be competitive in the world-wide
market, re-training of the United States workforce is
inevitable. "Lifelong learning is essential to
professional productivity, individual potential, and
international competitiveness" (Anderson 1991, p. 17).

More and more college students have adult responsibilities.
Many of them have a full-time job and take classes after
work. Some adults enroll in the computer science program
to pursuit their first degree. Some return to college to
retrain themselves in a field which changes as fast as

one’s imagination. Other adults return after losing their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46
job; as in the computer science program at Montana Tech,

this included petroleum engineers and high school teachers.
"Lifelong learning is not a privilege or a right; it is
simply a necessity for anyone, young or old, who must live
with the escalating pace of change: in family, on the job,
in the community, and in the world-wide society” (Cross
1981, p. ix).

The computing experience that adults bring to the
learning situation sometimes is the opposite of the common
wisdom. The "andragogical model assumes that adults enter
into an educational activity with both a greater volume and
a different quality of experience from youth" (Knowles,
1980, p. 10). Computer science is usually the opposite.
For example, in an infromal study at Montana Tech (see
Appendix A), the two youngest students (age 14 and 16) in a
C class had far more experience than the two oldest (age 44
and 45). This is actually quite a typical phenomenon in
computer science classes.

Adults are motivated to learn after they experience a
need in their life situation, and they enter an educational
activity with life-centered, task-centered, or problem-
centered orientation to learning (Knowles, 1980, pp. 78-

95). Thus, adult learning activities should be organized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
around their needs regardless of the subject. Both

teachers and students share the responsibility of learning,
course developmsnt, and even ocutcome evaluation. With more
and more adults in the field of computing, adult learners

provide instructors a new challenge.

Educational Objectives

To design effective learning activities, one must
explore the learning sequence students use in the learning
process. The cognitive domain presented in Bloom’s
taxonomy (1956) can be summarized in 6 levels. Steinaker
(1975, p. 15) identified 5 levels in the experiential
domain which matches the lab activities in the computer

science laboratory.

Figure 5. Bloom’s Classification of Educational

Objectives.
Cognitive Domain
Level

I Knowledge

I Comprehension
III Application
Iv Analysis

v Synthesis

v Evaluation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
Figure 6. Steinaker’s Classifications of the Experiential

Domain.

Level Experiential Domain
1 Exposure (Comprehension)
2 Participation (Application)
3 Identification (Involvement)
4 Internalization (Adoption)
5 Dissemination (Commitment)

The typical classroom set-up with the traditional one-
way transmission (Knowles, 1984, p. 15), most learners
could hardly reach level 3. On the other hand, learning
the syntax of a programming language can be viewed as
knowledge based process (Winograd, 1983, pp. 2-29) which
may only involve levels 1, 2, and 3.

In order to design a solution of a problem, students
must be asked to interact with situations that are
realistic, open-ended, complex, and largely un-structured.
This encourages students to disseminate different concepts
into a computer program. It requires the application of
principles, the very top of Gagne’s learning hierarchy.

(1965)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
The partnering in the computer laboratory can be

loosely coupled or as elaborate than cocperative learning
(Brown & Palincsar, 1989, pp. 397-408). Student-student
interaction can be structured in three ways: competitively,
individualistically, and cooperatively (Johnson, Johnson, &
Smith, 1991, p. 2). Students should not be graded against
one another on a norm-referenced basis and should be
encouraged to work together to accomplished shared goals in
the lab (pp. 2-3). The process then encourages
interpersonal communications. Thus, besides problem
solving skills, laboratory can enhance a large inventory of
skills and attributes that are valued in computing
education as by-products: communicative, organizational,
leadership, and planning skills on top of the assumed
computational (programming) skills (Harrisberger,
Heydinger, Seeley, & Talburxtt, 1976, pp. 3-14).

The teacher’s role in the laboratory learning changes
quite naturally from “instructoxr” to
“supervisor/consultant” or “facilitator of learning”
(Knowles, 1984, p. 14). Only demonstrations of technical
material should be given in the early part of each
laboratory period (Tucker, Bernat, Bradley, Cupper, &

Scragg, 1995, p. x).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
Figure 7. Gagne’s Learning Hierarchy.

Problem
Solving

Principles

Classification \

Behavior Chains \

Discrimination \

Association \
Response \

Model of Instructions: Andragogy and Pedagogy

Andragogy is derived from the Greek word aner which
means man, and pedagogy is derived from paid which means
child (Darkenwald & Merriam, 1982, p.13). Both word refer
to the art and science of helping learners’ learn, and the
learners just differ in age or “the self concept of being

responsible for one’'s own life” (Knowles, 1984, p. 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
The pedagogical model has dominated all of education

since school started being organized in the seventh century
(p. 8). The andragogical model has been one of the
theories to unify the field of adult education (Merriam &
Caffarella, 1991, p. 249). The difference in their
assumptions can be summarized in Table 2 (Knowles, 1984,

pPP. 8-12).

Table 2. Assumptions of the Andragogical and Pedagogical

models.
Learner Pedagogical model Andragogical model
self-concept dependent self-directed
experience little value great source for
learning
readiness age need to know
orientation subject-centered task/problem centered
motivation external mostly internal

There are obvious implications for the program design
of the 2 models. The basic format of the pedagogical model

is content plan while in the adragogical model is process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design (pp. 13-14).

52

Table 3 (pp. 13-20).

The difference can be summarized in

Table 3. Program Design for the Pedagogical model and the
Andragogical model.

Element

Pedagogical model

Andragogical model

climate

setting

planning

diagonsing

need

learning

objectives

Sequence of

learning

evaluation

competitve,

formal

by teacherx

by teacher

by teacher

by teacher

by teacher

collabrative,

informal

by both facilitator and

learner

by both facilitator and

learner

by both facilitator and

learner

by individual learner

by both facilitator and

learnerxr

Though Knowles suggested that pedagogy should be

replaced by andragogy for both children and adults

(Knowles, 1978, p. 53) and the 2 models seem to stand at

Reproduced with permission o

f the copyright owner. Further reproduction prohibited without permission.

53
the 2 opposite corners, “the pedagogical and andragogical

model as parallel, not antithetical” (Knowles, 1984, p.
12). Thus, the 2 models can work together as the

continuity of human development.

Laboratory Learning

“Learning is a term with more meanings than there are
theories” (Brown & Palincsar, 1989, p. 394). Various
educators view learning differently. For example, Horton
(Adam, 1975, pp. 205 - 206; Moyers, 1990) and Freire (1973)
relate learning to social movements and changes. Socrates
(Grube, 1976, pp. 1-32), on the other hand, asked students
a series of questions so that they could search within
themselves. To Dewey (1938), learning was fundamental to
growth and democracy. Skinner (1974) maintained that
learning is crucial for a species and its survival (pp.
205). Maslow (1954) argued that it is the process of self-
actualization (pp. 203-208) and Rogers (1996) felt it
promotes fully-functional individuals (p. 288). Despite
the many views concerning learning, many of those teaching
in computer science laboratories support Gagne’'s (1965)
view of learning as “problem solving” by applying

programming principles in the computer laboratory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Experiential learning or learning by doing has been a
fundamental concept in education for centuries. The
master—-apprentice approach has been utilized since the time
of the Greeks. The laboratory has always been regarded as
a necessary component of the educational process. In basic
sciences, laboratory exercises are as old as the fields
themselves. Though computer science is a very young field,
there is an increasing emphasis in computer science
education on hands-on programming exercises and internships
before graduation. In computer science, project activities
are common among old and new curricula. Laboratory
learning, a subset of experiential learning (Knowles, 1984,
PP. 417-420), is just a project activity conducted in
smaller scale but a more structured manner.

The use of the laboratory as an instructional method
was first introduced in ACM Curriculum 78 (p. 63). It has,
however, not been fully exploited in practice even though
other fields have shown clear benefits in terms of

learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

METHODOLOGY
This descriptive study utilized a naturalistic case
study design. Both quantitative and qualitative data were
collected to obtain information from participants in the
beginning and at the end of the study. Interviews with
students were conducted in the middle of the Fall semester

of 1996 and again at the end of the same semester.

Naturalistic Inquiry

Though the application of naturalistic inquiry may be
relatively new to educational research, it has been used by
anthropologists for years. As a matter of fact, it is often
referred to as the anthropological approach. Its recent
growth in both interests and acceptance is quite natural and
good for educational research.

Until the recent emerxgence of the theory of chaos,
mathematicians and physicists tended to think that there
exists a formula or a set of formulae to describe or predict
any phenomenon (Gleick, 1984, pp. 7-8). If the description
or prediction is not exact as in weather prediction, the
problem must stem from the fallacy of the formulae. The
quest for one truth characterizes the tradition in which

rationalistic inquiry was formed. The basic belief of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
rationalistic inquiry is the fact that there is one

objective reality. A rationalistic inquirer's job is to
uncover the truth which can be described mathematically, and
thus the situation can be predicted and replicated (Huck,
Comer, & Bonds, 1974, p. 11).

Rationalistic inquirers have been called logical
positivists who seek facts and causes of social phenomenon
with little regard for the status of individuals being
studied. To a rationalistic inquirer, research is an
objective quest for replicable findings (pp. 369-371). The
purpose of the research is to test a hypothesis or verify a
theory in order to generalize or to infer (McClave, 1986,
PP. 2-4).

A naturalistic inquiry(NI) researcher, on the other
hand, is interested in describing and understanding a
phenomenon from the subject's own frame of reference. NI
researchers believe there exist multiple realities. Thus,
NI researchers are sometimes called phenomenoclogists. The
main purpose of NI is the discovery of phenomena. (Bogdan &
Tayloxr, 1975, Chapter 1)

The setting in which research is performed differs
between naturalistic inquiry and the rationalistic inquiry
(RI) paradigms. RI is best achieved in a laboratory setting

or behind the "non-existing one-way glass" to insure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57
objectivity. RI considers the world as composed of

variables. By manipulating the predefined independent
variables, the researcher investigates the effects on
dependent variables which is predefined. Thus, in a typical
rationalistic inquiry, the researcher identifies all
independent and dependent variables of interest and then
randomizes the selection of samples in order to measure the
effects and to reach a conclusion. The key is to use
laboratory control if possible. When laboratory control is
not possible, statistical manipulation is employed.

Since NI is more concerned with description or
understanding of phenomena, checking of the discovery is
done through "triangulation” in which one source is tested
against another until the researcher is satisfied that the
interpretation is valid (Guba, 1978, p. 13). Thus,

It is important to provide multiple data source

and methods of collection. It is also important

to describe techniques that were used to check and

validate analyses as the research proceeded.

(Owen, 1982, p. 13)

Owing to the difference in philosophy in the two
paradigms, data collection techniques are approached
differently. RI tends to favor survey instruments. Random

sampling is preferred. The approach is structured. The

design is fixed. (Devore & Peck, 1986, pp. 233-246)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
NI researchers use interviews and observations to

collect data. The sampling technique is that of purposeful
sampling. The approach is exploratory. The design is
flexible or at least incomplete because “the design emerges
as the investigation proceeds” and “it is in constant flux
as new information is gained and new insight is formed”
(Guba, 1978, pp. 13-14).

At the end of a rationalistic study, there is usually a
detailed report with figures and charts. The hypothesis is
either affirmed or disproved based upon the data gathered
and analyzed statistically (Huck, Comer, & Bonds, 1974, p.
365) . The effect of independent variables on dependent
variables is discussed. Depending on the statistical method
chosen, confidence-level and confidence interval may be
included. With the help of a computer, complicated
statistical relationships can easily be obtained.

In naturalistic inquiry, relevant information which has
been collected is described. Reseazch descriptions tend to
be “thick and rich” because they are filled with quotes,
anecdotes, and personzl stories. The NI researcher often
consider gestures, language, and behavioral patterns of the
subjects as significant descriptive data (Guba, 1978, p. 7).
The investigator may then conceptualize issues by deriving

categories that fit the information collected. While data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
collection in a rationalistic study ends when the researcher

has collected a predetermined amount of data, naturalistic
studies do not have these clear deadlines. Instead, there
are at least four ways which guide the researcher in
terminating the collecting process of the research.
Exhaustion of socurces, saturation, emergence of regularity,
and overextension are used to detect if there are no new
situations, or same pieces of information are recurring, or
the area feels integrated (Guba, 1978, pp. 60 - 61). This
process seeks to reach an in-depth understanding of the
situation. Though theories are not proved, they may emerge
and be proposed for further exploration. While RI
researchers are reductionists, NI researchers are

expansionists.

Case Studies

A case study is an in-depth and systematic
investigation of an individual, a group, an institution, a
process, a social group, or a phencmenon (Gay, 1992, pp.
235-236; Mexrriam, 1988, p. 16). It “seeks holistic
description and explanation” (Merriam, 1988, p. 16). 1In
short, a case study examines an instance in action. It
focuses on one particular phenomenon. It produces “thick”

description of that phenocmenon to illuminate the reader’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
understanding of such phenomenon (pp. 11-13). Thus,

“‘generalization, concepts, or hypotheses emerge from an
examination of data” (p. 13).

Unlike the rationalistic inquiry in which variables are
manipulated, the researcher needs little control in a case
study. It is because the research questions in case studies
are “how” and “why” (p. 9). Furthermore, the case study
deals with “a bounded system” (Stake, 1988, p.255). The
researcher, who observes behavior in its natural setting, is
the primary instrument for data collection and analysis.

The qualitative case study can be defined as
intensive, holistic description and analysis of a
single entity phenocmenon, or social unit. Case
studies are particularistic, descriptive, and
heuristic and rely heavily on inductive reasoning
in handling multiple data sources (Merriam, 1988,
pP. 16).
Thus, a qualitative case study uses all methods of data as
diverse as testing and interviewing (p. 10) to report
findings or reveal properties to discover new meaning and to
extend a reader’s understanding of a situation in a
comprehensive and expansive report.

The naturalistic case study was chosen for this study

because the lab set up in the computer science department at

Montana Tech is new and unique and because the focus of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
study is to discover what works and why for students in this

learning process and to explain the relationships between
different factors. Moreover, this situation was unique
because no one at Montana Tech had done lab learning like
this study and similar situations are not reported in the
literature. It is impossible to predict all independent
variables and dependent variables as in a traditional
rationalistic study without overlooking valuable unforeseen
information. These labs are systems. The study sought to
understand the experience of students in the newly designed
labs in the introductory computer science course. Thus, a
naturalistic case study was chosen. However, some
traditional quantitative tools were used to gather student
information to aid this study. This investigation was done
by processes of cross-checking, triangulation, and re-

cycling until convergence was achieved (Guba, 1978, p. 13).

Research Population

Participants in this research project were all 3 lab
sections of students in the course CS 210 Introductory to
Computer Science I. The course consists of two l-hour
lectures and a 3-hour lab. Most students come from several
majors: Computer Science, Engineering Science, and Business.

There were 155 students in the three sections. Of these,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
134 students participated in the Beginning-of-semester

Survey. The age range was from 14 to 45 with 53% youngex
than 20, 23% in the range from 21 to 24, and 24% older than
25. The mean age was 20.5, and the median was 19. There
were 47% freshmen, 35% sophomores, 9% juniors, 9% seniors,
and less than 1% graduate students. Most (84%) took the

course because it was required. Almost 55%

Table 4. Profiles of Students.

Variable Numbexr Percentage
of Students

Major
computer Science 54 40
engineering science 36 26
business 24 18
others 20 15
Total 134 99

Year in School

freshman 63 47
sophomore 47 35
junioz 12 9
seniorxr 12 9
graduate 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63
Table 4. Profiles of Students--Continued.

Variable Number Percentage
of Students
Age
14 1 .78
16 2 1.49
17 1 .75
18 32 23.88
19 36 26.86
20 10 7.46
21 10 T.46
22 2 1.49
23 5 3.73
24 7 5.22
25 4 2.98
27 S 3.73
28 8 5.97
30 1 .75
31 1 .75
32 2 1.49
33 1 .75
34 1 .75
38 1 .75
40 1l .75
44 2 1.49
45 b § .75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
Table 4. Profiles of Students--Continued.

Variable Numbexr Percentage
of Students

Programming Experience

Yes 72 54
Yes (in the language C) 12 S
No 62 46
Gendex
male 92 69
female 42 31

of the group had programming experience. However, only 9%
had used C before taking the course. The gender ratio was
more than 2 males to 1 female. Only 31% were female
students. Surprisingly, only 3 (2%) students out of 134
surveyed had never used a computer before this course; 66

(49%) owned a personal computer.

Procedures

The laboratories in which data were gathered had been
set up physically prior to this study. The Turbo C compiler
had alsoc been chosen for the lab although VAX C, Visual C++
and Borland C/C++ were also available in the lab. VAX C,
Visual C++, and Borland C/C++ are programs to convert the

programs written by the students in C to machine code so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65
student programs can be executed and cbserved. Different

compilers provide different programming environments in terms
of editing and debugging (finding syntax and logic mistakes)
programs .

The situation at Montana Tech was unique. First of
all, even though the language C is an unpopular beginning
language, it was the language used in this course because C
was the most used language in the industry. Secondly, the
ACM Curriculum Committee recommended a 2-hour lab for a 3-
credit CS 1 course (ACM, 1979, p. 63), yet a 3-hour lab was
chosen for Montana Tech's CS 1 and this study because
students were asked to turn in their lab reports at the end
of each lab instead of the following day. Since this study
sought to discover how learning is enhanced in a computer
lab, a qualitative case study (Merriam, 1988) with direct
observation and systematic intexviews was used.

Pre~study assessment (see Appendix A) was given to all
students. Based on the pre-study survey and the first several
lab observations, 21 students were chosen for in-depth
interviews. At least two interxviews per student were
conducted during the fall semester. One was in the middle of
the semester, and the other was at the end of the semester.
Post observation assessment (see Appendix B) was also given

to every student in the course at the end of the semester.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66
Observations

Students were cbserved in the labs throughout the Fall
Semester 1996. Notes were taken extensively in every lab to
record student behavior, how students interacted, unforeseen
events, time needed for different activities, students’
reactions towards labs, as well as student approaches to the
different particular learning activities of Record and
Explain, Experiment and Discover, Design and Justify. This
data were related to their age, gender, major, and prior
experience.

The physical setup of the labs was designed to help the
researcher observe as well as student learn. Both the
physical and programming environments are discussed in the

following sections.

The Physical Environment. The physical environment can

pPlay an important part in enhancing learning (Knowles, 1984,
P. 15; Merriam & Caffarella, 1991, pp. 31-32), and it can
“facilitate the acquisition of content by the learners”
(Knowles, 1984, p.14). The physical condition should be
comfortable and conducive to interaction (Knowles, 1986, p.
7).

Montana Tech has two different types of labs:

instructional labs and open labs. Instructional labs are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67
labs where classes are scheduled, and thus can be used in as

“closed-labs”. There were also microcomputer clusters for
students to use as “ocpen-labs.” There were four
instructional labs at Montana Tech. The four instructional
labs were used by all departments for such courses as
computer aided design for engineering departments and
desktop publishing for communication courses. The four labs
have different number of machines and physical
configurations. Of the three lab sections required for CS
1, two labs were scheduled in a lab with 30 machines and a
“circular setup.” The other lab was scheduled in a lab with
25 machines and the traditional layout in which machines
were on 5 long tables in 5 rows facing a white board. Each
table, all of the same height, had five machines. All
observations were done in all three lab sections. However,
the observer could only cbserve one row at a time in the
traditional set up. Figure 8 shows the lab with 25
machines. The lab is approximately 25 feet by 55 feet.
This lab may be referred to a rectangular lab.

The other lab had machines setup in two sets of tables
that formed three quarter circles. The inner circle had 10
machines. They were on small tables of the same height.

The outer circle had 20 machines on drafting tables about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8. The Layout of the Rectangular Lab.

o>
(White Board)

S00HOW

55’

Instructor’s Computer

4

v

25’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
one foot taller than the tables in the inner circle. Thus,

the observer could stand in the center and observe 15
machines all at once. Another crucial difference of the two
labs is the size of the monitor. All monitors in the
“eircular” lab were large 17” monitors. All other labs at
Montana Tech had only 14” monitors. Even though the details
of each screen might be difficult to make ocut, students’
physical activities and programming activities on the
screens were easily observed on the 17” monitors. This lab
is in a room which was approximately 60 feet by 60 feet.
There was much space between tables and thus machines. This
lab may be referred to as the circular lab.

Both labs also had a projection system to project the
monitor of the instructor’s machine to a large screen. In
the circular lab, the instructor’s monitor and projection
system was located in the open part of the circles so that
every student could see the projection if they turn away
from their monitors. Owing to the position of the screen,
taking notes or trying to use the keyboard when the
instructor was doing the demonstration was difficult in the
circular lab.

The Programming Environment The programming
environment was more confined by the software site-license

on campus than anything else. All machines in the labs had

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Figure 9. The Layout of the Circular Lab.

YYYVYvy

\A A A A 4
. I

Instructor’s
computer

AAAAA

-

60

yYvyvy

W

)L

I

v

&
\

AAAAAA

@ Observer
S: Projection screen
W: white board

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
Windows 3.11 and well-equipped with both Borland C++ and

Turbo C compilers. The Turbo C environment was simple and
easy to use. The Borland C++ environment was very similar
and yet more sophisticated and complex. Since the
programming environment is only one of the many tools in
programming and the purpose of the lab assignments was to
teach students how to program, the Turbo environment was
chosen for its simplicity.

The Turbo environment or IDE (Integrated Development
Environment) provided all standard features to help students
in debugging which was done extensively in the labs. It
provided a simple editor very similar to WordStar. 1Its
debugger allowed users to watch variables change in a
separate window, to set up break points, to examine the
content of variables, and to step through or trace a program
for sequential execution. In short, it had all the
necessary features for program development. Thus, students
were exposed to the debugger early so that they could use
the debugging tools to help them understand the behavior of
a program. However, this compiler did not have the program

animator as in DYNALAB (Birch et al., 1995, pp. 29-33).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72
Teams In every lab, the number of students outnumbered

machines almost two to one. Therefore, students are
organized into teams. Each student had the choice of
working alone, with one partner, or with 2 partners. To
help students, facilitator, and lab assistants get
acquainted, at least 15 minutes were used in the very first
lab to build a climate of friendliness and informality
(Newstrom & Scannel, 1980, pp. 39-41). Teams were formed
by students themselves, and they stayed together for at
least the first 8 weeks. Since most students were freshmen,
most of them did not know other students in the first lab.
Several new teams were formed with the consent of students
after the first round of interviews in the ninth week so
that the researcher could team students up based on age,

gender, and prior experience.

Lab Assistants Lab assistants are very common in most
lab situations. Each lab was assigned two seniors to assist
the instructor, to answer questions, to fix hardware or
network problems, to perform necessary tasks such as
refilling the paper tray of printers. This arrangement
helped the facilitator become the observer without running

around the lab too much.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73
The lab assistants met with the facilitator before and

after each lab. Before the lab, they learned about the
content of the lab and tried to anticipate the different
learning activities and potential problems. After the lab,
they summarized the type of questions asked by the students.
Questions related to their presence and impact were asked in

the interxviews.

Interview Questions

As in the tradition of naturalistic studies, the
participants were purposefully selected for the interviews.
In the age category, students of the following ages were
chosen: 14 (just turned 14 when interviewed and the youngest
in class), 16 (a sophomore in chemistry), 17, 18, 18, 35, 38,
and 45 (the oldest in class). Other students were chosen for
the interview because of their prior experience in
programming or in C in particular. Some were chosen not from
information in the assessment survey but rather observation
data following the first several ocbservations. Students who
always finished labs first or last, students who showed
frustrations in the lab, and students who were eager to help
others were selected.

Each interview was done in the instructor’'s office. 1In
the interview sessions, it was important to put students at

ease. This was especially so for traditional age students

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
ease. This was especially so for traditional age students

and students who were not talkative. In the first interview
session, the instructor and the interviewee got acquainted by
discussing things related to a few unguided questions (e.g.
“Do you like computers?” and “Do you own a computer?”).
Interviewee were also offered chocolate and soft drink to
build a climate of friendliness and informality (Newstrom &
Scannell, 1980, pp. 39-4l1). Most of the interviewees early
talked about their own computer, about why they did not have
one, or about how they were shopping for one and needed
advice. After about 5 minutes, more structured conversations
were organized. To correspond to the research questions (see
P. 17), the following questions were used to direct
discussions with the participants in the first round of
interviews in the middle of the semester:
1. How does the transfer of concepts from lectures
to labs take place?
A. How long do you usually need to complete a
given lab?
How do you usually tackle a lab?
B. How long do you usually spend on the write-up
of the lab repoxt?
How do you get started?

C. How did the labs help you complete the take-home
programming projects?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75
2. What learning strategies do students use to learn

syntax and semantics in the language C, and what are
the perceptions of the result?

A. Did the lab help to clear up the usage of the
following concepts? How?

a. Nested lops

b. Parameter passing: Both by reference and by
value

c. Function calls: void and otherwise

d. Arrays

e. Pointers and addresses

B. How did the lab activities help you remember
or make some sense out of the syntax and
semantics of the language C?

3. What are the students' attitudes toward computer

science as a result of the lab experience?

A. Which features would you like to be added in the
lab? Why?

B. How was our attitude towards programming
influenced by the course of this class?

4. Why does the lab work or fail from the students'

perspective?

A. Which features do you find helpful in a particular
concept? Why? Please give examples of concepts you
learned easily and those you had difficulty with.

B. Did anything in the lab hinder your learning?
Why?

C. Which lab activities were confusing? Why?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
The discussions of the interview sessions were taped

recorded. These were later analyzed to uncover the common
trends of participants' responses. A database was built for
the purpose of understanding and analyzing the data
collected.

Observations and both rounds of interviews coincided
and were not separate phases. The first interview process
started seven weeks into the semester. The process took
three weeks. Observations began the first week and were
continued until the end of the semester for a total of 15
weeks. The second round of interviews with participants was
shorter and was conducted the week before finals week. In
these intexviews, they were also asked what one or two things
they thought would improve the lab in any way. Throughout
the course of the interview process gquestions were omitted
and added because of the response from interxviewees. For
example, since “a shorter lab following each lecture” was a
recurring themes from students, the last few students were
asked what they thought of that idea even though they did not
volunteer that idea. Since some students were asked to change
their partnership situation after the eighth week (e.g.
switch partners, work alone after having a partner, or work

with a partner after working alone), different gquestions were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
asked to different participants. Some of following questions

were asked:

1. How do you feel about having a short lab after
each lecture?

2. Did the lab assistants provide “better” help in
the second half of the semestex?
Why did you ask less (or more) questions in the
second half?

3. Why did you turn in incomplete lab reports?
How do you feel about the write-ups?

4. Did the physical setup of the lab affect your
lab experience?

5. Would you take another programming course with
similar setup?

The interviews provided feedback and insights
about learning how to program in the language C in the
new computer labs from the students’ who have just been
through such learning experience. Combined with
observations and questionnaires, an overall picture
emerged of how students learn and what worked in the
lab. The findings might help students and instructors
in future labs. They may also provide a basic

understanding of lab learning in a beginning

programming course for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

CHAPTER 4

FINDINGS
Data were collected quantitatively and

qualitatively from several sources. In the beginning of
the Fall Semester 1996, questionnaires were administered
in CS210 to gather information. Observations were
conducted in all three lab sections of the class for 15
weeks. Interviewees were selected based on the initial
questionnaires and the first seven weeks of
obsexvations. Mid-semester interviews started after the
seventh week of the semester and were conducted for
three weeks. At the end of the semester, another
assessment survey was administered to all students while

another round of short interviews were conducted.

Beginning of Semester Survey

A survey (see Appendix A) was given to all students
in the CS 210 course at the beginning of class. Of the
155 students enroclled, 134 completed the survey. The
questions on the survey were designed to find out
students’ age, gender, and prior computing and
programming experience. While 54% of students had

programming experience, only 9% had experience in C. On

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
the other hand, 50% had BASIC and 20% had Pascal before

this course. Since Pascal and C have the common
predecessor of ALGOL, these students who had Pascal or C
experience were identified and observed to see if they
behaved differently in the labs than those students

without prior experience.

End-of-Semester Survey

At the end of the semester, students were asked to
filled out the course evaluation. Only 134 out of the
initial 155 students filled out the beginning of the
semester survey. Several students dropped the course
during the semester. The evaluation was completed by
132 students. On the evaluation, students were asked to
rate the following 5 possible sources of their learning:
lectures and text, programming assignments, tests, labs,
and help from tutor(s) and/or instructor. They were
asked to rank them from 1 (most important) to 5 (least
important). The results of the survey are shown in
Table 5.

The students expressed a clear difference in their
rating of their preference for learning m.tho&s. The

highest rating of the learning method was the newly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80
.developed lab (2.36). Traditional lectures and text was

rated second (2.51) with help from instructors/assistant
third (2.72). While take-home assignments received a
moderate rating (3.01), tests were not viewed as a
useful learning method by students with an extremely
negative rating of 4.39; three quarters (75%) rated

tests as least important.

Table 5. End of Semester Survey

Rating
Method 1 2 3 4 5 average |
Labs
44 36 17 30 5 2.36
Lectures
and text 40 24 31 35 2 2.51
Help from
tutors and/or{ 20 42 35 24 1 2.73
instructor
Take-home :
Programming| 23 25 28 39 17 3.01
Assignments
Tests 5 5 21 4 97 4.39

Observations and Interview Results

Observations were conducted throughout the 15 weeks
of the course. There were observable differences in

students with respect to the physical setup of the lab,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

the partnership patterns, the utilization of lab
assistant, and the contents of the labs. The difference
in time spent on each lab, the frustration or
satisfaction of students with the lab, physical and
programming activities were recorded. Students’
perception on the same subjects were investigated in the

interviews.

The Physical Environment

There were major differences physically between the
two labs used by the three lab sections. The
differences in size and layout translated into
observable patterns in the demeanor of students. During
the interxviews, the physical setup alsoc triggered more
reactions by the students and some were extremely

negative.

The Circular Lab. Two of the sections were
scheduled in the “circular” lab. Students in the
“circular” lab seemed comfortable and happy with the set
up. They had enocugh room to work around their computer
and to conduct discussions with their partners or their
neighbors, who were students working on their own

computers but in close proximity. The only problem with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82
this lab was that while the keybocards, monitors, and the

mice were on the tables, the machines were mounted under
the tables. Thus, students often hit the reset button
with their knees inadvertently when they tried to sit
down. This happened to machines under regular tables
and under drafting tables including the facilitator’s
machine. Unfortunately, it took 10 to 15 minutes for
each machine to come back up because a reset or reboot
activated the network maintenance program which checked
every directory on the machine and reloaded any file
that was modified or deleted. “It's frustrating that we
keep bumping into the reset button. We end up waiting
forever for the machine to reboot and connect to the
network.”

Even in the larger “circular” lab, almost every
student interxviewed complained about the number of
machines being too few and the number of students being
too large. ‘“More computers or less students would be
nice.” It was obvious from observation that even though
60’x 60’ was a big room, 55 students were way too many
for the space, and this large number of students
presented a problem for learning in a hands-on

situation. The problem was compounded by an unreliable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83
network. “Anything that requires the use of the printer

and the network was terrible. One time I sent a file.
It got printed 500 tin.s,-and no one could stop the
printer. Others blamed me for messing up the network.
It generated a major delay.” The network went down
periodically also presented a dilemma that was out of
the facilitator’s control. “We need a more reliable
network so that printing a smaller file won’t take half
an hour, or the same file won’'t be printed infinite
number of times. And, I had trouble downloading your
programs from the net[work] several times.” To combat
the problem with the network, floppy disks were on
stand-by so that at least students did not need to
retype programs printed on the lab report. They got the
programs from a disk instead of from the network.
Nevertheless, when the network was down, using the
instructor’s floppy disk was not good enough because
passing around the floppy disk with a large number of
students took too long. When students could extract
files from the sexrver, it took only seconds. “I don’t
like the printing situation and the network, there were
a couple times that we could not extract your examples

in the lab and we had to wait for your disk.” To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

alleviate the printing problem, several machines were
connected to dot-matrix printers. When the laser
printers went down, students could take turns printing
their files using those machines. However, the impact
printing of dot-matrix printers created another problem
-= noise.

Only one participant was completely happy with
everything in the lab, “The lab is great as is. We are
given plenty of time, space, and help. I have no
complains.”

In general, more computers or less student in the
lab would improve the physical conditions of the lab.
One student suggested one printer per machine. However,
the feasibility of this depends largely on the fiscal
budget. Physically, the “circular” lab could have
handled one printer per machine because all machines

were on individual tables.

The Rectangular Lab. One section of the lab was
scheduled in the “rectangular” lab. Students in the
“rectangular” lab seemed more frustrated with the
physical set up of the lab. With only one printer,

printing was a major problem. Table space presented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

another problem because five machines were on one long
table instead of each machine being on an independent
table as in the “circular” lab. Students bumped into
each other quite frequently.

Students in the “rectangular” lab complained even
more about the physical set up of the lab. “More
computers and more room would be nice so that we don’t
keep colliding into each other.” Students mentioned the
network problems as much as the circular lab. The
complains about the printer were worse because there was
only 1 printer for 26 machines and the lab had 50
students in a room which was about 25’ x 55’ compared to
the circular lab with 2 printers, 55 students, and more
than double the size (60’ x 60’). Thus, the physical
setup of the two labs played an important part in
student learning and greatly influenced their
frustration level. “The lab has too many students. It
is too crowded. Even printing requires waiting for a
long time. To make matters worse, students accidentally
printed executable (non-printable) files a couple times,
and no one could stop the printer or clear the print

queue.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tables were too close together for anyone to
move arocund. Several students protested that it was
difficult for the lab assistant to get to them because
the lack of space between the big tables. One student
sunmarized the situation nicely, "My partner and I try
to avoid the machines in the middle of the row. Every
time we get the middle machine, we try not to ask the
assistant anything. Well, everyone in class prefer isle
machines.”

Overwhelnmingly, the students argued on the need to
‘make the lab smaller [less students], one person-one
machine makes more sense to me.” The number of students
in a small room hindered students’ learning in the lab
in more ways than one. This crowdedness made all other
problems seemed worse. “The lab is terrible, too many
of us cramp in a small room, and the computers don’t
always work. The printing is slow and all mess-up when
several of us send the same file or ocutput to the
printer. We don’t know which is which.” The sentiment
of the students toward the “rectangular” lab was summed
up by a student who was so frustrated than he cursed the
computer repeatedly. He was more polite during the

interview. “The class is too big, and the equipment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

failure drives us crazy.” When participants were asked
in the interview about one improvement that they would
suggest. Most in the circular lab said “more machines,”
and most in the rectangular lab suggested “less

students.”

The Programming Environment
No problems were observed with the Turbo C. The

compiler was fast even for programs with several hundred
lines. It was more than adequate in a beginning
programming course even though it was not as
sophisticated as DYNALAB (Birch, Boroni, Goosey, Patten,
Poole, Pratt, & Ross, 1995, pp. 29-30). Unfortunately,
the sophiscated compiler called education machine (E-
machine) in the DYNALAB did not include the language C
(p- 29). The debugger of Turbo C provided a good
learning tool for the students. “The watch and step
[commands] in Turbo C helped a lot. They give me the
insights of how a program is run.” Features in the
debugger were covered early in the semester, and
students were encouraged to make full use of thenm.
Students were also happy with the on-line help that

they received from the compiler. One experienced

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88
programmer reported, “I love the on-lone help, just
<ctrl-Fl1l> ([press the control key and the function key 1
simultanecusly], I get the syntax, semantics, and
examples of a key word or a built-in function. I never
even need to open the manual once.” Another student who
had taken this course once already last year compared
the compiler on the VAX and Turbo C,
The debugger was so difficult to use last

year that I never used it, plus we didn’t have

lab so you couldn’t show us how last year.

Everything is making more sense this year.

Maybe it’'s my second time, maybe it’s the lab,

or maybe it’s the TC [Turbo C] debugger. I

can run my program and watch all my variables

change in another window simultaneocusly. It'’s

been great. I think I’ll pass ([the course]

this time.

A few problems did creep up. In the first couple
weeks of the course, the compiler and the save
environments, which save C programs and executable files
automatically, were set up wrong. Without changing the
linker to the correct directory, programs could not be
compiled. Since instructors could not change the
default set up on the lab, students had to make the
change explicitly in the beginning of every lab. It was

very confusing to first time users to make changes of

which they had no idea. By the fourth week, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

personnel in the computing center finally put in the
correct setup. However, by the time of the interviews,
not even 1 student complained about the confusions of

the first 3 weeks.

Learning Strategies
Many students commented on how they learned to

program and some specifically mentioned how they made
use of the labs. Their comments touched on a wide array
of learning strategies they used in the newly developed

lab concept.

Working in Teams. In the first half of the
semester, teams of one, teams of two and, in a couple
occasions, teams of three were formed. After the
seventh week, some students were asked to reformat this
team situation, that is students who have been working
alone were asked to team up with a partner, students
with a partner initially were asked to team up with
another partner or to work alone. Even for those who
did not get a chance to work alone in the second half,
they were at least re-assigned with a different partner

intentionally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Students working with a partner tended to ask less
questions of the lab assistant. One member of each team
almost always did all the typing for the team, and this
was always the member with more programming experience.
Therefore, the teams were restructured half way through
the semester to redistribute these learning elements.

When the students were asked about the partner
situation, there were two opposing views about having a
partner. Only three out of 21 said that they did not
have a preference or felt comfortable either way. All
three students finished their lab quite a bit faster
than the rest of the class. All three tried both ways
with and without a partner in the two halves of the
semester.

The other students, on the other hand, felt
strongly in favor of or opposed to the partnership
situation. One engineering science student had the most
positive experience,

I like having a partner, especially my
partner. We get along well, we are at about

the same level in programming. We even got

similar scores on the last two tests. We

share a lot of programming ideas even outside

the labs. Even though, in most case, we end

up having different approaches in our

assignments, we look at each other’'s programs
and learn from each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

His partner recounted during her interxview,
I enjoyed having a partner that I got along so
well with. We were so different that we
learned from each other a lot. Since I got a
partner, I asked the tutors less questions,
and we helped each other on take home programs
too.
Others just enjoyed the contact with other students. “I
prefer to have a partner, someone I can discuss the
problem with. Neighbors are okay too if you work
alone.” Another proponent of having a partner stated,
Having a partner is wonderful because
sometimes you sit there and say, ‘What’'s
wrong? What’s wrong?’ Working together is a
great help because you can explain to someone
what you know and have others explain to you
what you don’'t know. When I worked alone

during the early part of this semester, I
discussed with my neighbors.

Less Experienced and More Experienced Team
Pairings. Several students were purposely matched with

more experienced partners. Some of them were glad that
their partner helped them in relationships to points for
the course. As with other studies (Ivey, 1992, pp. 109-
111) , there were cbsexvable benefits of matching less
experienced with more experienced partners. The only
obsexrvable benefit is the time required to complete the
labs. Though students with a partner finished the labs

in a shorter period of time than without a partner, just

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

“watching” or “listening” clearly were not enough.
Almost all students paired up with experienced partners
complained:

I prefer not to have a partner, I don’t feel
I learn as much just by watching. Maybe I'm
just a loner.

My partner did things too fast. I had no idea
what he did. After the first half [of the
semester] I worked alone. I liked it a lot
better because I had the keyboard, and I still
had neighbors to discuss with and the tutors
to help me.

My partner goes too fast, and since he has
more experience, he does all the typing.
Sometimes he is so fast with the TC [Turbo C]
commands that I have no idea what he is doing.
Unless I can find someone with my kind of
speed and experience, I prefer to work alone.

I like individual labs better. I can discuss
with my neighbors if I want. When I had a

partner, I felt that I didn’t learn as much
though I received more points in those labs.
Only one of us can be using the keyboard or
the mouse at one time. Sometime my partner
went so fast, I didn’t know what he clicked.

The more experienced member of the team who were
paired up with a less experience partner were also not
entirely happy with the situation. Most of them
concurred with the following statement: “My partner
wasn’t much help. I guess it may be a good thing if you

have a partner who knows what he’s doing.” Another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

student, who had a year of BASIC and was in engineering
science, went even further by saying, “"My partner really
has no business in a programming class.” Even though
some of them did not feel as strongly about having a
partner, they clearly prefer working alone in the lab
because they had their neighbors if they craved
discussions. Even a 33-~-year old student with much
programming experience in other languages stated,
With a partner, you don’t get to try

things you want. Watching it done is very

different from doing it yourself because we

all watch you do it on the big screen. 1It’s

vital that we try all the features provided by

TC or features that may help at the instance
we get stuck.

Another 24 year old computer science freshman

echoed,

I don’t think having a partner is a good
thing in this lab, maybe in another class. We
may finish a project faster, but there are so
many things that we are trying to learn. We
are supposed to learn every part from the
Turbo environment to C. I understand that in
our field we need to learn to work with
peocple, but we have a lot of technical things
to leazxn before that.

Even students who enjoyed having a partner thought

working alone in the lab played a major part in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

learning of how to program in a beginning programming
class.

I think you have to be able to do the
labs on your own in order to understand
programming. It’s unfortunate that we have so
many of us in the lab that some of us are
required to have a partner whether we want one
or not. I am glad that I tried both ways. I
got along beautifully with her but I think we
should work alone in the labs. Well, we work
alone in home work assignments.

Similar Experience Team Pairing. The reactions
toward having a partner depended largely on the gap

between the programming experience of the partners.
Students with similar prior programming experience
worked well together. They also perceived their
learning experience in the lab positively, and the
programmning language experience they had did not seem to
matter. Four groups were formed in the second half of
the semester based on their prior experience. They were
observed carefully and were selected for interviews.

One of the groups that always finished their lab the
fastest and seemed the most enthusiastic in the lab were
composed of two students with experience in two
different languages -- one had 1 year in Pascal and the

other had 1.5 years in BASIC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We just do the lab as in the lab report.
[My partner, who has a background in Pascal]
and I work well together. Most of the time,
we don’t even have any syntax errors when we
compile. When I do the typing, he catches all
potential problems before I hit <ctrl-F9>
[compile command]. I do the same when he

types.
It is important to note that the team members were

willing to share the keyboard and the mouse when
students were teamed with their peers with similar prior
experience.

The other extreme group which almost always
finished last was composed of two students with no prior
programming experience, though one of them had some
computing experience in word processing. One of them
was an 1l8-year old computer science freshman and the
other was a 38-year old sophomore majoring in business.
As with the experienced group, they shared the burden of
typing and using the Turbo C environment. Even though
they needed more assistance from the tutors, they were
not as frustrated as other groups that always turned in
the lab close to the end of the allotted time. One of
them summed up their approach, “We are just a couple of

slowpokes, but we get the job done. We have gone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overtime only once. Thanks for your assistants;
otherwise we would be lost.”

There were a few students who hated both
situations--with and without partner. They were
selected as interviewees because they showed clear
frustrations even in the first seven labs. Their
typical response was that, “I don’t think this course
should be required in my major. I don’t think I’ll ever

program again after this class.”

Lab assistants. Lab assistants were vital to the

students’ learning in the lab. Each lab was assigned two
computer science seniors to assist the instructor and to
answer questions. The assistant to student ratioc was
about 1 to 27. Owing to the number of questions asked
during the first 3 weeks, another lab assistant was
added to each lab. Thus, the ratio was reduced to 1 lab
assistant to about 18 students. The lab assignments
were given to the lab assistants ahead of time so that
they could get familiar with the lab as well as with the
concepts students were supposed to learn for that
particular week. The lab assistants in each lab were in

great demand in all 15 weeks. They were almost always

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

with a student or a group of students. Not only did
they answer questions, but they also provided feedback
to the observation process, (e.g. what kind of questions
were asked in each lab). Every participant in the
interviews mentioned the importance of the lab

assistants more than once.

Students’ Point of View. Most students were

extremely happy that lab assistants were provided. “I
had very little idea what I was supposed to do in the
first few labs if not for the tutors. They are
wonderful especially [one particular lab assistant].” A
student who took the class the year before and failed
echoed this sentiment that , “having the tutors and you
in the lab help a lot. 1It’s far better than last year.
I am doing much better this time. Things are not as
confusing as before.”

Some even went as far as declaring lab assistants
as the best part of having a lab. A 28-year old
business student commented, “The best part of having a
lab is to have them there to provide instant help.”
Most of those interviewed agreed, “They are great, I

don’t think I can finish the labs as quickly without

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98
them.” Over 80% of the comments about lab assistants
were very positive. Most of the students felt it would
be good to have more of them around. “I would like to
see more assistants because of the size of the labs. I
need a lot of help. Sometimes it takes a long time
before an assistant comes back to me. One tutor can’t
possibly help 20 some students.”

On the other hand, several of the individuals and
teams complained in the mid-semester interview that the
lab assistants were “too” helpful. Since lab assistants
have expertise but are not trained in the teaching
process, there is a danger that they will give the
learner the correct answer rather than teaching them how
to get to the answer by solving the problem. The
typical comments when assistants’ help went overboard
were:

They are too helpful. Sometimes I ask a

question and they finish the program for me.

I felt embarrassed to ask again so I turned in

a couple working programs without knowing why.

Some are helpful. [However,] some tend to

just get us unstuck without explaining what we

were doing wrong.

Every time I ask a question, [one of the lab

assistant] took over my keyboard and made

changes to my program beyond my comprehension.
I usually avoid asking him anything.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There were also two complains about a few
assistants who did not help students equally. One 18-
year old computer science student complained, “You
should have the tutors help students on an equal basis.
If a tutor spends one-half hour with one student, then
the rest of us feel neglected.”

Because of these comments, a “no-touch” policy was
instituted after the eighth week. Lab assistants were
instructed not to touch students’ keyboards or mice.
They were asked to help students verbally or to
illustrate ideas on a piece of paper. It took a few
labs for the assistants to get used to the idea and to
stick to that approach. During the end-of-semester
interviews, not one single student mentioned that the
assistants were “too” helpful. Thus, this approach

alleviated the problem.

Lab Assistants’ Point of View. Even though lab
assistants were not interviewed the same way as students
in the class, they met with the instructor before and
immediately after each lab. They were asked about the

difficulties and the most common questions in each lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
They recognized the fact that oftentimes one member of
each team tended to perform most of the typing.

At the end of the semester, lab assistants also
commented that the lab feature of the course was a major
part of students’ learning in at least the language C
and the programming environment. A 35-year old
assistant compared the new lab situation with hexr own
experience when she was a freshman in the introductory
programming course, “I wish I had a lab when I was a
freshman. Just learning how to compile and debug on the
VAX almost prevented me from staying in CS ([Computer
Science] .” Another senior was amazed by the progress of
some students,

I thought [one of the slowest students
initially] was going to drop after the first
couple labs. I can’t believe the work he did
toward the end. I don’t know if I could
finish the lottery program (see Appendix E) in
an hour when I was a freshman. I think the
weekly lab played a major part because they
get the practice every week with help
available instantly.

Assistant also kept track of the type of
questions students asked. They noticed the number and
the type of questions changed through the course of 15

weeks. ‘Towards the end, there were very few questions

about the syntax of C or Turbo [the programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

environment]. Most of them have a running program but
wrong output. I guess their logic is still weak.” The
type and frequency of the questions indicated the
students had a good mastery of one programming skill but
still the other.

Having the input from the lab assistants provided
an angle that might have been difficult for the

facilitator to ocbserve.

Lab Manual. A complete set of Turbo C manual was

available in the lab. The set consisted of three books:
Getting Started, User’s Guide, and Reference Guide.
However, use of these manuals was almost nonexistence.
During the 15 weeks of observation, only one of the
three books was used twice.

Students were asked why they lacked interest in
using the user’s manual. The majority of the response
indicated that they did not need the paper version of
the manual because of the helpfulness of the on-line
manual and the speed of it. One simple keystroke and
they could examine the syntax and semantics of a

situation or a keyword in C. One student explain,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

To find out more about the language C or

the Turbo C environment, all I need to do is

<ctrl-Fl>. From the on-line help, I learned

to set up four windows--one window for the

program, one for the output, one for the

debugger, and one for the error messages. I

don’t know why you even bother to have those

books there.

The students were told that the user’s guide had a
lot of good examples. However, the typical student
response was that “after I read the textbook to learn
algorithm development and C, I can find what I am
looking for a lot faster in the book.” Another student
explained, “I am so used to on-line manuals, those books
are useless to me. When I brought my Visual C++, it
came only with a CD but no books. Printed manuals may
be out-of-dated.” Thus, as a result of good on-line

help, manuals in computer labs are quickly becoming

obsolete.

The Time Factor. Students were encouraged to take
their time and experiment with anything they desired
after they finished their lab. Approximately 10% of the
students always finished their labs within or a little
more than an hour. About 15% of students always turned
in their labs at the very end of the lab. The other 75%

of students usually completed their labs within 1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

hours to 2.5 hours. Although encouraged to use the
extra time for additional learning, only about 20% of
students would stay to experiment after turning in their
lab assignments. One of the reasons for this was
because they were advised not to stay in the lab to do
their regular take-home programs. Since all lab
assignments were due at the end of the 3 hours, lab
assistants were told to concentrate on the lab task so
that their efforts would not be diluted by anything
else. Students were also advised that they should
channel their effort toward a deeper understanding of
the current concepts (Breuer & Zwas, 1993, p. 2). Even
if students stayed in the lab to complete their take-
home assignments, they were told that the lab assistants
were there to help them with the lab first. Moreover,
there was another lab, called Museum Cluster, which was
set up for students to complete their regular home work
assignments. The Museum Cluster was open from 7 a.m. to
midnight every weekday, and one computer science tutor
was assigned in the cluster area from 9 a.m. to 10 p.m.
Thus, students who stayed after they finished their lab
were strictly students who liked to experiment with the

concepts of that particular lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

There were clearly observable differences in teams
and individuals who raced through the lab assignment
compared to students who took their times to complete
their assignment. Several students who always finished
within an hour and left right after responded, “Our lab
is from 3 to 6; our cafeteria opens only from 5:30 to
6:30, I can’'t afford to stay too long.” A few other
students who left within an hour stated that they had to
go to work. They all had one common thread in their
approach: They came into the labs prepared. One student
who worked a night shift in a gas station explained his

working situation:

I get ready for each lab by following your
reading assignments. The lab usually covers
the concepts you go over that week so I have a
good idea what the lab is about. I learned my
lesson earlier. One week I got behind in my
reading, I was late to get to work. I work
from 6 to 2 [a.m.] 80 I have to leave way
before 6.

Thus, for most of them it was out of necessary to get
their lab done as quickly as they could.

However, the two youngest students who were 14 and
16 years old, considered the labs far better than the

regular lectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

The pace of a traditional class is

usually too slow. In the lab, when I feel

comfortable with my achievement at any point,

I can either leave or move on to something

more exciting to me. For example, I started

reading the graphics mode in Turbo C before

you even started arrays [which is a more

sophisticated programming concept covered

toward the end of the semester). I like that a

lot. I wish more classes were run like your

lab.

There was no perfect time for setting up the 3-hour
lab. With popular class hours being from 9 a.m. to 2
p.m. and with other classes that needed the
instructional labs, the only time slots were 2 to 5, 3
to 6, and 4 to 7. Those were the slots that the labs
were run.

Most students who were not in a hurry did finish
the labs within 2.5 hours. Tension mounted greatly for
some students during the last hour of the lab. If they
were not close to being done, this group of students
panicked. The most common strategy was the use of
neighbors regardless of their teaming situation. Both
students in one team recounted, “Well, if most other
teams are done and we are not, we like to get a hold of
a friend from another team and see if we are

misinterpreting a problem. We either ask them or one of

the tutors and have that problem clarified.” Even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

though students were told to progress at a pace
compatible to their judgment and abilities, they did
look arcund to see how other teams or individuals were
proceeding. An l1l8-year old engineering science
students, who earned the highest score in the class,
added, “When half the class turns in the lab report and
I am not close to done, I panic. It is like taking a
test and struggling. Then you loock around and realize
that most people have left. That’s not a good feeling.”
Thus, lab learning in a programming course added an
unexpected peer pressure to some students because some
of them unknowingly monitored the progress of otherx
students in a negative fashion.

In the middle of the semester interviews, several
participants expressed a similar idea with respect to
when and how long the labs should be. Students attended
their lectures on Monday and Wednesday followed by a 3-
hour lab on Thursday afterncon. They speculated that
the 3-hour labs were too long and that the labs covered
too many concepts. A few of the participants suggested,
“Instead of once a week for 3 hours, why can’t we have a
short lab right after each lecture. An hour and a half

to 2 hours maybe.” Another felt that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

a shorter and more focused lab would help
me. After you cover ‘if’ statement in class
on Monday, I like to get to the hands-on part
in the lab right away so I don’t have to wait
until Thursday to try things out. Usually by
Thursday [lab time], you would have introduced
things like ‘else if’ and ‘switch-case’
before I can master simple ‘if-else.’

The idea of “same-day lab” was introduced to other
participants at the end of the semester interview.
Overwhelmingly, 20 of 21 participants were extremely
positive toward the idea. Most responses were:

Definitely, if we can clear up a concept right

after we see it in class, it’'ll save time for

me to search for similar examples in the book.

That’s something I usually do.

As long as the labs are not too long. Same day

sounds like a good idea because we can learn a

small chunk at a time.

Excellent idea, except the labs can’'t be very

long. It may be difficult to finish a whole

program in 1.5 or 2 hours.

I can see how it could help with the ideas
fresh in our minds and apply them right away.

The only concern about that idea related to the
timing between the lecture and the lab. “If it’s right
after the lecture, it’ll work, otherwise it would be
just like the current setup.” Thus, the concept of same
day lab may be an effective learning method if the labs

can be scheduled correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Background in Mathematics. The relationship

between computer science and mathematics is as old as
the field of computer science. Owing to the mathematics
components in computer science, computer science
instructors tend to believe that mathematics proficiency
has a direct impact on learning how to program.

A few participants, mostly business students,
considered their weak mathematics background as a reason
for their poor performance, in a few of the labs in
which they had to do simple analysis of algorithms in
texrms of the number of computational operations. They
might have been intimidated by predicting the numbers
which had a logarithm function in the formula (binary
search). In another instance with nested loops,
dependent variables and independent loop control
variables caused major confusions among the same group
of students. A check of prerequisites indicated that
all students in the class had about the same amount of
mathematics before this course. The prerequisite for
the class at Montana Tech is college algebra. Thus, all
students had a strong enough background in algebra for
this course. Even though all majors at Tech require 2

years of calculus except for Business, most students in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

the class were freshmen and were taking calculus
simultanecusly. Thus, all students in this course had
similar prior experience in mathematics.

The business students were just intimidated in
those two labs by their own attitude in mathematics.
One l18-year old business student provided her
explanation,

I knew the number of guesses in the
number game was related to log base 2. I just
panicked when I couldn’t remember the
definition of logarithm. Luckily, you put
that on the board after about half an hour
into the lab. I could relate to the fact that
each guess would eliminate half the numbers
from the list. I just could analyze it

mathematically in the lab. I just don’t like
math.

Contrary to some opinion, mathematics majors did
not perform well in those two labs in terms of their
grades, time of completion, and even their attitudes
(Campbell & McCabe, 1984, pp. 1110-1112). One
mathematics major offered his rationale, “I understand
the lab and logarithm doesn’t bother me. I just couldn’t
relate the guessing game and log base 2.”

Programming is a required course which is taken by
engineering science, chemistry, and computer science

students in their freshman year. For business students,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

it is a required courses to be taken in their sophomore
year. Although the class had freshmen in most degree
areas, almost all of the business students were in their
junior or senior years. When participants were asked
about their timing for taking this course, the
participants blamed it on the subject matter and on the
campus-wide conventional wisdom among business students
that “we don’t understand why business students need to
take a programming course. We heard that this course is
difficult and time-consuming so we waited. That’s why
you have us seniors in a freshman-level class.” When
they were asked if more mathematics would help, most of
them responded, “Nothing will help. I don’t like math.
If I have to pick between programming and math, I’d
rather program.”

The attitude about math and programming might have
been different among students with different majors.
Nevertheless, their performance in the labs did not
reflect their attitude. For example, some of the best
lab reports were turned in by business students who

hated both math and programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111
Cooperative Learning Environment. Some students

used interaction among individuals or teams as a
learning strategy. In the lab, students were encouraged
to either work individually or cooperatively with a
partner. It was the intent of the lab to avoid a lab
structure that students would interact competitively.
Nevertheless, several individual students and some teams
paid much attention to the progress of other individuals
and teams. Even though students were not graded on a
norm-referenced basis to avoid “negative
interdependence” (Johnson, Johnson, & Smith, 1991, p.
2) , several of them perceived classes and labs as
competitive venues. Two computer science students had
almost identical comments though they competed with
different students. "I like to be the first to complete
each lab. Well, as long as I get done before [one other
specific student], I guess I don’t have to be first.”
When he was asked to comment on the significance of

being first, he delineated,

On a test, we get a numeric score so that
I can measure my achievement against the rest
of the class with the average and everything.
In your lab, since most of us receive 10 out
of 10 in every lab, the only way for me to
chart my progress is my time of completion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112
The reason why I check on [this other student]

all the time is because he’s such a good

programmer so if I get done before him, I am

in good shape.

On the positive side, the majority of the students
in the lab, however, interacted cocperatively with each
other. Not only did they learn to work collaboratively
with their respective partner or partners, but they also
engaged in cooperative activities with other groups and
individuals especially their neighbors or students in
their immediate vicinity in the lab. Their relationship
with their neighbors was very different from their
partners. The neighbor system was neither promoted nor
structured. It also lacked the basic elements of the
structures in cooperative learning (pp. 5-7). Students
perceived activities or discussions among neighbors as
beneficial. As a matter of fact, several students asked
during the first two labs if they could discuss the lab
with students ocutside of their team. A 38~year old
business student complained about the inadequate number
of lab assistants but had positive comments about having
“good” neighbors:

There should be more tutors in the lab so

that we don’t need to wait 20 minutes for one
of them to come back to my side of the lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Sometimes I wonder if the network is down when
my program doesn’t get printed. Luckily, [my
neighbor] always helps. One time she just
printed her source code. Since her program
got printed before mine, she figured that my
machine had a bad connection. Sure enough, my
machine was off the net. Other times, she’d
help me debug when you and the tutors were
busy.

Some students also stayed after they turned in their lab
reports. This was not to do more experiments but rather
to provide help to their neighbors. One student
provided such good help to others that she became the
only lab assistant in the following year. She was the
only sophomore hired in the computer science department

as a tutor or lab assistant.

Gender Differences. There were cbservable gender

differences in terms of the students’ willingness to ask
for help in the lab. Male students were eager to ask
the lab assistants whenever they had a question. Female
students, on the other hand, felt more comfortable with
partners and neighbors for consulting or assistance.
They might be more reluctant to ask for technical
assistance. One 35-year old business senior illustrated

her reason,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Lab assistants are good, but they tend to
solve my problems too quickly for me. Most of
the time, they solve the problems for me
without explaining to me what I need to do.
Then I get stuck again in the following step,
s0o I like to try figuring things out by myself
first. If I think about it long enough and
still don’t have the problem solved, then I
ask.

In texrms of the length or type of the questions,
male students tended to ask short, direct questions.
Female students had longer questions. When female
students were interxviewed and asked why they would go to
their neighbor before lab assistants, one 18-year old
computer science student responded, “Sometimes I have a
problem explaining which part of the lab I don’'t get,
and I don’'t want to take up too much of their time.” A
chenistry student concurred, “It takes me a while to
explain to the tutor what I don’t understand, so I
usually think about it for a while before I ask.”

Male students, on the other hand, raised their
hands rapidly as soon as a problem was encountered.
Thus, their questions tended to be short, and tutors
could be seen moving from question to question quickly.
If a lab assistant was in the vicinity of a group of

male students, the assistant would usually answer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

several questions asked by the same students intermixed
with several questions by the students’ neighbors.
Female students were somewhat more reflective and
deliberate in terms of using other resources. For
example, male students seemed to do more typing and
compiling from observation. When they were asked why
they re-compiled their program every time they made one
simple modification, one male student responded, “I like
to fix all my syntax errors so that I can run my program
because programs won’'t run with syntax errors. After I
get the program to run, I like to use the ocutput to deal
with any potential logic mistakes.” After an error was
found, a female student would be more inclined to make
the necessary changes and look at other part of the
program again before she re-compiled. Bernstein (1991)
contributed the difference in behavior or comfort level
of women in computing to their initial experience (p.
60). The past computing and programming experience of
participants in this study agreed with Bernstein’s

study.

The Age Factor. Differences in learning strategies

were observed among the students when they were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

classified by age. The attitudes toward computing and
programming were also different. The beginning of
semester survey revealed that, younger adults , in
general, had more computing and programming experience
than older adults (i.e. students of the age 25 and
oldezr). Older adults’ attitudes toward technology in
general were not as positive as that of younger
participants. One extreme view was from a 45-year old
business major: “The computer is ruining our future.
Not only is the technology controlled by a small group
of elite like Gates [Bill], but computers are replacing
peocple in many ways. I have been avoiding computers all
my life.” Not all older participants had this
apocalyptic view of computers. Nevertheless, that
attitude, unlike that found in the Morris’ study (1992,
PP. 72-75), was shared mostly by older participants and
did not change much through the course of the 15 labs.
The time it took for nontraditional students to
complete the lab assignments was noticeably longer than
traditional students. The last few students to turn in
the lab report in each lab were always non-traditional
student. Nevertheless, there was no difference in the

lab scores. One nontraditional student pointed out

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

that, “I am slow in understanding how all the pieces
come together.” Most non-traditional students
responded, "I am also overwhelmed by all the things that
I have to learn in the lab. Turbo C, the editor,
getting files from the net.” They also took more
deliberate steps in completing the lab reports or
experimenting with given programs. One participant
described herself as “careful.” They tended to read the
programs before starting and worked out the possible
outcome of the program. While traditional students
tended to jump right in after the lab handout was given.
The younger group compiled the programs more, made more
modifications, and even had more printouts before they
finally finished their labs. The younger group exhibited

more experimentation in the lab.

The Language C. The use of the language C in the

lab was a major concern. The conventional wisdom
suggested that C was not the best language in an
introductory computer science course (Dey & Mand, 1992,
P- 11). Since there was no programming prerequisite for
the first programming course at Montana Tech, to most

participants, this course was their first programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

course. Only a few minor problems related to the
language C occurred in the lab. There were no major
complains about the choice of language from students.
Two students suggested the language C should be dropped
so that the language Java could be taught as their first
language.

As to the syntax of the language C, the use of the
semicolon in C presented a slight problem to students
who had BASIC or FORTRAN in high school. Semicolons are
used as statement terminators in the language C.
Understandably, students had Pascal experience who did
not seem to be bothered by the use of semicolons because
semicolons are also used as statement separators in
Pascal. A few students who had only programming
experience in BASIC complained that the rule of
semicolons was confusing. They were accustomed to
having the line feed or return to separate statements.
As a result, they either used too many or too few
semicolons. The compiler only picked up the problem
when too few were used. When that happened, all the
students had to do was to add semicolons wherever the
compiler suggested. On the other hand, because of the

flexibility of C, too many semicolons would not trigger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

any message from the compiler. Unfortunately, the extra
semicolons sometimes changed the meaning the those
statements. This took students much longer to debug.

On some occasions, even lab assistants overlooked the
extra semicolons. In the process of mastering the use
of semicolons, a few participants got frustrated; this
was expressed as “I don’'t like C. BASIC would never
have given me troubles like that.”

Most students had trouble with passing parameters
especially passing parameters by reference. It was
because of the confusing nature of C in the use of
symbols ampersand (&) and asterisk (*). An extra lab
was designed to help students with problems unique to
the language C.

Overall, the language C did not present any major
problem in the lab. Thus, C did not have any
significant negative impact toward students’ learning
how to program as has been suggested in some of the

literature.

Write-ups. Each lab assignment consisted of
several parts that were designed to help students

reflect on the concepts covered in the lecture. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

write-up part of the lab was intended to take up no more
than 25% of each lab out of 3 hours. Nevertheless,
actual time spent on each write-up ranged from 10
minutes to an hour. “Does the result correspond to the
‘ham and cheese’ example in class? If yes, in what
way?” (see Appendix C) is a typical question in the
write-ups. A logical “and” operation in programming was
not more complex than ordering a simple sandwich at the
deli. All students had to do was to relate a program to
a concept. There were two to three write-up questions
per lab assignment.

To some eager programmers who only wanted to do the
coding part, the last thing they wanted to do was
documentation. “Sometimes I don’t understand what you
ask and don’'t know what to write. If I can finish the
programs in an hour, I don’t think I need to explain
anything. At least the hard copy of the program or my
test runs should work,” said a 1l7-year old computer
science freshman who just wanted to practice the
implementation part of programming in the lab. The
write-~up part was designed to help students learn the
why instead of just the how regarding programming

concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

On the other hand, 20 out of 21 participants
responded positively to the write-ups. They considered
write-ups were a vital part of learning how to program.
However, they took different approaches dealing with the
write-ups. One quarter of the participants would finish
the whole lab assignment before they started doing the
write-up part of the lab report. A chemistry student
explained,

I like to have all the programs or design

done before I answer those questions. I like

to think about what I have learned in that lab

so that I can see the big picture. Your lab

write-ups are far shorter than my chemistry

ones. I usually have to spend the night to
complete chem lab reports.

Other students echoed this view and considered the
write-up part as the last steps of the labs. ‘“Sometimes
I don’'t quite get what you are asking until I f£inish all
the steps in the lab. Even step 2 relates to step 1
directly, I wait till the end.”

The majority of students and participants did the
write-up parts of the lab as they progressed through the
labs. They simply followed the steps layout in the lab.
Thus, when they were asked to answer a question
following a program, they just did so without thinking

much about it. "“The step by step instructions and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

write~-ups are there, so I just tackle them one by one.”
Others took a more deliberate approach,
The write-ups are usually there to break
up programs or experiments so that I can think
about what I am learning before I move to
another activity. I use the write-up as an

indicator. If I can’'t do the write-up in Step
4, I don’t start Step S.

The observations in the lab, interviews with
participants, and grading the lab report all revealed
that the write-up part of the lab assignment was a
crucial part of learning how to program. The write-up
were also excellent feedback to the instructor on how
well the class or individual students were doing.
However, owing to the time constraint, some students
rushed through the lab and turned in sloppy lab reports.

In the interviews, several students expressed a
preference of post-lab write-ups instead of in-lab.
They wanted to turn in the lab report the following day
instead of at the end of each lab. “If I had more time
to reflect on what I am learning, I would do a lot
better on the write-ups.” Other students compared the
new lab in programming with labs in other disciplines.
"My chem lab reports are due the day after so that we

have time to think and write. Doing everything in 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

hours seems a little bit rush.” When participants were
asked if take-home lab report would affect their take-
home assignments, most of them suggested the number of

assignments should be reduced.

Teaching and Learning Activities

Most programming teachers believe that laboratories
are effective because well-designed experiments in labs
offer a mode of learning that complements classroom
teaching (Hartel & Hertzberger, 1995, p. 13). Thus,
courses supported by short and relevant assignments are
more effective than courses without such laboratories
(p. 17). It is, however, up to the instructor to devise
appropriate activities to facilitate the best learning
for the situation.

The lab activities were designed to enhance
learning programming in C in the newly designed labs at
Montana Tech. The activities could be divided into
three major categories of Record and Explain, Experiment
and Discover, and Design and Justify. Students shed
light on the impacts of each activities with candid

examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Recoxd and Explain (R&E) Simple programs were

given as part of the activities in almost every lab.
The activities were designed to stimulate the
sensitivities of students’ ability toward subtle
differences in simple programs in C syntax and
semantics. The observations indicated that the students
liked REE. “By running your programs, I learned at my
own pace. I usually just use the ocutput to understand
the behavior of your program. I felt I learned C pretty
well.” The purpose of R&E could be best summed up by an
engineering student:
By fixing errors in your program, I learn the
syntax and semantics of C without memorizing
all the rules in the book. The compiler is
excellent with syntax mistakes. The semantics
problems take a little longer, but the output

of the program is usually good enough to
reveal them.

Several participants mentioned one particular lab in
which the sum of integers from 1 to 10 was supposed to
be in the variable sum as in figure 10.

Figure 10. Program Segment that Produced the Wrong Sum

sum = 0;
for (counter = 1; counter <= 10:; count.:++)ﬁ

sum = gum + counter:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

Even student with previous programming experience
did not immediately see the extra semicolon, which is
shaded in Figure 10, after the right parenthesis. When
the variable sum was printed after the for-loop, they
found the sum was 11 instead of 55, the correct answer.
They were asked to explain the phenomenon in the lab
report. By using the debugger, they realized that the
for statement was executed 11 times as expected but the
statement, “sum = gum + counter;”, was executed once
instead of 10 times. It was after the variable counter
had been incremented to 11 that the sum statement was
executed. By explaining the phenocmenon, they understood
that the extra semicolon changed the meaning of the loop
and caused the loop to execute 1l times without the body
of the loop which was supposed to add the value of
counter to sum 10 times. They had to explain that for
the first 10 times of execution in the for loop, the
statement, “sum = gum + counter;”, was not involved as
the program had intended. After their explanation, they
were asked to fix the problem as documented in figure

11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126
Students liked REE activities because they provided

a natural break in terms of pacing for the students in
the lab. One students who enjoyed R&E activities

reflected, “Even though I like all the activities in

Figure 1l1. Program Segment that Produced the Right Sum

sum = Q;
for (counter = 1; counter <= 10; counter++)

sum = gum + counter;

your lab, I like the Record and Explain best because I
am forced to stop and think what why the programs behave
in a certain way.” Thus, R&E activities were successful
in helping students with the syntax and semantics of
keywords as well as simple programming concepts in the

language C.

Experiment and Discover (E&D)

Experiment and Discover activities were designed to
encourage students to modify the program or programs in
the lab report. All the programs were available to them
on the network. Thus, students could download needed

programs to their computers without retyping any of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

programs. Students were asked to modify the programs to
perform a specific task or just to run the programs in
various ways. A chemistry student compared the E&D
activities in CS 1 lab with her chemistry labs:
“Experiment and discover activities are my favorite and
that’s the spirit of experiment in a laboratory.”
Another student concurred, “Like I said a couple of
months ago, I like modifying your programs [E&D
activities] the best, but I feel good even with doing
the whole program in the lab now.”

Othexr students liked the part of E&D that required
them to run the programs in various ways and discover a
concept or an algorithm. "I like experiment and
discover activities, especially games like guessing game
that’s similar to the Price is Right [the TV show] to
demonstrate binary search. Who says watching TV is
bad!” Students comprehended the algorithm faster by
learning activities that were not as dry as lecturing
(Bienat, 1993, p. 11).

Other participants liked E&D because they could use
the programs in the lab as examples.

To experiment with your program is my favorite

because we have all the necessary programs
there and knowing that even if we mess up we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

can always go back to the beginning of the
lab. And I learned a lot about programming
style and logic from those examples.

Design and Justify (D&J)

Design and Justify (R&J) activities, in a way, were
the most difficult. Some students “feared” them because
of they involve the creative side of programming. D&J
was not language specific. Students were asked to
design an algorithm to complete a simple task, for
example, print all possible tickets in a lottery (see
Appendix E) .

In terms of time of completion, D&J generated the
biggest difference. When D&J was the main activity in
the lab. The time required to complete the lab for each
student varied a great deal. A small group of students
of three to five, turned in their lab reports and their
programs in half an hour. On the other hand, 15 out S0
students still struggled at the end of 3 hours. Since
the creative process was essential in programming, D&J
provided the instructor a chance to guide students
toward a solution and in some cases the most efficient
one. For example, student were asked to print out all

possible outcomes of drawing 3 out of 10 balls labeled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

from ‘a’ to ‘')’ as described in lab assignment 10 (see
Appendix E). Most students came up with a working
solution in a matter of minutes. Some started
experimenting with algorithm that they designed by doing
a hand trace, some converted the algorithm into a C
program, and some decided to make their solution more
efficient. Since some of them had their solution done
in half an hour, they were asked by the lab assistants
or the instructor to justify their solution in their lab
reports. For those students who had a solution but not
the most efficient, they were given a hint about the
number of outcomes they generated. There should be
exactly 120 tickets. Program segment in Figure 12 was
the most common among those who tried to turn in their
report within the first hour.

Figure 12. Algorithm 1 for the Lottery Program

l. generate letter form ‘a’ to ‘j’ called balll
2. generate letter from ‘a’ to ‘j’ called ball2
3. generate letter from ‘a’ to ‘j’ called ball3
4. if balll <> ball2 <> ball3 then print

balll ball2 ball3

<> means not equal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130
Though the algorithm worked, it generated 1000

(10x10x10) outcomes. Since only 120 tickets should be
printed, they were asked to eliminate unnecessary
configurations by generating only the configurations
needed. Most students came up with the algorithm in

Figure 13 on their own.

Figure 13. Algorithm 2 for the Lottery Program

1. generate letter form ‘a’ to ‘j’ called balll

2. generate letter from E&EREEREY to ‘j’ called
ball2

3. generate letter from E
ball3

4. print balll ball2 ball3

=RE to ‘j’ called

Several students needed the lab assistants’
demonstration in order to get the most efficient
solution. Lab assistants were told to show those
students that their solution in algorithm 1 generated
configurations: ‘aaa’, ‘aab’, ‘aac’, .., all the way to
‘333.’ Clearly ‘aaa’ was necessary because once ball
‘a’ was drawn, there were only 9 balls (from ‘b’ to ‘j’)
left. Almost all students changed their algorithm after

the illustration was made. The purpose of this lab was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

to learn nested loops as well as loop control variables
that were dependent.

Several students had a problem with D&J activities
because of the time limit. Some felt that “Design and
justify activities usually take too much time, I learn
just as much with the other two kinds [of activity].”
Another business students gave almost an identical
comment: “The designing of algorithm takes too much
time. It’s hard to complete a program in the lab. I
prefer other lab activities that I know I can get done.”

On the other hand, some computer science students
had a diametrically different view. "“I like designing
algorithm and writing whole programs. I like the
creative part of programming even though your examples
are good. I guess that’'s why I pick CS [Computer
Science] .” Some also enjoyed the challenge: “I like to
start from the beginning of the whole program, it’s more
challenging.”

For slower students, time presented a major problem
with this activity. Nevertheless, with the availability
of help, participants and other students did not
complain as strongly as they about the physical setup of

the labs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Interview Summary

The major finding from interviews and end-of
semester survey was the fact that students considered
the labs to be the most significant learning element of
the course. Both qualitative and quantitative data from
the study supported that.

One of the major findings from both the mid-
semester and end-of-semester interviews was the
importance of lab assistance. Both positive and
negative comments regarding lab assistance shed light on
how assistance should be offered.

Another important finding was the way that work
groups were formed. Participants had strong opinions
regarding what kind of partner they should have.
Clearly, if physical constrains would not permit them to
work alone, they definitely prefer to have a partner
with similar prior skills. Their learning experiences
were affected by that directly. Besides “official”
partners, neighbors played an important role in their
learning process for participants in teams or working
alone.

Strong feelings were also reported in relation to

the physical settings of the lab. On the other hand,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Turbo C programming environment did not present much
problems for students. Age, gender, and background in
Mathematics affected their learning strategies only
slightly. Printed lab manual did not have much impact
at all.

The students expressed ideas in the interviews
concerning the structure of the lab. They discussed a
preference for same-day lab and take-home lab reports.
Participants clearly preferred the idea of mastering one
concept at a time by having a short lab right after a
lecture. They also favored having more time to finish

the write-up part of the lab report.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The computer science department at Montana Tech has
designed and implemented a laboratory component in the
freshman programming course. This naturalistic case study
was designed to investigate how students learned to program
using the language C in the lab environment. The study
employed both qualitative and quantitative methods. Two
assessment surveys were done. Students were observed in the
lab for 15 weeks. Two rounds of interviews were conducted
during the semester. Research questions related to student
learning strategies, the physical environment, the
programming environment, and teaching and learning
activities.

During the first week of the semester, a student
profile assessment (see Appendix A) was administered to
students in the course. The results were analyzed and used
to select participants for in-depth interviews.

Observations were started from the first full-week of

the semester in the lab and continued for all 15 weeks of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with perm

138
the lab. Approximately 150 students were observed in the

lab setting.

During the first 7 weeks of observation, students were
selected purposefully for the interviews. These 21 students
participated in two in-depth interviews. Interviews started
in the middle of the semester. The same participants were
interviewed again at the end of the semester to affirm
several emerging ideas. Another student assessment survey
was done during the last week of instructions right before
finals week.

One focal point of this study was to reveal students’
learning strategies in the lab throughout the course of the
semester. Several learning strategies were identified.
Many students relied heavily on lab assistants to aid them
in their learning. Thus, the availability and quality of
assistance were crucial, and the delivery of assistance was
modified during the course of this study based upon the
observation and interview data.

All students enjoyed having neighbors for discussions,
consultations, or simply moral support. Thus, the closed
lab concept was a clear success. The closed lab provided a
cooperative interactive learning environment though it

lacked the structured elements in classic cooperative

ission of the copyright owner. Further reproduction prohibited without permission.

136
learning (Johnson, Johnson, & Smith, 1991, pp. 5-8). More

importantly, the formation of teams in the lab had major
effects on students’ learning. First of all, with limited
space and machines and the large number of students, teams
consisting two or three students were formed out of
necessity. If the scheduling of the lab permitted, most
students preferred to work alone to ensure their
understanding of every concepts at their own pace. If
students had to be teamed, most participants favored a
partner with similar prior experience. The composition of
teams affected the learning of programming.

The size and even the physical layout of the lab
prompted numerous comments from respondents. The difference
between the two rooms used as labs, in fact, related to the
numbexr of complains that were heard from the interview
participants but all students in the labs.

Another focal point was the examination of the three
teaching and learning activities: Record and Explain (R&E),
Experiment and Discover (E&D), and Design and Justify (D&J) .
R&E and E&D activities received overwhelming positive
comments. Both activities seemed to help students learn the
language element of programming. Comments on D&J

activities, nevertheless, received mixed blessings. Some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

participants thought D&J activities related very well to the
problem-solving or algorithm side of programming. Some
students complained about the time it took for the
activities. Because of the time constraint, D&J activities
tend to elevate levels of anxiety among some students
especially in a few labs when the D&J activities were too
long. The culprit of the anxiety could have stemmed from
the instructor’s inability to properly estimate the length
of the exercise problem and the unpredictability of the

computers and the network.

Conclusions and Recommendations

The laboratory model for the freshman programming
course has been developed and tested. The newly developed
lab was well-received and provided an excellent element
which augmented the traditional instructional elements such
as lectures, examinations, and written and programming
assignments. Students have not only embraced the lab
concept as a teaching and learning tool in programming, but
they also considered the new element more important than all
the traditional instructional elements.

The success, however, has not been without cost. Owing

to the lack of graduate teaching assistants, the added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138
contact hours in the lab have been the socurce of debate

within the computer science department regarding teaching
load. The 3 lab sections occupied 2 laboratory facilities
for a total of 9 hours a week. If the policy of one student
per machine were to be implemented, there would need to be 6
lab sections and thus 18 lab hours a week in the same 2 lab
facilities. With two lab assistants per lab, the computer
science department needs to budget additional part-time
money (about $3500 each semester @ $6.5/hour) to pay the lab
assistants.

Elements within the lab such as learning strategies and
learning activities play different roles in the newly
developed lab. It is the responsibility of the course
instructor or lab facilitator to ensure the lab conditions

are favorable for learning.

Boginning-of-Scn.st.r Assessment

Students from several majors took the introductory
programming course because it was required. Previous
experience in programming or even computing cannot be
assumed for a freshman course. It is especially true for
non-computer science majors and non-traditional students.

Thus, a beginning programming course must be designed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

anticipate a heterogeneocus audience, and no assumption of

prior programming experience should be made.

End-of-Semester Assessment

From the end-of-semester assessment questionnaires,
students considered the lab component of the course
extremely valuable. In fact, the lab part of the freshman
programming course was rated more important than any other
components. The end-of-semester interxviews with
participants confirmed this finding. The newly developed lab
was a success. Thus, the lab component should be
incorporated in a beginning programming course. There may
still be a few bugs that needed to be work out, and perhaps,
new components can be added to enhance learning programming

in the lab.

Partners and Neighbors

The two rooms in which the labs were conducted could
not handle the number of students physically. The lab
environment created a collaborative learning climate for the
exchange of ideas (Knowles, 1984, p. 15). The sheer number
of 50 students with only 2 lab assistants unintentionally

encouraged students to cooperate and collaborate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

On the other hand, participants had numerous opinions
about how the collaboration should be done. Most of them
preferred working alone than with someone with dissimilar
prior programming experience. The teaming method that
students paired with whomever they wanted was a bad idea.
When students ocutnumbered computers, more deliberate method
should be used for choosing or assigning partner to better
the collaborative learning climate. Students cared more
about the prior programming experience of their partners
than other factors such as gender, age, or major. Cases
should be avoided where one partner “did not know what was
going on” because the partner “controlled the keyboard and
went too fast” or where one partner feels the other partner
“had no business in a programming course.”

Students should work alone in a beginning programming
course if it is possible because “watching it done is
different from doing it” and students need to “try every
tool in the Turbo environment to every concept in C.” For
heavy task-oriented activities, groups may side-track enerxgy
toward relationship tasks instead of toward the task. Thus,
labs need to have enough machines for each student to work

alone.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Physical Environment

Regardless of the partnership circumstances, the
physical environment can play an inpo?tant role in learning
how to program in the lab. The physical setup of the labs
including the computers must be viewed as resources, and the
facilitator must encourage students to devise strategies to
utilize them (Brookfield, 1986, p. 102). In this study,
participants made numerocus comments about the physical
environments. Physical comfort is clearly important if
students are captive for 3 straight hours. Enough space
must also be provided to encourage discussions among
teammates or neighbors. Even the position of each computer
or at least the reset button can play a role in learning how

to program.

On-line Manual Versus Printed Manual

With the storage technology today, students will
clearly choose on-line manual over printed ones because the
two forms of manuals are identical in details now. The
difference between the two forms is the time it take to find
a command or the syntax of a keyword. On-line manuals are
more efficient than the printed ones for students in a

programming class. The on-line manual provides one key

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142
stroke to get to the page where the printed manual would be.

More importantly, all programming examples can be copied and
pasted onto the programmer’s working window. As a matter of
fact, students in the lab used the printed manuals only

twice in all 15 weeks.

Post-lab Write-ups
The write-up portion of the lab report is designed to

help students to get in-depth insights about an algorithm, a
whole program, or a program segment. It is a major learning
part of every lab assignment. For some students, the write-
ups are used for reflective learning, and thus should not be
done in a hurry. Some students preferred to turn in the lab
report together with the write-ups the day after the lab.
More in-depth questions could be asked in the lab repoxt if
a post-lab write-up is used in conjunction with an in-lab
one. The in-lab and post-lab write-ups are not mutually
exclusive. Their usage can be based on the lab particular
activities. Thus, to alleviate unnecessary anxiety for
students and to enhance reflective learning, write-ups

should be done as post-lab assignments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143
Teaching and Learning Activities

The three activities of Record and Explain (REGE),
Experiment and Discover (E&D), and Design and Justify (D&J)
can be used individually or in any combination depending on
the material to be learned. R&E and E&D received
overwhelming positive comments. Comments on D&J, on the
other hand, were mixed. One cognitive advantage of learning
in the lab is the way it forces students to experiment in a
structured fashion. For participants who were initially
reluctant to modify the given programs, these type of
activities encouraged them to find the joy of eventually
understanding other peocple’s code.

Students may feel overwhelmed when they are given a
whole program to complete in 3 hours as in the D&J
activities. If they can complete their design and go over
their ideas with one of the lab assistants or facilitator to
make sure that they are on the right track, turning in their
program or their algorithm with justification on the
following day may facilitate learning. This approach to
doing D&J activities coincides with the post-lab write-ups

idea.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
Lab Assistants

The Role of Lab Assistants. Lab Assistants are
important to the success of the lab in which students learn
how to program. There were numercus comments on the issue
of assistance in the lab. The feedback from participants
were mostly positive. Some of the negative comments were
dealt with immediately such as the “no-touching policy,” in
which assistants were instructed not to touch students’

keyboards or mice.

Weekly Meetings. Weekly meetings play a vital role in

the success of the lab program. Lab assistants need to be
familiar with each lab before it is given in order to assist
students efficiently. The weekly meeting can also be used
to adjust the method of assistance. Some positive or
negative comments can be dealt with instantanecusly. Since
these assistants are not trained teacher, improvements
should be made from week to week. For example, the “no-
touching” policy was implemented after the eighth week of
the new lab because some assistants took over the keyboard
and finished the programs for the students without
explaining to the students what caused their programs not to

work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
In the beginning of the course, lab assistants should

be trained to provide assistance equally. They should be
advised not to take over students’ project and especially
not to control their keyboard. They must also not change
the students approach drastically to solving the problem
unless the approach is total wrong. The lab assistants must
understand individual student’s solution to the lab problems
and guide the student to complete each lab problem. They
should not introduce concepts that have not been covered in

the lectures to improve the program on which the students

are working.

Same Day Labs

In the mid-semester interviews, almost half of the
participants mentioned that shorter labs with less concepts
covered would alleviate some of their anxiety toward the
amount of work in each lab. When the idea was introduced to
other participants, they all agreed with the idea and said
they were eager to try if it could be implemented in the
following programming course. The format of a programming
course in which two separate lectures on 2 different days
followed by a 3-hour lab on yet another day may not be the

best for learning. Instead of a full 3-hour lab each week,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146
2 shorter labs may be used every week, and each lecture is

followed by the short lab which covers only the concept of
the day. Thus, hands-on activities can be short and
students can learn in small steps. The lectures and labs
can be more coherent. Both students and instructors can
receive daily feedback. With this approach, the lab portion
of the course can become the focal point rather than the

supplement to the lectures.

Recommendations for Further Research

Closed-laboratory in the introductory programming
course has been proven to be an effective learning tool
(Thweat, 1994, p. 81l). This study confirms that it also
works in a small 4-year engineering school. This study also
describes how students learn in this situation. Future
research could examine if this lab model could be applied to
other computer science courses especially lower division
programming courses. Additional research would be
beneficial related to the effect of learning style has on
students in a programming lab (Marshall, 1995). More could
be learned about students’ learning strategies with respect

to learning activities and whether explicit instructions in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

learning strategies would be effective. It may also be
worth-while to do a study on same-day labs.

Internal elements in the lab are, however, not used
universally. Computer science lab infrastructure advocated
by pioneers in the field should also be investigated. For
example, the DYNALAB (Birch & Associates, 1995) provides
visualization of when programming statements are executed,
and “course-ware” (Lin & Associates, 1996) provides
interactive programs for students to experiment with
different concepts and visualize the walk-through of
algorithms. One could also examine ideas such as using a
subset of a language instead of the full implementation, as

a teaching tool as in Education C (Ruckert & Halpern, 1993,

pp. 6-9).

The Future

The laboratory component of the beginning programming
course at Montana Tech represents the future direction of
the computer science department. The hands-on ézagnatic
approach is consistent with the mission of Montana Tech as
well as with its other engineering curricula. By learning
more about how students approach the new lab, instructors

can select strategies and design activities which will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148
improve learning. By gaining more insights about lab

learning in the field of computing, similar approaches can
be tested and applied to other courses.

Professors who went through computer science programs
when there was no lab may not see the need for the new
paradigm. Other instructors who use lectures as the only
form of teaching may also be uncomfortable with the change.
More importantly, the infrastructure is still being
developed and most ideas have not been tested as in other
science fields with a longer history than computing. Lab
books for computer labs are scarce. The vast number of
different languages being used may have been one of the
reasons why publishers are slow and reluctant to lend a
supporting hand.

There is a movement in the field of computer science to
utilize labs to help students learn. The job of the
educators who have used the lab approach to enrich students’
learning experience is to inspire colleagues through
meetings within their departments, computer science
conferences, and the literature; to train lab assistants; to
test other appropriate lab learning activities; to convince

administrators to support the approach financially.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

REFERENCES CITED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1s0

Abrial, J. R. (1980). The specification language Z: basic
library, programming group. Oxford University, United
Kingdom.

ACM Curriculum Committee on Computer Science (1979).
Curriculum 78: Recommendations for the undergraduate
program in computer science. Communications of the ACM,
22(3), 147-166.

ACM Education Board (1989). Computer science as a
Discipline. Communications of ACM, 32(1), 9-23.

ACM/IEEE-CS Joint Curriculum Task Force Report (1991):
Computing Curricula 1991. Communications of ACM, 34(6),
69-84.

Adams, F. (1975). Unearthing seeds of fire: The idea of
Highlander. Winston-Salem, N.C.: John F. Blair
Publisher.

Anderson, C. L. (1991). Educating beyond the campus. Human
Ecology, Winter Forum, 16-19.

Anderson, J. R. (1980). Cognitive psychology and its
implications. San Francisco: W.H. Freeman and

Company.

Backus, J. (1976). Programming in America in the 1950s--Some
personal impression. International Research Conference

on the History of Computing (pp. 125-136). Los Alamos

Scientific Laboratories, New Mexico.

Bernstein, D. D. (1991). Comfort and experience with
computing: Are they the same for women and men?.
Special Interest Group C uter Science Education
(SIGCSE) Bulletin, 23(3), 57-64.

Bierna, M. J. (1993). Teaching Tools for Data Structures

and algorithms. Special Interxest Group Computer Science
Education (SIGCSE) Bulletin, 25(4), 9-12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

Birch, M. R., Boroni, C. M., Goosey, F. W., Patton, S. D.,
Poole, D. K., Pratt, C. M., & Ross, R. J. (1995).
DYNALAB -- A Dynamic Computer Science Laboratory
Infrastructure Featuring Program Animation. Twenty-
sixth SIGCSE Technical Symposium on Computer Science
Education (pp. 29-33). Nashville, Tennessee.

Bloom, B. S., & Associates. (1956). Taxonomy of
educational objectives handbook: Cognitive Domain.
New York: Mckay.

Booch, G. (1994). Object-oriented analysis and design with
applications. Redwood City, CA: The Benjamin/Cummings
Publishing, inc.

Breuer S., & Zwas G. (1993). Numerical mathematics: A
laboratoxry approach. Cambridge University Press.

Brookfield, S.D. (1986). Understanding and facilitating
adult learning. San Fransico: Jossey-Bass.

Brown, A. L., & Palincsar, A. S. (1989). Guided cooperative
learning and individual knowledge acquisition. In L.
B. Resnick (BEd.), Knowing, learning, and instruction.
Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc.

Bryant, R., & Palma, P. D. (1993). A first course in
computer science for small four year CS program, A
Quarterly Publication of the Association for Computing
Machine Special Interest Group on C uter Science
Education (SIGCSE Bulletin), 25(2), 31-34.

Bruce, K. (1991) Creating a new model curriculum: A
rationale for Computing Curricula 1990. Education and

Computing, 7, 23-42.

Campbell, P. F., & McCabe, G. P. (1984). Predicting the
success of freshmen in a computer science major.
Communications of ACM, 27(11), 1108-1113.

Conti, G. J. (1977). Rebels with a cause: Myles Horton and
Paulo Freire. Community College Review, 5(1l), 36-43.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Conti, G. J., & Fellenz, R. A. (1991). Teaching adults.
Tribal College, 18-23.

Cross, K.P. (198l1). Adult as learners. San Fransico:
Jossey-Bass.

Darkenwald, G. G., & Merriam, S. (1982), Adult education:
Foundations of practice. New York: Harper & Row
Publishers.

Denning, P.J. (1992). Educating a new engineer.
Communications of the ACM, 35(12), 82-97.

Devore, J., & Peck, R. (1996) . Statistics: The exploration
and analysis of data. St. Paul, MN: West Publishing

Company.

Dewey, John (1938), Experience and education. New York:
Collier Books.

Dey, S., & Mand, L. R. (1992). Current trends in computer
curriculum: A survey of four-year program. Special

Interest Group Computer Science Education (SIGCSE)

Conference Proceeding (pp. 9-14), Kansas City,
Missouri.

Dijkstra, E. W. (1980). A programmer’'s early memories. In
N. Metropolis, J. Howlett, & G. Rota (Eds.), A history
of computing in the twentieth century. New York:
Academic Press.

Elias, J. L., & Merriam, S. (1980), Philosophical foundations
of adult education, Krieger Publishing Company.

Foster, L.S. (1992). C by Discovery (2nd Ed.), El Granda:
Scott/Jones Inc., Publisher.

Freire, P (1973). By learning they can teach. Convergence,
4(1), 1-3.

Friedman, L. W. (1991). Comparative programming languages.

Englewocod Cliff, NJ: Prentice Hall.

Gagne, R. W. (1966). The conditons of learning. New York:
Holt Rinehart Winston, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Gay, L. R. (1992). Educational research: Competencies for
analysis and applications. New York: Macmillan

Publishing Company.

Geitz, R. (1994), Concepts in the classroom, programming in
the lab. Twenty-fifth SIGCSE (Special Interest Group on
Computer Science Education) technical symposium on
computer science education (pp. 164-166). Phoenix,
Arizona.

Gersting, J. L., & Gemignani, M.C. (1988). The computer :
histoxry, uses & limitations. New York: Ardsley House.

Gibbs, N.E. (1989). The SEI education program: The challenge
of teaching future software engineers. Communications
of ACM, 32(5), 594-60S.

Gleick, J. (1988). Chaos: Making a new science. New York:
Penguin Books.

Guba, E. G. (1978). Toward a methodology of naturalistic
inquiry in educational evaluation. Los Angeles: Center
for the Study of Evaluation, UCLA Graduate School of
Evaluation.

Harrisberger, L., Heydinger, R., Seeley, J., & Talburtt, M.
(1976) . Experiential learning in engineering
education. Washington, D.C.: American Society for
Engineering Education.

Hartel, P. H. & Hertzberger, L. O. (1995). Paradigms and
laboratories in the core computer science curriculum:
An overview. Special Interest Group Computer Science
Education (SIGCSE) Bulletin, 27(4), 13 - 20.

Huck, S. W., Cormier, W. H., & Bounds, W. G. Jr. (1974).
Reading statistics and research. New York: Harper &
Row Publishers.

Impagliazzo, J., & Nagin, P. (1995). Computer science: A
breadth-first approach with C. New York: Wiley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Ivey, B. (1992). A case study of student learning in micro-

computer based chemistry laboratoxry. Unpublished

doctoral dissertation, Montana State University,
Bozeman.

Jastrow, R. (1987). Towards an intelligent man. In J.
Watson, (Ed.). Information Systems for Management.
Plano: Business Publications, Inc.

Johnson, D. W., Johnson R. T., & Smith K. A. (1991).
Cooperative learning: Increasing college faculty
instructional productivity, The George Washington
University, Washington, D.C.

Jung, J., & Brookshear J.G. (1994). Experiments in computer
science (C Version). Redwood City, CA: The
Benjamin/Cummings Publishing.

Kahn, K. (1996). Drawing on napkins, video-game animation,
and other ways to program computers. Communications of
ACM 39(8), 49-59.

Kernighan, B. W., & Ritchie. M. (1988). The C programming
language. Englewood Cliff, NJ: Prentice Hall.

Kidwell, P.A., & Ceruzzi, P.E. (1994). Landmarks in digital
computing. Washington, D.C.: Smithsonian Institute.

Knowles, M. S (1980), The modern practice of adult education:

From pedagogy to andragogy (2nd ed.), New York:
Cambridge Books.

Knowles, M. S., & Associates (1984), Andragogy in action--
Applying modexn principles of adult learning, San

Francisco: Jossey-Bass Publishers.

Knowles, M. S. (1986). Using learning contract. San
Francisco: Jossey-Bass Publishers.

Koffman, E. B. (1989). Pascal: Problem solving and program
design, Reading, MA: Addison-Wesley Publishing Company,
Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Knuth, D. E. (1973). The art of computer programming.
Reading, MA: Addison-Wesley Publishing.

Knuth, D.E. & Pardo, L.T. (1976). The early development of
programming languages. International Research

Conference on the History of Computing (pp. 197-264),

Los Alamos Scientific Laboratories, New Mexico.

Leonard, J. R. (1991) Using A software engineering approach
to CS 1: A comparative study of student performance, A
Quarterly Publication of the Association for Computing
Machinery Special Interest Group on Computer Science
Education (SIGCSE Bulletin), 23(4), 23 - 26.

Levy, S. P. (1995). Computer languages usage in CSl: Survey
results. Special Interest Group Computer Science
Education (SIGCSE) Bulletin, 27(3), 21-26.

Lin, J. M., Wu, C. C., & Chiou G. F. (1996), Critical
concepts in the development of courseware for CS

closed laboratories, Conference on Integrating
Technology into Computer Science Education (pp. 14-

19) . Barcelona, Spain.

Lodsdon, T. (1980). Computer and social controversy.

Rockville: MD: Computer Science Press.

Lorenz, M. (1993). Object-oriented software develo nt--A
practical guide. Englewocod Cliffs: Prentice Hall.

Mageau, T. (1990). Teaching and Learning On-line.
Electronic Learning, 2, 26-30.

Marshall, L. (1995). Computers and Learning. Unpublished
doctoral dissertation, Montana State University,
Bozeman.

Mclave, S. (1986). Probability and statistics for
engineers (2nd ed.). Boston: PWS Publising.

Merriam, S. B. (1988). Case study research in education: A
gqualitative approach. San Fransico: Jossey-Bass.

Merriam, S. B., & Caffarella, R. S. (1991). Learning in
adulthood. San Fransico: Jossey-Bass.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Moreau, R. (1984). The computer comes of age: The pecple,
The hardware, and the software. Cambridge: MIT Press.

Morris, J. M. (1992) The effect of an introductory computer
course on the attitudes of older adults towards
computers. Twenty-third SIGCSE Technical Symposium on
Computer Science Education (pp. 72-75). Kansas City,
Missouri.

Moyer, W. (1990). An interview with Myles Horton. 1In R.
Fellenz & G. Conti (Eds.), Social environment and
adult learning, Bozeman: Center for Adult Learning
Research, Montana State University.

National Science Foundation (1992), America's future: A
report of the Presidential Young Investigators
Colloquium on U.S. Engineering, Mathematics, and
Science Education for the Year 2010 and Beyond.
Washington, D.C.: Directorate for Education and Human
Resource.

Newstrom, J. W., & Scannel, E. E. (1980). Games trainers
play: Experiential learning exexcise. New York:
McGraw—~Hill Inc.

Paxton, J., Ross, R. J., & Starkey, J. D. (1993). An
integrated, breadth-first computer science curriculum
based on Computing Curriculum 1991. Twenty-fourth
SIGCSE (Special Interest Group on Computer Science

Education) technical symposium on computer science

education (pp. 68-72), Indianapolis, Indiana.

Paxton, J., Ross, R. J., & Starkey, J. D. (1994). A
methodology for teaching and integrated Computer

Science Curriculum, Twenty-fifth SIGCSE (Special
Interest Group on Computer Science Education) technical

symposium on computer science education (pp. 1-5),

Phoenix, Arizona.

Plato, (1970). Meno (G. Grube Trans.). Indianapolis:
Hackett Publishing Company, Inec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

Prather, R. E. (1992). Computer Science in an underxgraduate
liberal arts and sciences setting, Special Interest
Group Computer Science Education (SIGCSE) Bulletin,

24 (2), 59-64.

Roberge, J. & Suriano, C. (1994) Using Laboratories to
Teach Software Engineering Principles in the
Introductory Computer Scienec Curriculum. Twenty-fifth
SIGCSE (Special Interest Group on Computer Science
Education) technical symposium on computer science
education (pp. 106-110), Phoenix, Arizona.

Roger, C. R. (1969). Freedom to learn. Columbus: Charles
E. Merrill.

Seaman, D. F., & Fellenz, R. A. (1989). Effective strategies
for teaching adults. Columbus, Ohio: Merrill
Publishing Company.

Sebesta, R. W. (1996). Concepts of programming languages.
Reading, MA: Addison-Wesley Publishing Company.

Shaw, M. (1991). Informatics for a new century: computing
education for the 1990s and beyond. Education and

Computing, 7, 9-17.

Shiflet A.B. (1995). Problem solving in C including breadth
and laboratories. St. Paul, MN: West Publishing.

Skinner, B. F. (1974). About bshaviorism. New York: Alfred
A. Knopf.

Starkey, J. D., & Ross, R. J. (1984). Fundamental
programming with Pascal. St. Paul, MN: West Publishing
Company .

Steinaker, N., & Bell, M. R. (January, 1975). A proposed
taxonomy of educational objectives: The Experiential
Domain, Educational Technology, 14 - 16.

Sullivan D. R. (1990). Computing today. Palo Alto, CA:
Houghton Mifflin Company.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Thweatt, M (1994). CSl1l closed lab vs. open lab experiment.
Twenty-fifth SIGCSE (Special Interest Group on Computer
Science Education) Technical Symposium on Computer
Science Education (pp. 80-82) . Phoenix, Arizona.

Tucker, A. B., Bernat, A. P., Bradley, W. J., Cupper, R. D.,

& Scragg, G. W. (1995). Fundamentals of computing I.
New York: McGraw-Hill, Inc.

Tucker, A. B., & Garnick, D. K. (1991). Recent evolution of
the introductory curriculum in computing. Education and

Computing, 7, 43-60.

Weinberg, G. M. (1971). The psychology of computer
programming. New York: Van Nostrand Reinhold.

White, M. A. (1988). The third learning revolution.
Electronic Learning, 7(4), 6-7.

Winograd, T. (1983). Learning as a cognitive process--
Syntax. Reading, MA: Addison Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

APPENDICES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

APPENDIX A

BEGINNING-OF-SEMESTER SURVEY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lel

CS210 Introduction to Computer Science I Fall 1996

We, the faculty of the Computer Science Department, are
interested in improving this course as much as we can. We
appreciate it very much if you could just take about ten
minutes to £fill out the following questionnaires as
honestly as you can. Please write legibly.

Name Majozx: Age:

Please circle one in each of the following questions:
1. Gender: Male Female

2. Year in school:

Freshman Sophomore Junior Senior Graduate
3. Is this class required in your major? Yes No
4. Have you had programming experience? Yes No

if yes, please elaborate

Language Number of vears School/Course
S. Have you used a computer before this class? Yes No

if yes, what operating systems have you used?
DOS 0s2 Windows UNIX VMS unknown

others (list)

name all software packages you have used:

6. Do you own a personal computer? Yes No
if yes, what?
286 386 486 Pentium Apple Mac

othexrs (list)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

APPENDIX B

END-SEMESTER SURVEY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

CS210 Introduction to Computer Science I
Course Evaluation

We, the faculty of the Computer Science Department, are
interested in improving this course as much as we can. We
appreciate it very much if you could just take about ten
minutes to f£fill out the following questionnaires as
honestly as you can. Please write legibly. No one will
read any of this before the grades have turned in.

1. Rank the following items in the order of importance to
learning in this class (the most important item should be
ranked number 1, and so on)

Lectures and text

Programming Assignments

Tests

Labs

Help from tutor and/or instructor

2. How can the lab. be improved?

3. How can the course be improved?

4. What feature(s) of this course should be kept?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le64

APPENDIX C

LAB EXERCISE WITH RECORD AND EXPLAIN ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

CS210 Introduction to Computer Science I
Lab Report 6 Logic and Truth Tables

1. Extract the following file from n:\\mtntsb\lab_kwan.
The purpose of this program is obvious. Compile, link, and
run the program. Record the results.
To connect to drive n:

go to DOS shell

type in use n: \\mtntsb\lab_kwan
The file is in the subdirectory cs210

#include <stdio.h>
void main ()
{ int operandl, operand2;

printf ("\n\n\nTruth table of logical operation &&
(and) \n\n") ;

printf ("operand 1 operand 2 operand 1 &&
operand2\n") ;
printf("--~-----remmme e \n")

operand 1 = 0; operand2 = 0; /* both false */

printf ("%$4d %12d %20d\n",operandl, operand2, operandl &&
operand?2) ;

operand 1 = 0; operand2 = 1;

printf ("%4d %12d %20d\n",operandl, operand2, operandl &&
operand?2) ;

operand 1 = 1; operand2 = 0;

printf ("%$4d %12d %20d\n",operandl, operand2, operandl &&
operand2) ;

operand 1 = 1; operand2 = 1; /* both true */
printf("%4d %12d %20d\n",operandl, operand2, operandl &&
operand2?) ;

printf ("\n\n\n");

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

2. Does the result correspond to the "ham and cheese"
example in class? If yes, in what way?

3. Modify the program to output the truth table for the
logical operator ||.

4. Prove the DeMorgan's Theorem ! (opl || op2) is
equivalent to !opl && !op2 by generating two truth tables.
Your program should generate two tables as follow:

Truth table of logical operation not(opl or op2)

- ————— — ————————— ————— —— ———— . —— —— ——— —— — . ——— ——————. ——

Truth table of logical operation (not opl) and (not op2)

opl op2 lopl 'op2 'opl && lop2
0] 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

5. turn in a hard copy of the program in step 3 and step 4
with test runs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

APPENDIX D

LAB EXERCISE WITH EXPERIMENT AND DISCOVER ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

CS210 Introduction to Computer Science I
Lab Report 9 Sequential VS Binary

Nanme : Name :

In this exercises in this laboratory, we add improvements
to the program in Example 5.16 of Section 5.4. That

program employed the function PlayGame to play a guessing
game. After each addition, be sure to test the program.
To make debugging easier, the program, which is the file
LABOS51.c on your disk, has a guessing range of 0 through 9.
Copy this file onto your disk.

1. This exercise examines two techniques for making
guesses. Play the game several times to get a feel for
its action. Try each of the following methods for
playing the games:

a. Guess the number in order, 0, 1, 2, .., until
hitting the target.

b. Guess the middle number of the range each time until
hitting the target. For example, for a range 0-9
with even number of choices, the first guess would
be 4 or 5. Suppose we type 4, and the computer
responds “Guess higher.” Then our range is 5-9.
With an odd number of choices, the middle is 7.
The process continues until you find the number.

The first method is called a sequential search, and the
second is called a binary searxch. For each method,
what is the least number of guesses you have to make?
What is the most? Try the method you like best several
times on the range from 0-99. What is the most number
of guesses for each method? What is the most number of
guesses for each method for the range 0-1022? Which
method is faster for playing the game? Explain your
answer, giving several examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

APPENDIX E

LAB EXERCISE WITH DESIGN AND JUSTIFY ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

CS210 Introduction to Computer Science I
Lab Report 10

Name : Name:

1. Design an algorithm to print out all possible outcomes
of lotto ACM. Assume ACM uses a lottery for fund raising
purposes and lotto ACM has ten balls labeled ‘A’ to ‘J’.
Three balls are drawn at random each week. Print all
possible tickets as below with 8 per line and the total
number of tickets at the end.

lotto ACM

ABC ABD ABE ABF ABG ABH ABI ABJ
ACD ACE ACF ACG ACH ACI ACJ ADE
ADF ADG ADH ADI ADJ AEF AEG AEH
AEYI AEJ AFG AFH AFI AFJ AGH AGI
AGJ AHI AHJ AIJ BCD BCE BCEF BCG
BCH BCI BCJ BDE BDF BDG BDH BDI
BDJ BEF BEG BEH BEI BEJ BFG BFH
BFI BFJ BGH BGI BGJ BHI BHJ BIJ
CDE CDF CDG CDH CDI <CDJ CEF CEG
CEH CEI CEJ CFG CFH CFI CFJ CGH
CGI CGJ CHI CHJ CIJ DEF DEG DEH
DEI DEJ DFG DFH DFI DFJ DGH DGI
DGJ DHI DHJ DIJ EFG EFH EFI EFJ
EGH EGI EGJ EHI EHJ EIJ FGH FGI
FGJ FHI FHJ FIJ GHI GHJ GIJ HIJ

There are 120 tickets.
2. Justify your design by a walk through.

3. Discuss the changes you would have to make to print all
the tickets if lotto ACM has 45 balls labeled 1 to 45 and
each drawing draws 6 balls.

** If you test your idea with a program, BN BeE g
o Bllunless you are going to plant several t:cos noxt
sz:.ng (consider the number of possible tickets!!!) and
having the program won’t give you any more pomtc ! I.f you
zoal.ly want to write the program, please [N HL s
R of possible tickets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

