
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter free, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI
A Bell &. Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LEARNING PROGRAMMING IN COMPUTER LABORATORIES
— A CASE STUDY

by
Rcggx* Ching-Ping Kwtn

A thesis subsdttsd in partial fulfillment
of the requirements for the degree

of

Doctor of Education

in
Adult and Higher Education

MONTANA STATE UNIVERSITY Boseman, Montana
December 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9815939

UMI Microform 9815939
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL

of a t h u i s submitted by

Reggie Ching-Ping Kwan

This thesis has been read by each member of the thesis
committee and has been found to be satisfactory regarding
content, English usage, format, citations, bibliographic
style, and consistency, and is ready for submission to the
College of Graduate Studies.

/<A — ^ 7 ^

Date Chairpenon, Graduate Committee

Approved for the Hajor Department

Date

Date

Approved for the College of Graduate Studies

ian

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STATEMENT OF PERMISSION TO USE

In ps«s«nting this thssis in paxtial fulfillment of the
requirements for a doctoral degree at Montana State
University— Bozeman, I agree that the Library shall make it
available to borrowers under rules of the Library. I
further agree that copying of this thesis is allowable only
for scholarly purposes, consistent with the "fair use" as
prescribed in the U.S. Copyright Law. Requests for
extensive copying or reproduction of this thesis should be
referred to University Microfilms International, 300 North
Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted
"the exclusive right to reproduce and distribute my
dissertation in and from microfilm along with the non
exclusive right to reproduce and distribute by abstract in
any fozsiat in whole or in part."

1 f/<?/<?£

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

page
LIST OF TABLES viii
LIST OF FIGURES... ix
ABSTRACT.. x
1. INTRODUCTION.. 1

Living with Computers............................ 1
Computer Programming............................. 4
An Introductory Course in Computer Science..... 7
Montana Tech's Computer Science Program......... 11

The New CS1 course at Montana Tech.......... 12
The New Laboratory in CS1.................... 14

Problem.. 16
Purpose.. 17
Research Questions................................ 17
Significance of Study............................ 17
Definition of Terms............................... 19
Limitations... 21
Delimitations....................................... 21
Assumptions... 21

2. BACKGROUND AND REVIEW OF LITERATURE.................. 23
History of Computing................................ 23

The Birth of the Computer..................... 23
Generations of Languages and Hardware........ 25
The C Language.................................. 30

Computing As A Discipline........................... 33
Laboratory Activities.......................... 35

Record and Explain........................ 35
Experiment and Discover.................. 38
Design and Justify........................ 40

Computers and Cognition............................. 42
Technology and Education....................... 42
Computers in Education......................... 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

TABLE OF CONTENTS— Continued.
page

Adult Leamecs in Computing Science......... 45
Educational Objectives....................... 47
Model o£ Xnstxuctions: Andsagogy and

Pedagogy................................. 50
Laboratory Learning.......................... 53

3. METHODOLOGY... 55
Naturalistic Inquiry............................... 55
Case Studies....................................... 59
Research Population................................ 61
Procedures.. 64

Observation................................... 66
The Physical Environment............... 66
The Programming Environment............ 69
Teams.................................... 72
Lab Assistants.......................... 72

Interview Questions.......................... 73
4 . FINDINGS.. 78

Beginning of Semester Survey...................... 78
End-o£-Semester Survey............................ 79
Observation and Interview Results 80

The Physical Environment..................... 81
The Circular Lab........................ 81
The Rectangular Lab..................... 84

The Programming Environment.................. 87
Learning Strategies.......................... 89

Working in Teams........................ 89
Less Experienced with MCre

Experience Team Pairings 91
Similar Experience Team

Pairing....................... 94
Lab Assistants.......................... 96

Students' Point o£ View.......... 97
Lab assistants' Point o£ View 99

Lab Manuals.............................. 101
The Time Factor......................... 102
Background in Mathematics.............. 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi
TABLE OF CONTENTS— Continutd

page
Cooperative Learning Environment....... Ill
Gender Differences...................... 113
The Age Factor.......................... 115
The Language C 117
Write-ups................................ 119

Teaching and Learning Activities............ 123
Record and Explain...................... 123
Experiment and Discover................ 126
Design and Justify...................... 128

Interview Summary............................. 132
5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS......... 134

Summary... 134
Conclusions and Recommendations................... 137

Beginning-of-Semester Assessment............ 138
End-of-Semes ter Assessment................... 139
Partners and Neighbors....................... 139
Phys ical Environment......................... 141
On-line Help Versus Printed Manual.......... 141
Post-lab Write-ups........................... 142
Teaching and Learning Activities............. 143
Lab Assistants................................ 144

The Role of Lab Assistants............. 144
Weekly Meetings......................... 144

Same Day Labs................................. 145
Recommendations for Further Research............. 146
The Future.. 147

REFERENCES CITED... 149
APPENDICES... 159

Appendix A Beginning-of-Semester Survey......... 160
Appendix B End-of-Semester Survey............... 162
Appendix C Lab Exercise with Record and

Explsin Activities.................... 164
Appendix D Lab Exercise with Experiment and

Discover Activities................... 167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

Appendix

vii
TABLE OF CONTENTS— Continued

Lab Exercise with Design and
Justify Activities..........

page

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

LIST OF TABLES
Table Page
1. Generations of Computer Hardware................ 29
2. Assumptions of the Andragogical and

Pedagogical Models............................... 51

3. Program Design for the Pedagogical Model
and Andragogical Model.......................... 52

4. Profiles of Students............................. 62
5. End-of-Semes ter Survey........................... 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

XX

LIST OF FIGURES
Figure Page
1. Machine and Assembly Languages................ 26
2. The Result of tha Program Logical And........ 36
3. Scenarios of a Ham and Cheese Sandwich....... 37
4. The Result of the Program Logical Or......... 39
5. Bloom's Classification of Educational

Objectives...................................... 47
6. Stelnaker's ClasslfIcatlons of the

Experimental Domain............................ 48
7. Gagne's Learning Hierarchy.................... 50
8. The Layout of the Rectangular Lab............. 68
9. The Layout of the Circular Lab................ 70

10. Program Segment that Produced the Wrong
Sum.. 124

11. Program Segment that Produced the Right
Sum.. 126

12. Algorithm 1 for the Lottery Program.......... 129
13. Algorithm 2 for the Lottery Program.......... 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

ABSTRACT

Th« Computer Science Department at Montana Tech of the
University of Montana has designed and implemented a
programming laboratory for the introduction to computer
science course. The purpose of this study was to
investigate how students utilised the newly designed
laboratory in learning how to program and to analyze the
strengths and weaknesses of the setup in the laboratory
physically as well as different teaching and learning
activities in the lab.

The study was done by observing approximately 150
students in the laboratory for 15 weeks. Assessment surveys
were administered in the beginning of the semester and again
at the end. Two rounds of in-depth interviews were
conducted in the middle of the semester and then again at
the end with 21 participants.

The study concentrated on students' learning strategies
and lab learning activities. Results from the survey and
interviews indicated the laboratory portion of the course
was a major part of students' learning.

The study also revealed the importance of the physical
layout of the laboratory. Most students preferred working
alone or having a partner with similar prior experience.
Students also considered classmates in their vicinity to be
a good source for discussions. Most students felt
comfortable seeking help from lab assistants. Gender made a
small difference in terms of the number and the type of
questions asked. All students considered printed lab manuals
to be useless and preferred on-line manuals. The language C
and the Turbo programming environment did not present any
problem in the lab. The Turbo debugger was the most popular
tool in the Turbo environment.

The lab activities record and explain as well as
experiment and discover were well received. The design and
justify activities received some complaints and caused most
problems in students' lab reports. However, students regard
all three activities instrumental in their learning. The
time needed for the design and justify activity was
unpredictable.

Many participants of this study suggested a different
format of the lab. Some also recommended modifications of
the lab report especially the write-up portion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER 1

INTRODUCTION

living with Conputra
T«l«viaion, t«l«phoM, antonobilas, and other modern

technological developments have revolutionised the way
people live, work, and play. The computer is doing no less.

The typical computer user today is no longer the
stereotype Ph.D. who works in an underground laboratory with
a 4-foot steel door. Whether making a phone call, driving
an automobile, or adjusting a programmable thermostat,
people unknowingly use the computer and its programs. The
benefits of using computers are taken for granted. Unless
something goes wrong, people seldom realize how much they
rely on computers. In fact, it is hard to escape computers,
and they are even changing the way people think.

Computers provide tools that most people cannot imagine
to live without. These include devices such as word
processors, database systems, multi-media systems,
electronic spreadsheets, desktop publishing, and the
Internet. These are tools that professional use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The impacts of computers on sociological aspects of the
human condition has drawn much attention. Jastrow tried to
address the growth of computing power and relate this growth
to human evolution (1987, pp. 512-513) by pointing out that
computers are part of many jobs, if not all. Computers
monitor our financial activities, provide diagnoses and
treatments, guide missiles, print payroll checks; the list
goes on and on. Information is being exchanged
electronically around the world at an astonishing speed.
People have the opportunity to be more "informed" than at
any time in history. The future may, indeed, consist of
symbiotic relationship where computers minister to human's
social and economic needs.

Besides speed and storage, computers are acquiring more
and more human capabilities such as speech and virtual
reality, or other simulation-related advances. The
technology of coaqputing is moving so fast that the present
way of doing computing such as the using a keyboard could be
rapidly becoming obsolete (Kahn, 1996, p. 49) . As user-
computer communication becomes more natural, some people
find, especially the "MTV generation," computers so
interesting and stimulating that they prefer the company of
computers over human (Saffo, 1994, pp. 16-17).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
Living with the good, provided by computers also means

living with the dangers created by them. Like any major
innovation, computers are not without problems. Computer
game addiction, electronic anfeezslements, as well as relying
too much on computers are some of the hazards of living with
them.

The trust society places in computers should be
alarming. It is one thing to rely on a computer to add up
scores for the Miss America Pageant, but trusting a computer
to decide cases in "the computer court" is another (Gersting
6 Gemgnani, 1988, pp. 270-271).

With both this good and the bad characteristics,
computers are everywhere, and their use is increasing.
Regardless of the potential harms of computers, they can no
doubt help in every imaginable way, and are stiziulating
diverse changes in society. For example, to compete with MTV
on a fair playing field, teachers from K-12 have started
using digitized motion video in the classroom (Mageau,
1990, p. 27). The Internet has already become an
indispensable learning tool because it is such a massive
inforziation delivery vehicle (Parker, 1996, p. TSW 1-11).
It is obvious that they are unavoidable and play an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
important role in daily life. Consequently, paopla ought to
know more about than.

Computar Proqg»— »ing
For a computar to function, it must hava its

hardwara and softwara working prgparly. While hardwara
rafars to physical davicas, softwara consists o£ tha non
physical parts or programs. Programs ara stap by stap
instructions that diract tha computar to do tha tasks
dasirad by tha oparator and to produca tha dasirad rasults.

Programming, tha writing o£ softwara, is a procass
which programs ara dasignad, writtan, and tastad. It was
onca considarad an art, somatimas a dark art, which was
understood only by a brilliant £aw who took graat prida in
their cra£t and which others could not comprehend. However,
as one of tha most famous computer scientists wrote as tha
first statement of his seven-volume series, entitled Tha Art
of Computar Programming,

Tha procass of preparing programs for a digital
computer is especially attractive, not only
because it can be economically and scientifically
rewarding, but also because it can be an aesthetic
experience much like composing poetry or music.
(Knuth, 1973, p. v)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
Though his hooka became the "biblas" of computar

acianca tha axt of programming haa mi.gratae!, through tha
ongoing revolution of computing, into a mixtura of art,
craft, and acianca in tha 1980'a (Starkay £ Roaa, 1984, p.
1) . Tha ravolution continuaa and ao doaa tha dabata of what
computar acianca ia. Aa far back aa 1971, Weinberg pointad
out that aoftwara ahould ba davalopad according to tha ago-*
laaa programming paradigm (pp. 47-65) . It waa auggaatad
that programs ahould ba davalopad according to atandardizad
mathoda that ara undaratandabla to kaap "artist" from
developing " in-maintainabla" programa. Wainbarg even want
a a far aa daacribing programming aa a "aocial activity"
(1971, pp. 67-93). Navarthalaaa, even in tha deaign stages
today, there are numerous mathoda, both simple and
sophisticated, to describe a solution. Methods range from
tha traditional flow-charts to tha formal and mathematical
description of Z-method (Abrial, 1980) , and
Class/Responsibilities/Collaborators (CRC) Cards (Booch,
1994, p. 159, pp. 237-239, Lorens, 1993, p. 118) in object
oriented programming. Compared to the early days,
programming takas a vary different approach today (Dijkstra,
1980, pp. 571-572) . New mathoda still coma up constantly.
As tha 1989 report of tha Association for Computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Machinery (ACM) Education Board asked, "la computer science
a science? An engineering discipline?" (p. 9) . Even the
Institute of Electrical and Electronic Engineers (IEEE) is
having more and more influence on computer science
curriculum. The close association between these two is
demonstrated by the fact that more than 35 universities with
computer science programs recently added a software
engineering program in the United States (Gibbs, 1989, pp.
601-604) , and most of them still have strong ties with their
respective computer science program.

Programming is a major part of computer science or
software engineering. The most common introductory course
in the computer science and software engineering curricula
is programming (p. 9) . It is true that computer science
encompasses far more than programming, and yet every
computing major should achieve competence in it (p. 11) .

Basic elements of learning how to program includes, at
least, the learning of a programming language and problem
solving skills in computing. Designing, implementing,
testing, and maintaining a program are all activities in
programming. Thus, computer programming is a continuous
process in which problem or problems are solved through some
systematic steps. The steps are usually referred to as the

with permission of the copyright owner. Further reproduction prohibited without permission.

"softwas* lifa cycle." The programming language is used
solely in the implementation step o£ the cycle.

An Introductory Course in Computer Science
CS 1, Computer Programming I, introduced by ACM

Curriculum Committee (ACM, 1978) is a generic course for
introduction to computer science in most colleges. It
covers both problem solving in computing and at least one
high-level language. A high-level language in computing
refers to a programming language which resembles natural
languages while a low-level language refers to a programming
language which is close to machine codes, i.e. 1' s and 0' s .
Problem solving shills in CS 1 are the development of simple
algorithms which are step by step solutions to problems. A
good algorithm described in pseudolanguage program (Starkey
& Ross, 1984, pp. 41-43) can be easily translated into a
high-level language. Students are expected to study
existing algorithms as well as develop their own. They then
implement the algorithms into a target language.

Although the first electronic computer was introduced
over 40 years ago, most computer science departments were
founded only in the last 20 years. A computer science
department usually emerged from a mathematics department,

with permission of the copyright owner. Further reproduction prohibited without permission.

8
and many ara still part of a aathamatics dapartaant. Once
in a while, a computer acianca program ia of farad through
tha college of anginaaring or buainaaa.

CS 1 haa gona through aiajor changaa in both tha
languagaa uaad and tha concepts covarad in tha laat 18 years
since tha firat comprehenaive guideline from ACM. However,
one thing which haa remained quite constant ia tha historic
tie between mathematics and computer acianca. As a result,
courses in computer science ara taught vary much like
mathematics. Instructors lecturing and students taking note
passively ara common scenes in computer science courses.

Despite this historic linkage, a fundamental separation
between computer science and mathematics ia inevitable at
least in ideology because "curriculum needs often stem from
the nature of the content itself" (Conti & Fallens, 1991, p.
21) . Furthermore, "teachers who do not vary their
strategies according to the content will fail to stimulate
the participants sufficiently to achieve their teaching
goals" (Seaman 8 Fallens, 1988, p. 15) . Even some
mathematics professors are using packages like Mathematics
or Maple to better the learning of different mathematical
concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
Owing to tho practical aspects of computer science as

well as the inadequacy of the "traditional" lectures and the
availability of hardware, more and more educators are
examining the emerging idea of "dosed laboratories" which
are often used in the teaching of physics as a method of
teaching computer science. Indeed, 53% of computer science
instructors in 4-year programs favored more supervised
laboratories (closed labs) with computer science students as
in the "physics model" (Dey & Mand, 1992, p. 13). Only 12%
of them remained happy with the "mathematics model" which
has been dominant in many computer science departments.

"Closed labs" are scheduled and supervised laboratory
learning experience. Students are captive as in lectures,
and they are expected to perform some tasks in the lab. Lab
reports may also be required. On the other hand, "open
labs" are unscheduled and unsupervised. Until recently,
they were just called programming assignments.

Physics, chemistry, and most engineering fields have
been running their laboratories for decades to provide
hands-on experience, to promote critical observation skills,
to encourage interactions among students in a controlled
environment, to get familiar with equipment similar to those
in the real world, and ultimately to enhance learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Computer seianc*, on tha othar hand, is a vary young field
which goes through major changes almost annually. However,
one trend that most computing educators agree on is the
increase utilisation o£ laboratories.

Some of the pioneers who utilise labs in computing
believe that they are not achieving the full potential of
laboratory experience:

Lab assigmnents are not designed to allow
students to discover important principles of
computing. Thus, students receive training
in program implementation rather than in the
process of experimentation, discovery and
evaluation which is more typical of advanced
work in computing. (Tucker & Garaick, 1991,
p. 46)

Though more and store schools have incorporated their
introductory course with a laboratory component, little is
known about how learning is enhanced by this classroom
component. However, Thweatt pointed out that closed lab "make
a positive difference" in examination scores (1994, pp. 80-
82) .

A new paradigm is emerging for education practitioners
in computer science knowledge and skills (Denning, 1992, p.
83) . The current sodel of education can be criticised
because it treats "learning as acquisition of knowledge, and
as an individual process" (p. 85). The "shifts in clearing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

of education” (p. 85) should traah lamming as a social
procass and campatanca should ba demonstrated in action (p.
85) . Instructors should not just ba prasantars or providers
of instructional services, they can ba coaches, guides, and
facilitator (Brookfield, 1986, pp. 123-146; Denning, 1992,
pp. 86-89) . In fact, new approaches such as breadth first
(Paxton, Ross, 6 Starkey, 1994, pp. 1-5), and software
engineering (Leonard, 1991, p. 23) are being tried in various
settings.

Montana Tech's Computer Science Program
Montana Tech is a small engineering college with a good

regional and international reputation especially in mining
and petroleum engineering. The use of laboratory in a
programming course is consistent with Montana Tech's
pragmatic hands-on approach in its other engineering
programs.

The Computer Science Department at Montana Tech was
founded in 1980 by a group of mathematicians with little or
no industrial and computing experience. it was modeled after
other computer science departments in that era. The design
of the program reflects an assumption in the department was
that anyone with a doctorate in mathematics can teach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

anything. Tha situation at Montana Tach is far fsoa uniqua.
Most cooputar scianca departments had and still have strong
tias with thair local mathematics dapartmants.

Tha computar scianca curriculum at Montana Tach was
loosaly basad on Curriculum 78 (ACM, 1978) . It was like a
scianca dagraa with two amphasas; ona was in computar scianca
and tha othar was in mathsmatics. Out of tha 13 faculty
maxnbars in tha department of mathamatics and computar
scianca, 11 wara mathematicians, 1 was a computer scientist,
and 1 was an engineer. Owing to tha necessity of getting
accreditation by Computar Scianca Accreditation Board (CSAB) ,
two major over-hauls hava bean dona since 1993. Ona of tha
major changes was tha introduction of computar laboratories
in programming classes.

Tha CS 1 Course at Montana Tach
CS 210 Introduction to Computar Scianca I at Montana

Tach is equivalent to CS 1 described in Curriculum 78 (pp.
60-63) . CS 1 at Montana Tach has bean a traditional three-
credit course that had three 50-minute lectures a weak
traditionally at Montana Tech. It has bean modified to two
50-minute lectures plus tha 3-hour closed laboratories each
weak. Thera ara othar major modifications to tha computar

with permission of the copyright owner. Further reproduction prohibited without permission.

13
science program at: Hontene Tech unrelated to this lab
concept.

Tha first languaga taught has been Pascal sinca tha
birth of tha cooputar science dapartmant at Montana Tach in
1981. However, this has baan chamgad to tha languaga C. This
lauiguaga chosan for Tach's CS 1 courses bacausa tha lauiguage
C is tha lauiguaga of choica in tha "raal-world." it staurtad
to ba tha first languaga introducad to studants in tha Autumn
of 1992. It is by no maaus tha most taachabla languaga, nor
tha most popular lauiguaga for CS 1. Only 14% of 4-yeaur
collagas cover tha lauiguaga C at all (Day 4 Mand, 1992, p.
11) . In addition, lass than 1% of tha universities auid 4-
yaar collage surveyed use C as thair introduction lauiguaga
(p. 10) . Tach is in a unique situation.

Although tha lata idea was first introducad by tha
Association for Computing Machinery in 1979, tha
implementation of tha concept did not catch on due to reasons
like availability of machines auid to soma extant tha tie with
mathematics. Thus, tha practice of laboratory
experimentation is relatively new, amd there aura not mauiy lab
books on tha maurket. Currently, there aura no studies in
published form on what works auid what does not from students'
point of view. Though Curricula 91 (ACM/IEEE-CS, 1991)

Reproduced with permission of the copyright owner Further reproduction prohibited without permission.

suggasta that tha uaa if closed lab ia a good idea, it falls
short of providing a concrata guidalina. Soma sciantists avan
go as far as suggasting that computer seianca is not a
scianca but an anginaaring diseiplina.

Although about 45% of tha CS 1 studants at Montana Tach
ara eanputar scianca majors, lass than 60% of them nova on to
CS 2. Evantually, only 28% of tha original group graduata
aach year. Considering that about tha ssaa number of students
transfer into and out of tha computer scianca program every
year, tha retention rata in computer scianca is extremely
low. In CS 1, approximstaly over 40% of studants ara lost,
and from CS 2 to their second year, 40% of tha remaining
studants drop out of tha program.

Tha New Laboratory in CS 1
Because of tha trends in tha field and in order to

address this retention problem, closad labs ware introducad
as a requirement for CS 1 in tha Autumn of 1996. Each lab
session is 3 hour long. Lab activities have baan used at
Montana Tach in tha computer literacy course to demonstrate
tha use of computer packages such as Microsoft Word and
Excel. Laboratory activities in CS 1 included experimenting
with short programs written for studants to execute in tha

with permission of the copyright owner. Further reproduction prohibited without permission.

lab as wall as programs that studants will produca. Tha
activities can ba divided into thraa stages of cognitive
processes of (a) Record and Explain where studants will
record tha results and report any expected and unexpected
phenomenon, (b) Experiment and Discover where students are
asked to modify working or semi-working programs to
investigate concepts learned in the lectures, and (c) Design
and Justify where students are also asked to design
algorithms from scratch. Students are required to include
design, analysis, implasientation, and testing in their
reports. All 3 activities require a write-up. The write-ups
are design for students to demonstrate the application of
concepts they learn in the lab by reflection. The write-ups
are done within the 3 hour lab period. All documents,
including design, programs, and write-ups, are turned in at
the end of each lab.

There are usually about 160 students in CS 1. They are
divided into two to three sections in both the lectures and
the laboratories. With around 55 students in each lab., 30
machines are needed to anticipate the inevitable "down-time"
even if students are organised in learning teasw. The
laboratory is set up in a room with 30 personal computers
arranged in two circles. The two circles are layered in

with permission of the copyright owner. Further reproduction prohibited without permission.

which the inner circle has its computers on regular tables
and the outer circle has its computers on drafting tables
which are higher than the standard tables. The arrangement
is designed for easy observation by the instructor. By
standing in the center of the circles, the instructor can
watch all screens without moving or disturbing the students.
By walking around the outside circle, the instructor can
observe all other laboratory activities like interactions
between partners and can look at the frustrations on
students1 faces.

Problem
Computer science as a discipline has always been based

on the "mathematics model." However, the computing field has
matured sufficiently to have its own model as a separate
discipline. There are positive changes emerging as computer
science develops its own paradigm, and one of those being
promoted is "closed labs." It is assumed that the added
contact-hours in a structured laboratory setting will benefit
students by leading to better learning. Hontana Tech has
implemented closed labs in its introductory computer science
program. However, little is known about how students actually
learn in the new setting.

with permission of the copyright owner. Further reproduction prohibited without permission.

17
P u g p O M

Th« puzpos* of this study was to dsseribs how studants
laaxn problem. solving skills and tha syntax and tha semantics
of tha languaga C in a closad computer laboratosy.

Rasaarch Quastions
Tha following ganaral quastions wara usad to axplora

how studants laaxn in a closad computer laboxatoxy:
1. How doas tha txansfax of concepts fxom lactuxas
to labs taka placa?
2. What laaxning stxategies do studants usa to
laaxn syntax and semantics in tha languaga C , and
what axa tha pexceptions of tha xasult?
3. What axa tha studants' attitudes towaxd
computex scianca as a xasult of tha lab
experience?
4. Why doas tha lab woxk ox fail fxom tha

studants' pexspective?
Specific quastions (saa p. 74) waxa usad in tha two
xounds of intexviews.

Significance of Study
Thexe axa savaxal axaas that need insights fox futuxe

modifications of tha newly developed "closad lab."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
Firstly, as mors instructors got on the laboratory band
wagon, it is vital to l s a m how students interact in a
programming lab. Such information will be helpful for
forming teams of students in the future. If working in teams
hinders learning, then this strategy should be avoided and
replaced by working individually. On the other hand, if a
collaborative learning team proves to be beneficial, the
investigation should go deeper to explore the advantages and
disadvantages of grouping students in different ways such as
with similar or different levels of expertise, with
different ages, with different gender, with different majors.

Secondly, the worthiness of the added contact hours
needs to be explored. At present, microcomputer labs are
used by a wide variety of courses at Montana Tech such as
freshmen writing and mine modeling. With the increasing
demands in the use of microcomputer labs, knowledge is needed
on the learning process in these labs so that informed
discussion can be made concerning the alleviation of this
expensive resource.

Thirdly, it is important for the computer science
department to know how different activities may affect the
learning of different programming topics. For instance, if
the technique "experiment and discover" takes too much time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
for the average studrnt, If Is critical to find out If the
technique "record and explain" is adequate in helping
students to better learn about concepts like arrays.

Fourthly, it is also important to know the students'
perceptions of the structured and predetermined activities.
As suggested by ACM (1989) , programming is only part of
computer science; the lab component can only be successful if
students find it engaging. Determining students' attitudes
toward the lab can reflect if the designed activities are
captivating.

Finally, the overall impacts of "closed lab" should be
investigated. Thus, insights related to how the learning
process takes place in the closed labs can be gathered.

Definition of Terms
The following terms will be used in later chapters:

Algorithm: A precise, unambiguous, step-by-step method of
doing a task in a finite amount of time. An algorithm
should be language independent.

Closed Lab: A scheduled and supervised laboratory in which
students are captive and expected to perform some
programming related tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Compiler: A translation program that rawritas high laval
languaga instructions into binary instructions or
machine coda which ara than ready for execution.

A C Compiler: A compiler that translates programs in tha
languaga C into tha designated machine coda.

Debugging; A process of finding and eliminating errors in a
program.

Open Lab: An unscheduled and unsupervised laboratory. Until
recently, an open lab was referred to as a programming
assignment.

Problem solving with the computer: A process from formulating
the algorithm to a computer program running
successfully for the prescribed problem.

Programming Environment: It is the collection of tools used
in the development of software. The collection may
only consist of a file systems, a text editor, and a
compiler (Sebesta, 1996, p. 3)

Pseudocode: It is a sequence of statements that are close to
a programming language, but more English-like, and free
of rigid syntax requirements.

Syntax of a programming language: A set of rules for forming
valid instructions of the language.

with permission of the copyright owner. Further reproduction prohibited without permission.

21
Semantics: Thm meaning of statements in programming

languages.
Running of a program: The machine successfully follows the

instructions in the program.

Limitations
Participants in this study were chosen from 3 sections

of freshmen introductory to computer science course. The
language chosen was C. It is possible that students at other
institutes may respond differently to the learning of another
language in the lab.

Delimitations
Participants were chosen for this study for their

major, age, gender, and initial experience in programming.
Majors ranged from computer science to business. Ages ranged
from 14 to 49.

Assumptions
CS 1 labs at Montana Tech are only taught in the fall

semester and the summer semester. CS 1 lab is part of CS 1
the course, and it cannot be taken separately. The
prerequisite of CS 1 is high school algebra. Since there are
less than 15 students in CS 1 each of the last 4 summers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
observations ware limited to tha fall sawstar only.
Studants' participation was voluntarily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKGROUND AND REVIEW OF LITERATURE

History of Computing
Things that computs os simple calculating machines have

been around for millennia. The abacus has been used for
over 4000 years and is still being used in sosm parts of the
world. Other mechanical arithmetic or algorithmic devices
have been seen throughout history (Kidwell 6 Crruzzi, 1994,
pp. 13 - 23) ; for example, Pascaline was the first automatic
mechanical calculator invented by Blaise Pascal in 1642.
Yet, the first large-scale electronic computer ENIAC,
Electronic Numerical Integrator And Computer, was introduced
only 50 years ago.

The Birth of the Computer
Although they are computers, the abacus and other bead

frames are all completely non-automatic (Moreau, 1984, p.
4) . Right before the second World Was, John Antanasoff, a
professor at Iowa State University, and Clifford Berry,
Antanasoff' s assistant, tried to solve the tedious systems
of equations with 29 unknowns and 29 equations. No human,
no matter how focus, could accurately solve problems like

with permission of the copyright owner. Further reproduction prohibited without permission.

this o w e and o w e again. Thay at:tamp tad to dasign an
alactronic digital computer to do tha task. Unfortunately,
no ona at that tima figured out how to represent numbers in
such a machine. Antanasoff eventually avoided tha
difficulties of electronically representing numbers in base
10. He picked a voltage 0-2.3 to represent 0 and a voltage
2.3 and above to represent 1. Using this system,
Antanasoff and Berry built a prototype before 1940 and
called it Antanasoff-Barry Computer (ABC) . World War II
pushed the need for calculating shell trajectories
accurately for new weapons. Trajectories tables were
produced by teams of women, who were called "computers," by
perfoxming the calculations by hand. Thus, the earliest
definition of "computer" was "one who computes."

In 1944, the first general-purpose electronic digital
computer, ENIAC (Electronic Numerator, Integrator, Analyzer
and Computer) was finally introduced at the University of
Pennsylvania (p. 35) . ENIAC was not completed until 1946
and it could compute a trajectory in 20 seconds. A person
needed 2 days for the same task. However, the machine
cost $500,000 and required 6 full-time technician to keep
it running. ENIAC operators set the machine to solve
problems by plugging in cables and switches. In fact,

with permission of the copyright owner. Further reproduction prohibited without permission.

solving new problems at. this ara meant rewiring the machine
(Kidwell £ Ceruzzi, 1994, p. 64).

Until recently, the use o£ electronic computer has been
very expensive. From ENIAC in 1946 through the first
supercomputer by Cray in 1972, and to all the mainframes in
the 1970's before the first commercial personal computer in
1976, electronic computers could be afforded only by a few.
However, today the $1000 computer with a Pentium chip has
far more computational power than the $500,000 ENIAC.
Computing technologies in hardware have evolved beyond most
people's imagination, and software evolves with hardware
every step of the way.

Generations of Languages and Hardware
Computers of the 1940's and early 1950's used vacuum

tubes and programming was done in machine language which
consisted of a small set of instructions recognized by and
executed on the intended machines. Kachine language was and
still is difficult to use because it is written in binary.
In the binary language which uses the base 2 mathematical
system, everything is represented in l's and O's. For
example, adding the contents of 2 registers requires the
following binary sequence: 0000 1111 0000 0000 0000 0100

with permission of the copyright owner. Further reproduction prohibited without permission.

26
0000 0111. By nature, it is tha furthtst languaga from tha
problems paopla try to solva among all languagas. Thus,
asssmbly languagas wara developed to anhanea tha
communication between human and tha computar. Assambly
languagas can ba charactarixad by tha usa of mnemonic codas
and symbolic addrassas. Programs written in assaodbly
languaga ara translated to machine languaga by assemblers,
and than tha sequence of instructions can ba executed by tha
machine. A sample of machine languaga and tha corresponding
assambly languaga is shown in Figure 1.

Figure 1. Machine and Assambly Languages.

Machine Languaga Assembly Languaga
represented using mnemonics

in hexadecimal

03 08 0A BC LOAD R8, PRICE
03 07 0A BE LOAD R7, TAX
OF 00 08 07 ADD3 R0, R8, R7
1C 00 0B 01 STORE R0, TOTAL
FF 00 00 00 END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
Both pxograms above simply add tha sala tax to tha

prica of any item. Such an application has undisputed usa.
However, both machine languagas and assembly languagas ara
cryptic. Evan to experienced programmers, they can ba
difficult to understand. To make matters worse, they are
also too closely related to the structure of the machine.
Programs written in one machine or assembly language can
only be executed on one particular machine, hence making
portability impossible. "Programming methods in that era
were the most time-consuming and costly road block to the
growth of computing" (Backus, 1976, p. 128) . Languages in
this period are usually referred to as low-level languages.
The costs of programming and debugging far exceeded the cost
of running a program. These problems sparked the
development of high-level languages.

High-level languages, on the other hand, provides
English-like code. COBOL, Commercial and Business Oriented
Language, and FORTRAN, FORmula TRANslation, were the first
two widely used high-level languages since the late 1950's.
Though high-level languages during this period were
primitive by today's standard because of the lack of high-
level data structures other than arrays, they paved the road
for the evolution of programming languages (Knuth & Pardo,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1976, pp. 264-266) . They are such easier to follow than the
low-level languages. For example, a statement to accomplish
the same task as in figuxe 1 in COBOL is "assign Total the
value Price plus Tax"; in FORTRAN this could be accomplished
by "Total * Price + Tax." In the more recent language C, it
would be "Total * Price + Tax;" with the semicolon
terminating the statement.

Words such as assign and value take on special meanings
as the symbols like * and + in FORTRAN and C.

With the introduction of transistors in the late 1950' a
and the integrated circuits in the mid-1960's, computers
were able to be made much smaller and cheaper (Moreau, 1984,
pp. 89-92) . However, it was the invention of a highly dense
integrated circuits by Intel known as the 4004 chip in 1971
that caused the revolution in the computer industry to
ensure the availability and the affordability of hardware.
The major periods in the evolution of hardware are in Table
1 summarized (Impagliaszo and Nagin 1995, p. 27) .

Software followed the lead of hardware. Scores of
high-level languages came out to utilize the development of
new hardware. Three in particular have profound impacts in
the computing industry as well as computer science

with permission of the copyright owner. Further reproduction prohibited without permission.

29
education. BASIC, Pascal, and C all came out in the early
Table 1. Generations of Computer Hardware.

Generations Time Period Principal Events

0 1642 - 1945 Mechanical calculators

1 1945 -1955 Vacuum tubes

2 1955 - 1965 Transistors

3 1965 - 1971 Integrated circuits

4
1971 - Present Computer Chips

1970's. BASIC, Beginners All-purpose Symbolic Instruction
Code, is perhaps the siost popular computer language in terms
of the number o£ users. It is a common first language
introduced to students learning computer programming in high
school. Pascal is the most popular language used in
beginning computer programming course throughout the world

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Levy, 1995, p. 21) . C, on the othor hand, is tha language
of choice by software engineers and programmers. Today,
newer languages such as Ada, C++, and Java have been
developed for the fast changing field of computing.
Languages are related in such a way that older languages
help shape newer ones (Sebesta, 1996, p. 37) .

The C Programming Language
C is one of the most popular languages among

programmers. Unfortunately, the awkward name of the
language C is because it is the successor of a short-lived
language B which was the successor of BCPL (Basic Combined
Programming Language) . The name C does not stand for
anything. C was originally designed and implemented by
Dennis Ritchie in 1972 for the DEC (Digital Equipment
Corporation) PDP-11 computer. Thus, C is not a new
language by any means.

"C is a general-purpose programming language which
features economy of expression, modern control flow and
data structures, and a rich set of operators." (Keraighan &
Ritchie, 1988, p. xi) . C was strongly tied with the Unix
operating system because both Kernighan and his colleague
Ritchie worked on both Unix and C at Bell Laboratories. It

with permission of the copyright owner. Further reproduction prohibited without permission.

31
Is a concise languaga with only 30 kaywords. It Is
flexible, powerful, and wall-sultad for programming at any
level of abstraction (7riadman, 1991, pp. 374 -375).
Slnca tha 70's, It has baan wall-racalvad In many
anvlronmants from parsonal computers to supar computars.
Comblnad with tha smallnass of tha languaga (Kernighan 6
Rlcchla, p. xl) and tha standardisation of C by Amarclan
Nation Standard Instltuta (ANSI) mada C tha most portable
computer programming languaga. Essentially, C can ba usad
on any machine because C compilers ara available on any
platform from a microcomputer using tha Pentium chip to tha
most powerful Cray supercomputer.

Although C Is a high laval languaga, It Is so
expressive and efficient that It replaced assambly language
In many circumstances. As a result, C Is tha languaga of
choice for most software engineers and programmers and It
Is perhaps tha most dominant languaga in tha field of
computing.

On tha other hand, C is tha not easiest languaga to
learn. It is also not tha bast languaga for beginners
because its flexibility sometimes causes unexpected results
that could be confusing especially for beginners. Some
statements in C could be confusing, redundant, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

32
frustrating to studants. To simply add ona to a variable
X, there ara several statements that can accomplish the

job:
1. X = X + 1;
2 . X += 1;
3. X++;
4. ++X;
5. fun(fiX) ; providmd that function fun use one

of the above 4 statements to add 1
to X.

To make matters worse, when statements 3 and 4 are mixed
within other statements, there could be undesirable side
effects. For example, they could create

X = 2;
Y = ++X;

does not equal to
X « 2;
Y * X++;

In the first case, both X and Y become 3. In the second
case, X becomes 3, and Y remains 2. The position of the ++
decides when the increment of X occurs. There are numerous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33
other occasions that make C not tha bast choica as a first
languaga. Consequently, vary faw collagas usa C as thair
first languaga (Day £ Hand, 1992, p. 10) .

Computing as a Disciplina
As tha infozmation tachnology bacomas mora and more

important socially and economically in avery community,
educators have to update tha evolving computing discipline
to match tha changing needs (Shaw, 1991, p. 9) .
"Computation is joining tha scientific paradigms of
experimentation and theory" (p. 17) . Computing courses are
now required in almost every major in collage. Thus,
changes in tha computing curriculum affect majors and non
majors alike.

Even with all the changes, lab and programming will be
essential parts of the computing curriculum. While lectures
tend to concentrate on theoretical and abstraction
processes, tha labs can help studants learn and practice the
design, implementation and tasting of software. Since
programming languagas ara regarded as tools for computing
professionals, to teach the use of a tool with hands-on
experiments in the labs seems logical. Some may go as far
as dropping the lectures all together and teach programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
In tha labs entirely (Bruca, 1991, p. 30) . Mo mattac how
far ona goas, labs will ramain tha fact of lifa in tha field
of computer education for years to coma.

Whether a course's concentration is software packages
(e.g. Microsoft Office) , programming, or a breadth-first
approach such described by Paxton, Ross, and Starkey (1993,
pp. 68-72) , the lab component is inevitable. For software
developers or traditional computer scientists, Association
for Computing Machinery (1991) recommended 10 subject areas
in computer science: (a) Algorithms and Data Structures; (b)
Architecture; (c) Artificial Intelligence and Robotics; (d)
Database and Information Retrieval; (e) Human-Computer
Communication; (f) Numerical and Symbolic Computation; (g)
Operating Systems; (h) Programming Languages; (i) Software
Methodology and Engineering; (j) Social, Ethical, and
Professional Issues.

For non-majors such as architecture, business,
chemistry, education, and engineering, mere programming
skills may no longer suffice for their specialty.
Nevertheless, taking an introductory course in computer
science opens the possibility for those majors to appreciate
areas of computer science such as artificial intelligence,
data communications, or graphics. As a matter of fact,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
upper division computer science courses are constantly taken
by non-majors.

Laboratory Activities
Laboratories are used to support the learning process

by offering students well-chosen, short, well-paced exercise
(Hertel C Hertsberger, 1995, p. 15) . In an introductory
programming course, laboratory activities can be divided
into the three major categories: (a) Record and Explain; (b)
Experiment and Discover; and (c) Design and Justify.

Record and Explain. One of the goals of the lab is to
make the programming concepts studied ''operational and
allow students to ascertain that the material is
understood" (p. 15) . To achieve such an objective,
students are given working programs to sun. The results of
the run are recorded. Follow-up questions are then
answered.

This activity can demonstrate the students'
proficiency in the use of the programming environment,
such as with the editor, the compiler, or the network set
up in the lab. The follow-up questions are designed to
test if the students can relate a particular concept to
the program. Step 1 of the lab in Appendix C demonstrates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36
the process of "recording" the result of a program given
to students. All they have to do is to extract the
program from a network drive set-up by the instructor. In
other words, they do not even need to type in the program.
Once the results are recorded, they are asked to relate
the result to a concept related to simple logic. The
result of the program is illustrated in Figure 4.

Figure 2. The Result of the Program Logical And.

Truth table of logical operation 66 (auid)

operauid 1 operauid 2 operand 1 66 operauid 2

0 0 0
0 1 0
1 0 0
1 1 1

Students learn from lectures and the text book that 0
means No and that 1 means Yes. In this exaunple, they are
supposed to relate the result of the program to getting a
"ham auid cheese" sandwich for the instructor. The example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
is a classic way to explain tha logical "and" operation.
If a "ham and cheese" sandwich is ordered, they can bring
back four different kinds of sandwich:

1. A sandwich with no ham and no cheese, (e.g. a
roast beef and bacon sandwich) .

2. A sandwich with no ham and only cheese, (e.g.
a roast beef and cheese).

3. A sandwich with ham but no cheese, (e.g. a ham
sandwich, or a ham and lettuce sandwich) .

4. A sandwich with both ham and cheese.

The object of the lesson is for students to realize
that the four scenarios above correspond to the truth
table. If a ham and cheese sandwich is ordered, the
outcomes can be summarized in figure 5.

Figure 3. Scenarios of a Bam and Cheese Sandwich.
Ham Cheese Sandwich

No No No (not okay)
No Yes No (still not okay)
Yes No No (Still not okay)
Yes Yes Yes (okay)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Students axe expected to relate the above activity to
the logical "and" operation.

Experiment and Discover. Experiment and Discover
activities encourage students to be adventurous. Once they
are confident enough, they are required to experiment In
order to complete the lab programs. Step 3 In Appendix C
requires students to modify the working program in Step 1.
In order to make it work, they must make 6 modifications.
They must change all logical "and" or logical "or" (i.e.
"66" to "||" operators). Missing just one will not get the
supposed result as in Figure 6.

Step 4 in the same lab requires even store
experimenting to discover the apparent logic that "not ham
or cheese" is the same as "no ham and no cheese." In the
process of discovery, students should also realise the
difficulties of printing tables in which all columns align
perfectly.

Another typical discovery experiment is to encourage
students to associate algorithms that they already know
from real life to computing algorithms. Appendix D is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
lab from Shiflat'a (1993, pp. 314-315) taxt. In -this lab
•xarciaa, atudanta aza aakad bo guaaa a numbar within a

Flguza 4. Tha Result of tha Pzogzam Logical Oz.

Truth tabla of logical opazatlon | | (oz)

opazand 1 opazand 1 || opazand 2

pzadatazmlnad zanga, auch aa fzom 0 to 1022 which la
ganazatad by a c o m p u t a z pzogzam.

Flzat, thay aza aakad to guaaa fzom 0, 1, 2, and ao on
aaquantlally In ona atap. Tha mathod la callad aaquantlal
aaazch In computaz adanca.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Than, they az« instructed to guots tha middla of tha
ranga. Tha computer program keeps track of tha number of
guassas thay naadad bafora tha numbar is found. Aftar
ovary guess, thay ara told to go higher or lowar if tha
guass is wrong. This providas "instant faadback to tha
studants" (Hartal 6 Hartzbargar, 1995, p. 15) . Thay ara
told to kaap tha "higher" half or "lossr" half and repeat
tha sama procass until tha numbar is found. This tima tha
algorithm is appropriataly callad binary saarch. Most
studants actually laarnad both mathods from past axpariance
or from tha TV show ''Tha Price is Right."

Whan tha ranga is from 0 to 9, thara is littla
diffaranca batwaan tha parformanca of tha two mathods.
Howavar, aftar thay changa tha ranga to 0 to 1022, thay
raaliza tha suparior afficiancy of tha binary saarch. In
tha lab axarcisa following tha axparimantation, thay ara
askad to analyza tha two algorithms mathamatically. If
thay cannot perform tha analysis, at laast tha axarcisa
stimulates axparimantation and raises questions for further
discussions (p. 15) .

Design and Justify. Tha two activities above ara
excellent learning approaches in programming.

with permission of the copyright owner. Further reproduction prohibited without permission.

41
Nevarthelass, they both leek the promotion of creativity.
Part of programming requires inventiveness within the
boundary of the language syntax and semantics. To foster
such learning, students must demonstrate the ability to
present solutions in an acceptable manner. Flow-charts,
mpl's (Model Programming Language) , and pseudo-codes have
been used by programmers to describe the solution of a
programming problem since the first program was written in
1940's. Thus, design and justify activities allow students
"to concentrate on programming rather than the distracting
details" (Starkey 4 Ross, 1984, p. xx) of a programming
language.

A systematic approach to problem solving that involves
programming demands four basic steps of analysis, design,
implementation, and testing (Shiflet, 1995, p. 112) .
Design and justify activities in the lab are used to "offer
the student the opportunity to discover solutions to
problems" (Bartel 4 Hertsberger, 1995, p. 15) . Instant
feedback can be provided to guide students to one of the
solutions as well as to promote creativity to problem
solving (p. 15) . The justify part helps students to debug
the design of a program to ensure the program logic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
satisfies the raquizamnta, is sound, and covacs all
possibilities (Koffman, 1989, p. 95-96)

Appendix E is an example of "design and justify."
Students axe asked to design an algorithm to do the simple
task of figuring out all possible tickets in a lottery in
which 3 balls or numbers are drawn from 10. Students are
given the opportunity to discover or design the solutions
to the problem (Prather, 1992, p. 61) .

Computers and Cognition

Technology and Education
Before humans invented reading and writing, pictures

and gestures were used to convey ideas (information) .
Pictures later became ideograms. Gestures became sign
language. Educators have been using technology to enhance
teaching and learning for years. Technological changes
have taken many forms, which included the movement from an
overhead projector to a computerised grade book system,
from radio to television, and from personal computer to the
Internet, "We have new tools for learning and teaching
which change how our minds work" (White, 1988, p. 6) .

In 1813, Thomas Jefferson envisioned that "books will
soon be obsolete in the school" (quoted by Cuban, 1986, p.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
11). Today, tha whole library of Congress' English-
language holdings can be shored on three 4.75-inch compact
discs. CD-ROM (Compact Disc Read Only Memory) provides the
ability to give teachers and students random access to
thousands of visuals in milli-seconds. It also allows
users to explore enormous amount of textual data. As
Mageau (1990) predicted, today digitized motion video is
almost as common as video tapes (p. 28).

Today, computer networks provide educational
institutions electronic mail systems as well as the
abilities to share information and resources through
various wide area networks. The prophecy that
" telecommunications one day soon may become an
indispensable learning tool in U.S. classrooms" (p. 29) is
already a reality.

Multi-media is the one of the few new lingo that
perfectly describes its meaning. Multi-media provides
sensational stimulants that integrate text, audio,
graphics, still images and moving pictures into a single,
computer-controlled product. Together with desk-top
publishing, reading definitely is taking on a whole new
meaning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44
Computers in Education

The earliest electronic computers war* ins ballad in
coll*g*a approximately 50 yaazs ago. Thay were initially
usad to solve multiple unknowns in equations or perform
other intensive calculations. Since John Kennedy developed
the BASIC language at Dartmouth College, computers and
higher education became even more inseparable. Learning
about the use o£ the micro-computer and its software
packages is required in almost every college degree
program. Computers can even replace physical instruments
in a chemistry lab (Ivey, 1992, pp. 4-8) . Simulation
programs can be used to conduct experiments that may be too
dangerous or expensive to perform (Parker, 1996, p. 14-17).
As computers get into every facet of life, they remain
instrumental in education.

Computer Assisted Instruction (CAI) helps students
learn at their own pace. The drill and practice set up in
the "remedial mode" is especially helpful in high school
algebra if the purpose is to help student increase math
scores in their Scholastic Aptitude Test (SAT). Though
adult educators might argue that students using CAI are too
passive in directing their own learning (Knowles, 1980, p.
48) , the potenital of computers in education is only in its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
•arly stagas (Parkar, 1996, p. 7).

Adult Laarnari in Computer Scianea
"Changing demographics ia a aoeial raality ahaping the

provision of learning in contemporary American society."
(Harriam 6 Caf faralia, 1991, p. 6) America is becoming a
nation of adults. It is estimated that by the year 2000,
the largest age group will be 30 to 44 year olds (Cross
1981, p. 3). With the large age group in their so-called
"most productivity years" and with the average American
making between 5 to 10 job changes in a lifetime,
continuing professional education is becoming more and more
critical. In order to be competitive in the world-wide
market, re-training of the United States workforce is
inevitable. "Lifelong learning is essential to
professional productivity, individual potential, and
international competitiveness" (Anderson 1991, p. 17).
More and more college students have adult responsibilities.
Many of them have a full-time job and take classes after
work. Some adults enroll in the computer science program
to pursuit their first degree. Some return to college to
retrain themselves in a field which changes as fast as
one's imagination. Other adults return after losing their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46
job; as in tha computar scianca program at Montana Tach,
this includad patrolaum anginaars and high school taachers.
"Lifelong laaming is not a privilege or a right; it is
simply a naceaaity for anyona, young or old, who must live
with tha ascalating paca of changa: in family, on tha job,
in tha community, and in tha world-wida society" (Cross
1981, p . ix) .

Tha computing axparianca that adults bring to tha
laaming situation somatimas is tha opposita of tha common
wisdom. Tha "andragogical modal assumas that adults anter
into an aducational activity with both a graatar voluma and
a diffarant quality of axparianca from youth" (Knowlas,
1980, p. 10). Computar scianca is usually tha opposita.
For axampla, in an infromal study at Montana Tach (saa
Appandix A) , tha two youngast studants (aga 14 and 16) in a
C class had far mora axparianca than tha two oldast (aga 44
and 45) . This is actually quita a typical phenomenon in
computar scianca classes.

Adults ara motivated to learn aftar thay axparianca a
need in their life situation, and thay enter an aducational
activity with life-centered, task-centered, or problem-
centered orientation to learning (Knowlas, 1980, pp. 78-
95). Thus, adult learning activities should be organized

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
around, their naads regardless of tha subjact. Both
taachars and studants shara tha responsibility of learning,
coursa davalopmant, and avan outcoma evaluation. With more
and more adults in tha field of computing, adult learners
provide instructors a new challenge.

Educational Objectives
To design affective learning activities, one must

explore the learning sequence students use in the learning
process. The cognitive domain presented in Bloom's
taxonomy (1956) can be summarised in 6 levels. Steinaker
(1975, p. 15) identified 5 levels in the experiential
domain which matches the lab activities in the computer
science laboratory.

Figure 5. Bloom's Classif ication of Educational
Objectives.

Cognitive Domain
Level

I Knowledge
XI Comprehension
XXX Application
IV Analysis
V Synthesis
VI Evaluation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
Figure 6. Steinaker's Claesifications of the Experiential

Domain.

Level Experiential Domain
1 Exposure (Comprehension)
2 Participation (Application)
3 Identification (Involvement)
4 Internalization (Adoption)
5 Dissemination (Commitment)

The typical classroom set-up with the traditional one
way transmission (Knowles, 1984, p. 15) , most learners
could hardly reach level 3. On the other hand, learning
the syntax of a programming language can be viewed as
knowledge based process (Winograd, 1983, p p . 2-29) which
may only involve levels 1, 2, and 3.

In order to design a solution of a problem, students
must be asked to interact with situations that are
realistic, open-ended, complex, and largely un-structured.
This encourages students to disseminate different concepts
into a computer program. It requires the application of
principles, the very top of Gagne's learning hierarchy.
(1965)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
The partnering in the eooputar laboratory can ba

looaaly coupled oc aa elaborate than cooparativa learning
(Brown £ Palincsaur, 1989, pp. 397-408) . Student-atudant
Interaction cam ba atructurad in three waya: competitively,
individualistically, and cooperatively (Johnaon, Johnson, &
Smith, 1991, p. 2) . Students should not be graded against
one amother on a norm-referenced basis and should be
encouraged to work together to accoaqplished shared goals in
the lab (pp. 2-3) . The process then encourages
interpersonal comsiunications. Thus, besides problem
solving skills, laboratory cam enhance a large inventory of
skills and attributes that are valued in computing
education as by-products: communicative, orgamisational,
leadership, and planning skills on top o£ the assumed
computational (programming) skills (Haurrisberger,
Heydinger, Seeley, £ Talburtt, 1976, pp. 3-14) .

The teacher's role in the laboratory leauming changes
quite naturally from "instructor" to
"supervisor/consultant" or "facilitator of learning"
(Knowles, 1984, p. 14) . Only demonstrations of technical
material should be given in the early paurt of each
laboratory period (Tucker, Bernat, Bradley, Cupper, fi
Scragg, 1995, p. x) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
Figure 7. Gagne's Learning Hierarchy.

Classification

Behavior Chai

Discrimination

As sociation

Model of Instructions; Andraqoqy and. Pedagogy
Andragogy is derived from the Greek word aner which

means man, and pedagogy is derived from paid which means
child (Darkenwald fi Merriam, 1982, p. 13) . Both word refer
to the art and science of helping learners' learn, and the
learners just differ in age or "the self concept of being
responsible for one's own life" (Knowles, 1984, p. 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
Tb« pedagogical modal has dominated all of education

since school started being- organized in the seventh century
(p. 8) . The andragogical model has been one of the
theories to unify the field of adult education (Merriam £
Caffarella, 1991, p. 249). The difference in their
assumptions cam be summarized in Tafele 2 (Knowles, 1984,
pp. 8-12).

Table 2. Assumptions of the Andragogical and Pedagogical
models.

Learner Pedagogical model Andragogical model

self-concept dependent self-directed

experience
learning

little value great source for

readiness age need to know

orientation subj ect-centered task/problem centered

motivation external mostly internal

There are obvious implications for the program design
of the 2 models. The basic format of the pedagogical model
is content plam while in the adragogical model is process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
design (pp. 13-14) . The difference can be summarised in
Table 3 (pp. 13-20).

Table 3. Program Design, for the Pedagogical model and the
Andragogical model.

Element Pedagogical model Andragogical model

climate
setting

competitve,
formal

collabrative,
informal

planning by teacher by both facilitator
learner

and

diagonsing
need

by teacher by both facilitator
learner

and

learning
objectives

by teacher by both facilitator and
learner

Sequence of
learning

by teacher by individual learner

evaluation by teacher by both facilitator and
learner

Though Knowles suggested that pedagogy should be
replaced by andragogy for both children and adults
(Knowles, 1978, p. 53) and the 2 models seem to stand at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
the 2 opposita corners, "the pedagogical and andragogical
model as parallel, not antithetical" (Knowles, 1984, p.
12) . Thus, the 2 models can work together as the
continuity of human development.

Laboratory Iiearninq
"Learning is a term with more meanings than there are

theories" (Brown 4 Palincsar, 1989, p. 394) . Various
educators view learning differently. For example, Horton
(Adam, 1975, pp. 205 - 206; Moyers, 1990) and Freire (1973)
relate learning to social movements and changes. Socrates
(Grube, 1976, pp. 1-32), on the other hand, asked students
a series of questions so that they could search within
themselves. To Dewey (1938) , learning was fundamental to
growth and democracy. Skinner (1974) maintained that
learning is crucial for a species and its survival (pp.
205) . Maslow (1954) argued that it is the process of self-
actualization (pp. 203-208) and Rogers (1996) felt it
promotes fully-functional individuals (p. 288). Despite
the many views concerning learning, many of those teaching
in computer science laboratories support Gagne's (1965)
view of learning as "problem solving" by applying
programming principles in the computer laboratory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54
Expezimtial launing or looming by doing has bean a

fundamental concept in education for centuries. The
mas ter-apprentice approach has been utilised since the time
of the Greeks. The laboratory has always been regarded as
a necessary component of the educational process. In basic
sciences, laboratory exercises are as old as the fields
themselves. Though computer science is a very young field,
there is an increasing emphasis in computer science
education on hands-on programming exercises and internships
before graduation. In computer science, project activities
are common among old and new curricula. Laboratory
learning, a subset of experiential learning (Knowles, 1984,
pp. 417-420) , is just a project activity conducted in
smaller scale but a more structured manner.

The use of the laboratory as an instructional method
was first introduced in ACM Curriculum 78 (p. €3) . It has,
however, not been fully exploited in practice even though
other fields have shown clear benefits in terms of
learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

CHAPTER 3

METHODOLOGY
This dtseriptiv* study utilized a naturalistic case

study design. Both quantitative and qualitative data were
collected to obtain information from participants in the
beginning and at the end of the study. Interviews with
students were conducted in the middle of the Fall semester
of 1996 and again at the end of the same semester.

Naturalistic Inquiry
Though the application of naturalistic inquiry may be

relatively new to educational research, it has been used by
anthropologists for years. As a matter of fact, it is often
referred to as the anthropological approach. Its recent
growth in both interests and acceptance is quite natural and
good for educational research.

Until the recent emergence of the theory of chaos,
mathematicians and physicists tended to think that there
exists a formula or a set of formulae to describe or predict
any phenomenon (Gleick, 1984, pp. 7-8). If the description
or prediction is not exact as in weather prediction, the
problem must stem from the fallacy of the formulae. The
quest for one truth characterizes the tradition in which
rationalistic inquiry was formed. The basic belief of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
rationalistic inquiry is ths fact that: thara is ona
objective raality. A rationalistic inquirar's job is to
uncovar tha truth which can ba dascribad mathamatically, and
thus tha situation can ba pradictad and raplicatad (Huck,
Comer, £ Bonds, 1974, p. 11).

Rationalistic inquirers have bean called logical
positivists who seek facts and causes of social phenomenon
with little regard for tha status of individuals being
studied. To a rationalistic inquirer, research is am
objective quest for raplicadsla findings (pp. 369-371) . Tha
purpose of tha reseaurch is to test a hypothesis or verify a
theory in order to generalize or to infer (McClave, 1986,
pp. 2-4).

A naturalistic inquiry(HI) researcher, on the other
hand, is interested in describing amd understamding a
phenomenon from the subject's own frame of reference. NI
researchers believe there exist multiple realities. Thus,
NI researchers aura sometimes called phenomenologists. The
main purpose of NI is the discovery of phenomena. (Bogdam &
Taylor, 1975, Chapter 1)

The setting in which rasaaurch is perfoxmed differs
between naturalistic inquiry amd the rationalistic inquiry
(RI) paradigms. RI is best achieved in a laboratory setting
or behind the "non-existing one-way glass" to insure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57
objectivity. RI considers the world as composed of
variables. By manipulating the predefined independent
variables , the researcher investigates the effects on
dependent variables which is predefined. Thus, in a typical
rationalistic inquiry, the researcher identifies all
independent and dependent variables of interest and then
randomizes the selection of samples in order to measure the
effects and to reach a conclusion. The key is to use
laboratory control if possible. When laboratory control is
not possible, statistical manipulation is employed.

Since MI is more concerned with description or
understanding of phenomena, checking of the discovery is
done through "triangulation" in which one source is tested
against another until the researcher is satisfied that the
interpretation is valid (Guba, 1978, p. 13) . Thus,

It is important to provide multiple data source
and methods of collection. It is also important
to describe techniques that were used to check and
validate analyses as the research proceeded.
(Owen, 1982, p. 13)
Owing to the difference in philosophy in the two

paradigms, data collection techniques are approached
differently. RI tends to favor survey instruments. Random
sampling is preferred. The approach is structured. The
design is fixed. (Devore £ Peck, 1986, pp. 233-246)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
NI raa«arch«rs us* intarvisws and observations to

collect data. The sampling technique is that o£ purposeful
sampling. The approach is exploratory. The design is
flexible or at least incomplete because "the design emerges
as the investigation proceeds" and "it is in constant flux
as new information is gained and new insight is formed"
(Guba, 1978, pp. 13-14).

At the end of a rationalistic study, there is usually a
detailed report with figures and charts. The hypothesis is
either affirmed or disproved based upon the data gathered
and analysed statistically (Huck, Comer, £ Bonds, 1974, p.
365) . The effect of independent variables on dependent
variables is discussed. Depending on the statistical method
chosen, confidence-level and confidence interval may be
included. With the help of a computer, complicated
statistical relationships can easily be obtained.

In naturalistic inquiry, relevant information which has
been collected is described. Research descriptions tend to
be "thick and rich" because they are filled with quotes,
anecdotes, and personal stories. The NI researcher often
consider gestures, language, and behavioral patterns of the
subjects as significant descriptive data (Guba, 1978, p. 7) .
The investigator may then conceptualise issues by deriving
categories that fit the information collected. While data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
collection in a rationalistic study ends when the researcher
has collected a predetermined amount o£ data, naturalistic
studies do not have these clear deadlines. Instead, there
are at least four ways which guide the researcher in
terminating the collecting process of the research.
Exhaustion of sources, saturation, emergence o£ regularity,
and overextension are used to detect i£ there are no new
situations, or saate pieces o£ information are recurring, or
the area feels integrated (Guba, 1978, pp. 60 - 61). This
process seeks to reach an in-depth understanding of the
situation. Though theories are not proved, they may emerge
and be proposed for further exploration. While RI
researchers are reductionists, MI researchers are
expansionists.

Case Studies
A case study is an in-depth and systematic

investigation of an individual, a group, an institution, a
process, a social group, or a phenomenon (Gay, 1992, pp.
235-236; Merriam, 1988, p. 16) . It "seeks holistic
description and explanation" (Merriam, 1988, p. 16) . In
short, a case study examines an instance in action. It
focuses on one particular phenomenon. It produces "thick"
description of that phenomenon to illuaiinate the reader's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
understanding of such phenomenon (pp. 11-13) . Thus,
"generalization, concepts, or hypotheses emerge from an
examination of data" (p. 13) .

Unlike the rationalistic inquiry in which variables are
manipulated, the researcher needs little control in a case
study. It is because the research questions in case studies
are "how" and "why" (p. 9). Furthermore, the case study
deals with "a bounded system" (Stake, 1988, p.255) . The
researcher, who observes behavior in its natural setting, is
the primary instrument for data collection and analysis.

The qualitative case study can be defined as
intensive, holistic description and analysis of a
single entity phenomenon, or social unit. Case
studies are particularistic, descriptive, and
heuristic and rely heavily on inductive reasoning
in handling multiple data sources (Merriam, 1988,
p. 16).

Thus, a qualitative case study uses all methods of data as
diverse as testing and interviewing (p. 10) to report
findings or reveal properties to discover new meaning and to
extend a reader's understanding of a situation in a
comprehensive and expansive report.

The naturalistic case study was chosen for this study
because the lab set up in the computer science department at
Montana Tech is new and unique and because the focus of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
study is to discover what works and why for studants in this
learning proeass and to axplain tha ralationships batwaan
different factors. Moreover, this situation was uniqua
because no ona at Montana Tach had dona lab learning lika
this study and similar situations ara not raportad in tha
litaratura. It is impossibla to pradict all indapandant
variablas and dapandant varisblas as in a traditional
rationalistic study without overlooking valuable unforeseen
information. These labs ara systems. Tha study sought to
understand tha axparianca of studants in tha newly designed
labs in tha introductory computar scianca course. Thus, a
naturalistic case study was chosen. However, soma
traditional quantitative tools ware used to gather student
information to aid this study. This investigation was done
by processes of cross-checking, triangulation, and re
cycling until convergence was achieved (Guba, 1978, p. 13) .

Research Population
Participants in this research project ware all 3 lab

sections of studants in tha course CS 210 Introductory to
Computer Scianca I. Tha course consists of two 1-hour
lectures and a 3-hour lab. Most studants coma from several
majors: Computar Scianca, Engineering Scianca, and Business.
Thera ware 155 studants in tha three sections. Of these,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
134 studants participated in tha Beginning-of-samester
Survey. Tha aga ranga was from 14 to 45 with 53% younger
than 20, 23% in tha ranga from 21 to 24, and 24% older than
25. Tha m a n aga was 20.5, and tha median was 19. There
ware 47% freshman, 35% sophomores, 9% juniors, 9% seniors,
and lass than 1% graduate studants. Host (84%) took tha
course because it was required. Almost 55%

Table 4. Profiles of Students.

Variable Number
of Students

Percentage

Major
computer Science
engineering science
business
others
Total

54
36
24
20
134

40
26
18
15
99

Year in School
freshman
sophomore
junior
senior
graduate

63
47
12
12
0

47
35
9
9
0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63
Table 4. Profiles of Students— Continued.

Variable Number Percentage
of Students

Age
14 1 .75
16 2 1.49
17 1 .75
18 32 23.88
19 36 26.86
20 10 7.46
21 10 7.46
22 2 1.49
23 5 3.73
24 7 5.22
25 4 2.98
27 5 3.73
28 8 5.97
30 1 .75
31 1 .75
32 2 1.49
33 1 .75
34 1 .75
38 1 .75
40 1 .75
44 2 1.49
45 1 .75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
Table 4. Profiles of Students— Continued.

Variable Number
of Students

Percentage

Programming Experience
Tea 72 54
Yes (in the language C) 12 9
Mo 62 46

Gender
male 92 69
female 42 31

of the group had progranming experience. However, only 9%
had used C before taking the course. The gender ratio was
more than 2 males to 1 female. Only 31% were female
students. Surprisingly, only 3 (2%) students out of 134
surveyed had never used a computer before this course; 66
(49%) owned a personal computer.

Procedures
The laboratories in which data were gathered had been

set up physically prior to this study. The Turbo C compiler
had also been chosen for the lab although VAX C, Visual C++
and Borland C/C++ were also available in the lab. VAX C,
Visual C++, and Borland C/C++ are programs to convert the
programs written by the students in C to machine code so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65
student: programs can be executed and observed. Different
compilers provide different programming environments in terms
of editing and debugging (finding syntax and logic mistakes)
programs.

The situation at Montane Tech was unique. First of
all, even though the language C is an unpopular beginning
language, it was the language used in this course because C
was the most used language in the industry. Secondly, the
ACM Curriculum Committee recommended a 2-hour lab for a 3-
credit CS 1 course (ACM, 1979, p. 63) , yet a 3-hour lab was
chosen for Montana Tech's CS 1 and this study because
students were asked to turn in their lab reports at the end
of each lab instead of the following day. Since this study
sought to discover how learning is enhanced in a computer
lab, a qualitative case study (Merriam, 1988) with direct
observation and systematic interviews was used.

Pre-study assessment (see Appendix A) was given to all
students. Based on the pre-study survey and the first several
lab observations, 21 students were chosen for in-depth
interviews. At least two interviews per student were
conducted during the fall semester. One was in the middle of
the semester, and the other was at the end of the semester.
Post observation assessment (see Appendix B) was also given
to every student in the course at the end of the semester.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66
Observations

Students were observed in the labs throughout the Fall
Semester 1996. Notes were taken extensively in every lab to
record student behavior, how students interacted, unforeseen
events, tine needed for different activities, students'
reactions towards labs, as well as student approaches to the
different particular learning activities of Record and
Explain, Experiment and Discover, Design and Justify. This
data were related to their age, gender, major, and prior
experience.

The physical setup of the labs was designed to help the
researcher observe as well as student learn. Both the
physical and programming environments are discussed in the
following sections.

The Physical Environment. The physical environment can
play an important part in enhancing learning (Knowles, 1984,
p. 15; Merriam 6 Caffarella, 1991, pp. 31-32) , and it can
"facilitate the acquisition of content by the learners"
(Knowles, 1984, p.14). The physical condition should be
comfortable and conducive to interaction (Knowles, 1986, p.
7) .

Montana Tech has two different types of labs:
instructional labs and open labs. Instructional labs are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67
labs where classes ara schadulad, and thus can ba usad In as
"dosad-labs". Thara were also microcomputer clustars for
studants to usa as "open-labs. ” Thara wara four
Instructional labs at Montana Tach. Tha four Instructional
labs wara usad by all dapartmants for such courses as
computer aidad dasign for anginaaring dapartoents and
desktop publishing for communication courses. Tha four labs
have different number of machines and physical
configurations. Of tha three lab sections required for CS
1, two labs wara schadulad in a lab with 30 imachines and a
"circular setup." Tha other lab was schadulad in a lab with
25 machines and tha traditional layout in which machines
wara on 5 long tables in 5 rows facing a white board. Each
table, all of tha same height, had five machines. All
observations wara dona in all three lab sections. However,
tha observer could only observe one row at a time in tha
traditional sat up. Figure 8 shows tha lab with 25
machines. Tha lab is approximately 25 feat by 55 feat.
This lab imay ba referred to a rectangular lab.

Tha other lab had machines setup in two sets of tables
that formed three quarter circles. Tha inner circle had 10
machines. They wara on smiall tables of tha same height.
Tha outer circle had 20 imachines on drafting tables about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8. The Layout of the Rectangular Lab.

[White Board J

Instructor' a Computer

25'

with permission of the copyright owner. Further reproduction prohibited without permission.

69
on* foot tailor than tha tablas In tha innar circle. Thus,
tha obsarvar could stand in tha cantar and obsazva 15
machines all at onca. Anothar crucial difference of tha two
labs Is tha slza of tha monitor. All monitors in tha
"circular" lab wara larg* 17" monitors. All othar labs at
Montana Tach had only 14" monitors. Evan though tha da tails
of aach scraan might ba difficult to make out, studants'
physical activitias and programming activitias on tha
scraans wara aasily obsarvad on tha 17" monitors. This lab
is in a room which was approximately 60 faat by 60 faat.
Thara was much spaca batwaan tablas and thus machines. This
lab may ba referred to as the circular lab.

Both labs also had a projection system to project tha
monitor of tha instructor's machine to a large scraan. In
tha circular lab, tha instructor's monitor and projection
system was located in tha open part of tha circles so that
every student could sea tha projection if they turn away
from thair monitors. Owing to tha position of tha scraan,
taking notes or trying to use tha keyboard whan tha
instructor was doing tha demonstration was difficult in tha
circular lab.

Tha Programming Environment Tha programming
environment was more confined by tha software sita-licansa
on campus than anything also. All machines in tha labs had

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Figura 9. Tha Layout: of tha Circular Lab,

' ii jit

n

60 '

►

LI
HD-

YYYYYY w

Instcuctor's
computar

W

AAAAAA
60'

Obsarvar
S : Projaction scraan
W : whita board

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
Windows 3.11 and well-equipped with both Borland C++ and
Turbo C compilers. Tha Turbo C environment was simple and
easy to usa. Tha Borland C++ anvironsant was vary similar
and yat mora sophlstlcatad and coaplax. Slnca tha
programming anvlronmant Is only ona of tha many tools In
programming and tha purposa of tha lab assignmants was to
taaeh studants how to program, tha Turbo anvlronmant was
chosan for its simplicity.

Tha Turbo anvlronmant or IDE (Intagratad Davalopmant
Environmant) providad all standard faaturas to halp studants
in dabugging which was dona axtansivaly in tha labs. Xt
providad a slapla aditor vary similar to WordStar. Its
dabuggar allowad usars to watch variables change in a
separata window, to sat up break points, to examine tha
content of variables, and to step through or trace a program
for sequential execution. In short, it had all tha
necessary faaturas for program davalopmant. Thus, studants
wara exposed to tha debugger early so that they could usa
tha dabugging tools to halp them understand tha behavior of
a program. However, this compiler did not have tha program
animator as in DTNALAB (Birch at al., 1995, pp. 29-33) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii

72
Teams In evary lab, tha number of students outnumbered

machines almost two to one. Therefore, students are
organized into teams. Each student had the choice of
working alone, with one partner, or with 2 partners. To
help students, facilitator, and lab assistants get
acquainted, at least 15 minutes were used in the very first
lab to build a climate of friendliness and informality
(Newstrom 6 Scannel, 1980, pp. 39-41) . Teams were formed
by students themselves, and they stayed together for at
least the first 8 weeks. Since most students were freshmen,
most of them did not know other students in the first lab.
Several new teams were formed with the consent of students
after the first round of interviews in the ninth week so
that the researcher could team students up based on age,
gender, and prior experience.

Lab Assistants Lab assistants are very common in most
lab situations. Each lab was assigned two seniors to assist
the instructor, to answer questions, to fix hardware or
network problems, to perform necessary tasks such as
refilling the paper tray of printers. This arrangement
helped the facilitator become the observer without running
around the lab too much.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73
The lab assistants mat with the facilitator before and

after each lab. Before the lab, they learned about the
content of the lab and tried to anticipate the different
learning activities and potential problems. After the lab,
they summarized the type of questions asked by the students.
Questions related to their presence and impact were aaked in
the interviews.

Interview Questions
As in the tradition of naturalistic studies, the

participants were purposefully selected for the interviews.
In the age category, students of the following ages were
chosen: 14 (just turned 14 when interviewed and the youngest
in class), 16 (a sophomore in chemistry), 17, 18, 18, 35, 38,
and 45 (the oldest in class) . Other students were chosen for
the interview because of their prior experience in
programming or in C in particular. Some were chosen not from
information in the assessment survey but rather observation
data following the first several observations. Students who
always finished labs first or last, students who showed
frustrations in the lab, and students who were eager to help
others were selected.

Each interview was done in the instructor's office. In
the interview sessions, it was important to put students at
ease. This was especially so for traditional age students

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
ease. This was especially so for traditional aga studants
and studants who wara not talkativa. In tha first interview
sassion, tha instructor and tha interviewee got acquainted by
discussing things ralatsd to a few unguidad quastions (a.g.
"Do you like computers?" and "Do you own a computer?") .
Interviewee wara also of far ad chocolata and soft drink to
build a climata of friandlinass and inforsiality (Nawstroa 4
Scannell, 1980, pp. 39*41) . Most of tha intarviawaas aarly
talkad about thair own computar, about why thay did not hava
ona, or about how thay wara shopping for ona and naadad
advica. Aftar about 5 minutas, nora structurad convarsations
wara organizad. To corraspond to tha rasaarch quastions (saa
p. 17) , tha following quastions wara usad to diract
discussions with tha participants in tha first round of
intarviaws in tha middla of tha sanastar:

1. How doas tha transfar of concapts from lacturas
to labs taka plaea?
A. How long do you usually naad to complata a

given lab?
How do you usually tackla a lab?

B. How long do you usually spand on tha writa-up
of tha lab raport?
How do you gat startad?

C. How did tha labs halp you complata tha taka-homa
programming projects?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75
2. What: learning strategies do students use to learn
syntax and semantics in the language C, and what are
the perceptions of the result?
A. Did the lab help to clear up the usage of the

following concepts? Bow?
a. Nested lops
b. Parameter passing: Both by reference and by

value
c. Function calls: void and otherwise
d. Arrays
e. Pointers and addresses

B. Bow did the lab activities help you remember
or make some sense out of the syntax and
semantics of the language C?

3. What are the students' attitudes toward computer
science as a result of the lab experience?
A. Which features would you like to be added in the

lab? Why?
B. Bow was our attitude towards programming

influenced by the course of this class?

4. Why does the lab work or fail from the students'
perspective?
A. Which features do you find helpful in a particular

concept? Why? Please give examples of concepts you
learned easily and those you had difficulty with.

B. Did anything in the lab hinder your learning?
Why?

C. Which lab activities were confusing? Why?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
Tha discussions of tha interview sassions wara tapad

racordad. Thasa wara later analysad to uncovar tha common
trands of participants' rasponsas. A databasa was built for
tha purposa of undarstandi ng and analysing tha data
collactad.

Observations and both rounds of interviews coincidad
and wara not separate phasas. Tha first intarviaw procass
startad savan weeks into tha samastar. Tha procass took
thraa waaks. Obsarvations began tha first waak and wara
continuad until tha and of tha saasstar for a total of 15
waaks. Tha sacond round of intarviaws with participants was
shorter and was conducted tha waak before finals waak. In
thasa interviews, thay wara also askad what ona or two things
thay thought would improve tha lab in any way. Throughout
tha course of tha intarviaw procass quastions wara omitted
and added because of tha response from interviewees. For
example, since "a shorter lab following each lecture" was a
recurring thasias from studants, tha last few studants wara
askad what thay thought of that idea even though thay did not
volunteer that idea. Since soma studants wara askad to change
their partnership situation after tha eighth waak (e.g.
switch partners, work alone after having a partner, or work
with a partner after working alone), different quastions wara

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
askad to different participants. Soma of following quastions
wara askad:

1. How do you faal about having a short lab aftar
aach lactura?

2. Did tha lab assistants provida "better" halp in
tha sacond half of tha samastar?
Why did you ask lass (or mora) quastions in tha
sacond half?

3. Why did you turn in incomplata lab reports?
How do you foal about tha write-ups?

4. Did tha physical setup of tha lab affact your
lab experience?

5. Would you taka another programming course with
similar setup?

The intarviaws providad faadback and insights
about learning how to program in the language C in the
now computar labs from the students' who have just been
through such learning experience. Combined with
observations and questionnaires, an overall picture
emerged of how students learn and what worked in the
lab. The findings might help students and instructors
in future labs. They may also provide a basic
understanding of lab learning in a beginning
programming course for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

CHAPTER 4

FINDINGS
Data vara eollactad quantitatively and

qualitatively from savaral sources. In the beginning of
the Fall SesMster 1996, questionnaires were administered
in CS210 to gather information. Observations were
conducted in all three lab sections of the class for 15
weeks. Interviewees were selected based on the initial
questionnaires and the first seven weeks of
observations. Mid-semester interviews started after the
seventh week of the semester and were conducted for
three weeks. At the end of the semester, another
assessment survey was administered to all students while
another round of short interviews were conducted.

Beginning of Semester Survey
A survey (see Appendix A) was given to all students

in the CS 210 course at the beginning of class. Of the
155 students enrolled, 134 completed the survey. The
questions on the survey were designed to find out
students' age, gender, and prior computing and
programming experience. While 54% of students had
programming experience, only 9% had experience in C. On

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
the other hand, 50% had BASIC and 20% had Pascal before
this course. Since Pascal and C have the common
predecessor of ALGOL, these students who had Pascal or C
experience were identified and observed to see if they
behaved differently in the labs than those students
without prior experience.

End-of-Semester Survey
At the end of the semester, students were asked to

filled out the course evaluation. Only 134 out of the
initial 155 students filled out the beginning of the
semester survey. Several students dropped the course
during the semester. The evaluation was completed by
132 students. On the evaluation, students were asked to
rate the following 5 possible sources of their learning:
lectures and text, programming assignments, tests, labs,
and help from tutor(s) and/or instructor. They were
asked to rank them from 1 (most important) to 5 (least
important) . The results of the survey are shown in
Table 5.

The students expressed a clear difference in their
rating of their preference for learning methods. The
highest rating of the learning method was the newly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80
,davalopad lab (2.36) . Traditional laetarM and text was
ratad sacond (2.51) with halp fsoa Instructors/assistant,
third (2.72) . While take-home assignments racaivad a
modarata rating (3.01) , tasts wara not viewed as a
useful laaxning method by studants with an axtramaly
negative rating o£ 4.39; thraa guartars (75%) ratad
tasts as laast important.

Tabla 5. End o£ Samastar Survay

Rating

Method 1 2 3 4 5 average
Labs

44 36 17 30 5 2.36
Lectures
and text 40 24 31 35 2 2.51

Help from
tutors and/or

instructor
20 42 35 24 11 2.73

Take-home
Programming
Assignments

23 25 28 39 17 3.01

Tests 5 5 21 4 97 4.39

Observations and Intarviaw Rasults
Obsarvations wara conductad throughout tha 15 waaks

o£ tha coursa. Thara wara obsarvabla di££arancas in
studants with raspact to tha physical satup of tha lab,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
'the partnership patterns, the utilization of lab
assistant, and the contents of the labs. The difference
in time spent on each lab, the frustration or
satisfaction of students with the lab, physical and
programming activities were recorded. Students'
perception on the same subjects were investigated in the
interviews.

The Physical Environment
There were major differences physically between the

two labs used by the three lab sections. The
differences in size and layout translated into
observable patterns in the demeanor of students. During
the interviews, the physical setup also triggered more
reactions by the students and some were extremely
negative.

The Circular Lab. Two of the sections were
scheduled in the "circular" lab. Students in the
"circular" lab seemed comfortable and happy with the set
up. They had enough room to work around their computer
and to conduct discussions with their partners or their
neighbors, who were students working on their own
computers but in close proximity. The only problem with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82
this lab was that while tha keyboards, monitors, and tha
mica wara on tha tablas, tha machines wara mounted under
tha tablas. Thus, studants often hit tha rasat button
with their knees inadvertantly whan thay triad to sit
down. This happened to machines under regular tablas
and under drafting tablas including tha facilitator's
machine. Unfortunately, it took 10 to 15 minutes for
each machine to coma back up because a rasat or reboot
activated tha network maintenance program which checked
every directory on tha machine and reloaded any file
that was modified or deleted. "It's frustrating that we
keep bumping into the reset button. We end up waiting
forever for the machine to reboot and connect to the
network."

Even in the larger "circular" lab, almost every
student interviewed complained about the number of
machines being too few and the number of students being
too large. "More computers or less students would be
nice." It was obvious from observation that even though
60'x 60' was a big room, 55 students were way too many
for the space, and this large number of students
presented a problem for learning in a hands-on
situation. The problem was compounded by an unreliable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83
network. ''Anythin? that require* the use of the printer
and the network was terrible. One tine I sent a file.
It got printed 500 tines, and no one could stop the
printer. Others blaned ne for nessing up the network.
It generated a major delay." The network went down
periodically also presented a dilemma that was out of
the facilitator's control. "We need a nore reliable
network so that printing a smaller file won't take half
an hour, or the s o w file won't be printed infinite
number of times. And, I had trouble downloading your
programs from the net[work] several times." To combat
the problem with the network, floppy disks were on
stand-by so that at least students did not need to
retype programs printed on the lab report. They got the
programs from a disk instead of from the network.
Nevertheless, when the network was down, using the
instructor's floppy disk was not good enough because
passing around the floppy disk with a large number of
students took too long. When students could extract
files from the server, it took only seconds. "I don't
like the printing situation and the network, there were
a couple times that we could not extract your examples
in the lab and we had to wait for your disk." To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84
allaviat* tha printing problem, several machines were
connected to dot-matrix printers. When the laser
printers went down, students could take turns printing
their files using those machines. However, the impact
printing of dot-matrix printers created another problem
— noise.

Only one participant was completely happy with
everything in the lab, "The lab is great as is. We are
given plenty of time, space, and help. I have no
complains."

In general, more computers or less student in the
lab would improve the physical conditions of the lab.
One student suggested one printer per machine. However,
the feasibility of this depends largely on the fiscal
budget. Physically, the "circular" lab could have
handled one printer per machine because all machines
were on individual tables.

The Rectangular Lab. One section of the lab was
scheduled in the "rectangular" lab. Students in the
"rectangular" lab seemed more frustrated with the
physical set up of the lab. With only one printer,
printing was a major problem. Table space presented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

another problem because five machines were on one long
table ins bead of each machine being on am independent
table as in the "circular" lata. Students bumped into
each other quite frequently.

Students in the "rectangular" lata complained even
more about the physical set up of the lata. "Hore
computers and more room would be nice so that we don't
keep colliding into each other." Students mentioned the
network problems as much as the circulaur lata. The
complains about the printer were worse because there was
only 1 printer for 26 machines and the lata had 50
students in a room which was about 25' x 55' compared to
the circulaur lab with 2 printers, 55 students, and more
than double the sise (60' x 60') . Thus, the physical
setup of the two labs played an importamt part in
student learning and greatly influenced their
frustration level. "The lata has too many students. It
is too crowded. Even printing requires waiting for a
long time. To maJce matters worse, students accidentally
printed executatale (non-printatale) files a couple times,
amd no one could stop the printer or clear the print
queue."

with permission of the copyright owner. Further reproduction prohibited without permission.

86
Tha tablas wara too closa togathar for anyona to

move around. Savaral studants protastad that it was
difficult for tha lab assistant to gat to than bacausa
tha lack of spaca batwaan tha big tablas. Ona studant
suamarixad tha situation nicaly, "My partnar and I try
to avoid tha nachinas in tha niddla of tha row. Evary
tima wa gat tha aiddla machina, wa try not to ask tha
assistant anything. Wall, avaryona in class prafar isla
nachinas."

Ovarwhalmingly, tha studants arguad on tha naad to
'naka tha lab saallar [lass studants], ona parson-ona
machina makas nora sansa to na." Tha nunbsr of studants
in a small room hindarad studants' laaraing in tha lab
in nora ways than ona. This crowdadnass mada all othar
problams saanad worsa. "Tha lab is tarribla, too many
of us cramp in a small room, and tha conputars don't
always work. Tha printing is slow and all mass-up whan
savaral of us sand tha samn fila or output to tha
printar. Wa don't know which is which." Tha santimant
of tha studants toward tha "ractangular" lab was summad
up by a studant who was so frustratad than ha cursad tha
computar rapaatadly. Ha was mora polita during tha
intarviaw. "Tha class is too big, and tha aquipmant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87
failure drivas us crazy." Whan participants wara askad
in tha intarviaw about ona improvamant that thay would
suggast. Host in tha circular lab said "nora nachinas,"
and most in tha ractangular lab suggastad "lass
studants."

Tha Proqranmiinq Environsmnt
No problaais wara obsarvad with tha Turbo C. Tha

compilar was fast avan for programs with savaral hundrad
linas. It was nora than adaquata in a baginning
programming coursa avan though it was not as
sophisticatad as DYNALAB (Birch, Boroni, Goosay, Pattan,
Poola, Pratt, 6 Ross, 1995, pp. 29-30). Unfortunataly,
tha sophiscatad compilar callad aducation machina (E-
machina) in tha DYNALAB did not includa tha languaga C
(p. 29) . Tha dabuggar of Turbo C providad a good
laarning tool for tha studants. "Tha watch and stap
[commands] in Turbo C halpad a lot. Thay giva ma tha
insights of how a program is run." Faaturas in tha
dabuggar wara covarad aarly in tha samastar, and
studants wara ancouragad to maka full usa of tham.

Studants wara also happy with tha on-lina halp that
thay racaivad from tha compilar. Ona axpariancad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88
programmer reported, "I love the on-lone help, just
<ctrl-Fl> [press the control key and the function key 1
simultaneously] , I get the syntax, semantics, and
examples of a key word or a built-in function. I never
even need to open the manual once." Another student who
had taken this course once already last year compared
the compiler on the VAX and Turbo C,

The debugger was so difficult to use last
year that I never used it, plus we didn't have
lab so you couldn't show us how last year.
Everything is making more sense this year.
Maybe it's my second time, maybe it's the lab,
or maybe it's the TC [Turbo C] debugger. I
can run my program and watch all my variables
change in another window simultaneously. It's
been great. I think I'll pass [the course]
this time.

A few problems did creep u p . In the first couple
weeks of the course, the compiler and the save
environments, which save C programs and executable files
automatically, were set up wrong. Without changing the
linker to the correct directory, programs could not be
compiled. Since instructors could not change the
default set up on the lab, students had to make the
change explicitly in the beginning of every lab. It was
very confusing to first time users to make changes of
which they had no idea. By the fourth week, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89
personnel in the computing center finally put in the
correct satup. However, by tha tiaa of tha interviews,
not even 1 studant complainad about tha confusions of
tha first 3 weeks.

Learning Strategies
Many students commented on how they learned to

program and soma specifically mentioned how they made
use of tha labs. Their comments touched on a wide array
of learning strategies they used in the newly developed
lab concept.

Working in Teams. In the first half of the
semester, teams of one, teams of two and, in a couple
occasions, teams of three were formed. After the
seventh week, some students were asked to reformat this
team situation, that is students who have been working
alone were asked to team up with a partner, students
with a partner initially were asked to team up with
another partner or to work alone. Kven for those who
did not get a chance to work alone in the second half,
they were at least re-assigned with a different partner
intentionally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90
Students working with a partnar tandad to ask lass

quastions of tha lab assistant. Ona mambar of aaeh taam
almost always did all tha typing for tha taam, and this
was always tha mambar with mora programming axparianca.
Tharafora, tha taams wara rastructurad half way through
tha samastar to radistributa thasa laarning alamants.

Khan tha studants wara askad about tha partnar
situation, thara wara two opposing viaws about having a
partnar. Only thraa out of 21 said that thay did not
hava a prafaranca or fait comfortabla aithar way. All
thraa studants finishad thair lab quita a bit fastar
than tha rast of tha class. All thraa triad both ways
with and without a partnar in tha two halvas of tha
samastar.

Tha othar studants, on tha othar hand, fait
strongly in favor of or opposad to tha partnarship
situation. Ona anginaaring scianca studant had tha most
positiva axparianca,

I lika having a partnar, aspaeially my
partnar. Wa gat along wall, wa ara at about
tha sama laval in programming. Wa avan got
similar scoras on tha last two tasts. Wa
shara a lot of programming idaas avan outsida
tha labs. Ivan though, in most casa, wa and
up having diffarant approachas in our
assignmants, wa look at aach othar's programs
and laarn from aach othar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
His partner racountad during bar interview,
I an joy ad having a partnar that I got along so
wall with. Wa wara so different that wa
learned from aach othar a lot. Since I got a
partner, I asked tha tutors lass questions,
and wa helped aach othar on taka home programs
too.

Others just enjoyed tha contact with othar studants. "I
prefer to have a partnar, sosaona I can discuss tha
problem with. Neighbors are okay too if you work
alone." Another proponent of having a partnar stated,

Having a partnar is wonderful because
sometimes you sit there and say, 'What's
wrong? What's wrong?' Working together is a
great help because you can explain to someone
what you know and have others explain to you
what you don't know. When I worked alone
during the early part of this semester, I
discussed with my neighbors.

Less Experienced and More Experienced Team
Pairings. Several students were purposely matched with
more experienced partners. Some of them were glad that
their partner helped them in relationships to points for
the course. As with other studies (Ivey, 1992, pp. 109-
111) , there were observable benefits of matching less
experienced with more experienced partners. The only
observable benefit is the time required to complete the
labs. Though students with a partner finished the labs
in a shorter period of time than without a partner, just

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92
"watching" or "liataning" claarly wara not anough.
Almost all studants pairad up with axpariancad partnars
complainad:

I prafar not to hava a partnar, I don't faal
I laarn as much just by watching. Mayba I'm
just a lonar.

My partnar did things too fast. I had no idaa
what ha did. A£tar tha £irst hal£ [o£ tha
samastar] I workad alona. I likad it a lot
battar bacausa I had tha kayboard, and I still
had naighbors to discuss with and tha tutors
to halp ma.

My partnar goas too £ast, and sinca ha has
mora axparianca, ha doas all tha typing.
Somatimas ha is so £ast with tha TC [Turbo C]
commands that I hava no idaa what ha is doing.
Unlass I can £ind somaona with my kind o£
spaad and axparianca, I prafar to work alona.

I lika individual labs battar. I can discuss
with my naighbors i£ I want. Whan I had a
partnar, I £alt that I didn't laarn as much
though I racaivad mora points in thosa labs.
Only ona o£ us can ba using tha kayboard or
tha nousa at ona tima. Somatima my partnar
want so fast, I didn't know what ha dickad.

Tha mora axpariancad mambar of tha taam who wara
pairad up with a lass axparianca partnar wara also not
antiraly happy with tha situation. Most of tham
concurrad with tha following statamant: "My partnar
wasn't much halp. I guass it may ba a good thing if you
hava a partnar who knows what ha's doing." Anothar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93
studant, who had a yaar of BASIC and was in anginaaring
scianca, want avan furthar by saying, "My partnar raally
has no businass in a programming class." Evan though
soma of tham did not faal as strongly about having a
partnar, thay claarly prafar working alona in tha lab
bacausa thay had thair naighbors if thay cravad
discussions. Evan a 33-yaar old studant with much
programming axparianca in othar languagas statad,

With a partnar, you don't gat to try
things you want. Watching it dona is vary
diffarant from doing it yoursalf bacausa wa
all watch you do it on tha big scraan. It's
vital that wa try all tha faaturas providad by
TC or faaturas that may halp at tha instanca
wa gat stuck.

Anothar 24 yaar old computar scianca frashman
achoad,

I don't think having a partnar is a good
thing in this lab, mayba in anothar class. Wa
may finish a projact fastar, but thara ara so
many things that wa ara trying to laarn. Wa
ara supposad to laarn avary part from tha
Turbo anvironmant to C. I undarstand that in
our fiald wa naad to laarn to work with
paopla, but wa hava a lot of tachnical things
to laarn bafora that.

Evan studants who anjoyad having a partnar thought
working alona in tha lab playad a major part in tha

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94
learning of how to program in a baginning programming
class.

I think you hava to ba abla to do tha
labs on your own in ordar to undarstand
programming. It's unfortunate that wa hava so
many of us in tha lab that soma of us ara
raquirad to hava a partnar whathar wa want ona
or not. I am glad that I triad both ways. I
got along beautifully with har but I think wa
should work alona in tha labs. Wall, wa work
alona in homa work assignmants.

Similar Exparianca Taam Pairing. Tha raactions
toward having a partnar depended largaly on tha gap
batwaan tha programming experience of tha partners.
Studants with similar prior programming axparianca
worked wall together. Thay also perceived their
learning axparianca in tha lab positively, and tha
programming language axparianca thay had did not seam to
matter. Four groups wara formed in tha second half of
tha samastar based on their prior axparianca. Thay wara
observed carefully and wara selected for interviews.
Ona of tha groups that always finished their lab tha
fastest and seamed tha most enthusiastic in tha lab wara
composed of two studants with aaqparianca in two
different languages — ona had 1 yaar in Pascal and tha
othar had 1.5 years in BASIC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95
Ha just do tha lab as in tha lab raport.

[My partner, who has a background, in Pascal]
and I work wall together. Most of tha time,
wa don't avan hava any syntax arrors whan wa
compile. Whan I do tha typing, ha catchas all
potantial problems before I hit <ctrl-F9>
[compile command] . X do tha same whan ha
types.

It Is Important to note that tha team members wara
willing to share tha kayboard and tha mouse whan
studants wara teamed with their pears with similar prior
axparianca.

Tha othar extrema group which almost always
finished last was composed of two studants with no prior
programming axparianca, though ona of them had soma
computing axparianca in word processing. Ona of them
was an 18-yaar old computer science freshman and tha
othar was a 38-yaar old sophomore majoring in business.
As with tha axpariancad group, thay shared tha burden of
typing and using tha Turbo C environment. Evan though
thay needed mora assistance from tha tutors, thay wara
not as frustrated as othar groups that always turned in
tha lab close to tha and of tha allotted time. Ona of
them summed up their approach, "Wa ara just a couple of
slowpokes, but wa gat tha job dona. Wa hava gone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96
overtime only one*. Thanks Tor your assistants;
otherwise wa would ba lost."

Thara wara a Taw studants who ha tad both
situations— with and without partnar. Thay wara
salactad as interviewees bacausa thay showad claar
Trustrations avan in tha Tirst savan labs. Thair
typical rasponsa was that, "I don't think this eoursa
should ba required in ny major. I don't think I'll avar
program again aTtar this class."

Lab assistants. Lab assistants wara vital to tha
studants' laarning in tha lab. Each lab was assigned two
computer science seniors to assist tha instructor and to
answer questions. Tha assistant to student ratio was
about 1 to 27. Owing to tha number oT questions asked
during tha Tirst 3 weeks, anothar lab assistant was
added to aach lab. Thus, tha ratio was reduced to 1 lab
assistant to about 18 studants. Tha lab assignments
wara given to tha lab assistants ahead oT time so that
thay could gat Tamiliar with tha lab as wall as with tha
concepts studants wara supposed to laarn Tor that
particular weak. Tha lab assistants in aach lab wara in
great demand in all 15 weeks. Thay wara almost always

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97
with a studant or a group o£ studants. Not only did
thay ansvar quastions, but thay also providad faadback
to tha obsarvation procass, (a.g. what kind of quastions
wara askad in aach lab) . Evary participant in tha
intarviaws mantionad tha importance of tha lab
assistants mora than onca.

Studants' Point of Viaw. Most studants wara
axtramaly happy that lab assistants wara providad. "I
had vary littla idaa what I was supposad to do in tha
first faw labs i£ not for tha tutors. Thay ara
wondarful aspacially [ona particular lab assistant]." A
studant who took tha class tha yaar ba£ora and £ailad
achoad this santimant that , "having tha tutors and you
in tha lab halp a lot. It's far battar than last yaar.
I am doing much battar this tima. Things ara not as
confusing as bafora."

Soma avan want as far as dadaring lab assistants
as tha bast part of having a lab. A 28-yaar old
businass studant commantad, "Tha bast part of having a
lab is to hava tham thara to provida instant halp."
Most of thosa intarviawad agreed, "Thay ara graat, I
don't think I can finish tha labs as quickly without

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98
thw . " Over 80% of the comunts about lab assistants
wara vary positiva. Most of tha studant a felt it would
ba good to hava mora of tham around. "I would lilca to
saa mora assistsmts bacausa of tha siza of tha labs. I
naad a lot o£ halp. Somatimas it takas a long tima
bafora an assistant comas back to ma. Ona tutor can't
possibly halp 20 soma studants."

On tha othar hand, savaral o£ tha individuals and
taams complainad in tha mid-samastar intarviaw that tha
lab assistsmts wara "too" halpful. Sinca lab assistsmts
hava axpartisa but ara not trainad in tha taaching
procass, thara is a dsmgar that thay will giva tha
laaraar tha corract answar rathar thsm taaching tham how
to gat to tha answar by solving tha problam. Tha
typical commants whan assistsmts' halp want ovarboard
wara:

Thay ara too halpful. Somatimas I ask a
quastion and thay finish tha program for ma.
I fait ambarrassad to ask again so I turaad in
a coupla working progrsuns without knowing why.
Soma ara halpful. [Bowavar,] soma tand to
just gat us unstuck without explaining what wa
wara doing wrong.
Evary tima Z ask a question, [ona of tha lab
assistamt] took over my kayboard amd made
chamges to my program beyond my comprehension.
I usually avoid asking him anything.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99
Ih«r« were also two complains about a f«w

assistants who did not halp studants aqually. Ona 18-
yaar old computar scianca studant complained, "You
should hava tha tutors halp studants on an aqual basis.
If a tutor spands one-half hour with ona studant, than
tha rast o£ us feel neglected."

Bacausa of thasa commants, a "no-touch" policy was
instituted a£ter tha eighth weak. Lab assistants wara
instructed not to touch students' keyboards or mica.
Thay wara asked to halp studants verbally or to
illustrate ideas on a piece o£ paper. It took a few
labs for tha assistants to gat used to tha idaa and to
stick to that approach. During tha end-o£-samastar
interviews, not ona single studant mentioned that tha
assistants wara "too" halpful. Thus, this approach
alleviated tha problem.

Lab Assistants' Point of View. Evan though lab
assistants wara not interviewed tha same way as studants
in tha class, thay mat with tha instructor before and
immediately after aach lab. Thay wara asked about tha
difficulties and tha most common questions in aach lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Th«y recognized the feet that oftentimes one member of
each team tended to perform most of the typing.

At the end of the semester, lab assistants also
commented that the lab feature of the course was a major
part of students' learning in at least the language C
and the programming environment. A 35-year old
assistant compared the new lab situation with her own
experience when she was a freshman in the introductory
programming course, "I wish I had a lab when I was a
freshman. Just learning how to compile and debug on the
VAX almost prevented me from staying in CS [Computer
Science]." Another senior was amazed by the progress of
some students,

I thought [one of the slowest students
initially] was going to drop after the first
couple labs. I can't believe the work he did
toward the end. I don't know if I could
finish the lottery program (see Appendix B) in
an hour when I was a freshman. I think the
weekly lab played a major part because they
get the practice every week with help
available instantly.

Assistant also kept track of the type of
questions students asked. They noticed the number and
the type of questions changed through the course of 15
weeks. "Towards the end, there were very few questions
about the syntax of C or Turbo [the programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101
environment] . Most of them have a running1 program but
wrong output. I guess their logic Is still weak." The
type and frequency of the questions Indicated the
students had a good mastery of one programming skill but
still the other.

Having the input from the lab assistants provided
an angle that might have been difficult for the
facilitator to observe.

Lab Manual. A complete set of Turbo C manual was
available in the lab. The set consisted of three books:
Getting Started, User's Guide, and Reference Guide.
However, use of these manuals was almost nonexistence.
During the 15 weeks of observation, only one of the
three books was used twice.

Students were asked why they lacked interest in
using the user's manual. The majority of the response
indicated that they did not need the paper version of
the manual because of the helpfulness of the on-line
manual and the speed of it. One simple keystroke and
they could examine the syntax and semantics of a
situation or a keyword in C. One student explain,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102
To find out more about the languago C os

tha Turbo C environment, all I naad to do la
<ctrl-Fl>. Fson tha on-line halp, I laasnad
to aat up four windows— ona window Tor tha
program, ona for tha output, ona for tha
dabuggar, and ona for tha arror maaaagaa. Z
don't know why you avan bothar to hava thoaa
books thara.
Tha studants wara told that tha uiar' a guida had a

lot of good axamplas. Howavar, tha typical studant
rasponaa was that "aftar I raad tha taxtbook to laarn
algorithm davalopmant and C, I can find what I am
looking for a lot fastar in tha book." Anothar studant
explained, "I am so uaad to on-line manuals, thoaa books
ara uaalaas to ma. Whan I brought ay Visual C++, it
cama only with a CD but no books. Printad manuals may
ba out-of-da tad." Thus, as a rasult of good on-lina
halp, manuals in computar labs ara quickly becoming
obsolata.

Tha Tima Factor. Studants wara ancouragad to taka
their tima and experiment with anything thay desired
after thay finished their lab. Approximately 10% of tha
studants always finished their labs within or a little
store than an hour. About 15% of studants always turned
in their labs at tha vary and of tha lab. Tha othar 75%
of studants usually completed their labs within 1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103
hours to 2.5 hours. Although sncouragsd to us* tho
axtra tima for additional learning, only about 20% of
studants would stay to axparimant af tar turning in thair
lab assignmants. Ona of tha raasons for this was
bacausa thay wara advisad not to stay in tha lab to do
thair ragular taka-homa programs. Sinca all lab
assignmants wara dua at tha and of tha 3 hours, lab
assistants wara told to concantrata on tha lab task so
that thair affosts would not ba dilutad by anything
alsa. Studants wara also advisad that thay should
channal thair affort toward a daapar undars tanding of
tha currant concapts (Brauar £ Zwas, 1993, p. 2) . Evan
if studants stayad in tha lab to complata thair taka-
homa assignmants, thay wara told that tha lab assistants
wara thara to halp tham with tha lab first. Hbraovar,
thara was anothar lab, callad Musaua Clustar, which was
sat up for studants to complata thair ragular homa work
assignmants. Tha Musaum Clustar was opan from 7 a.m. to
midnight a vary waakday, and ona computar scianca tutor
was assignad in tha clustar araa from 9 a.m. to 10 p.m.
Thus, studants who stayad aftar thay finishad thair lab
wara strictly studants who likad to axparimant with tha
concapts of that particular lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104
There m z « clearly observable differences in teams

and individuals who raced through the lab assignment
compared to students who took their times to complete
their assignment. Several students who always finished
within an hour and left right after responded, "Our lab
is from 3 to 6; our cafeteria opens only from 5:30 to
6:30, I can't afford to stay too long." A few other
students who left within an hour stated that they had to
go to work. They all had one common thread in their
approach: They came into the labs prepared. One student
who worked a night shift in a gas station explained his
working situation:

I get ready for each lab by following your
reading assignmants. The lab usually covers
the concepts you go over that week so I have a
good idea what the lab is about. I learned my
lesson earlier. One week I got behind in my
reading, I was late to get to work. I work
from 6 to 2 [a.m.] so I have to leave way
before 6.

Thus, for most of them it was out of necessary to get
their lab done as quickly as they could.

However, the two youngest students who were 14 and
16 years old, considered the labs far better than the
regular lectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105
H m pace of a traditional class is

usually too slow. In tha lab, whan I faal
comfortabla with ay achiavamant at any point,
I can aithar laava or nova on to somathing
mora axciting to aa. For axaapla, I startad
raading tha graphics aoda in Turbo C bafora
you avan startad arrays [which is a aora
sophisticatad programming concapt covarad
toward tha and of tha samastar) . I like that a
lot. I wish aora classas wara run lika your
lab.
Thara was no parfact tima for sotting up tha 3-hour

lab. With popular class hours baing from 9 a.m. to 2
p.m. and with othar classas that naadad tha
instructional labs, tha only tima slots wara 2 to 5, 3
to 6, and 4 to 7. Thosa wara tha slots that tha labs
wara run.

Most studants who wara not in a hurry did finish
tha labs within 2.5 hours. Tansion aountad graatly for
soma studants during tha last hour of tha lab. If thay
wara not closa to baing dona, this group of studants
panickad. Tha most common strategy was tha usa of
naighbors ragardlass of thair teaming situation. Both
studants in ona team recounted, "Wall, if most othar
teams ara dona and wa ara not, wa lika to gat a hold of
a friend from anothar team and saa if wa ara
misinterpreting a problem. Wa aithar ask tham or ona of
tha tutors and hava that problem clarified." Evan

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106
though studants w«z« told to progross at a paca
compatible to their judgment and ebi.li.ties, they did
look around to see how other teens or individuals were
proceeding. An 18-year old engineering science
students, who earned the highest score in the class,
added, "When half the class turns in the lab report and
I sm not close to done, I panic. It is like taking a
test and struggling. Then you look around and realize
that most people have left. That's not a good feeling."
Thus, lab learning in a programming course added an
unexpected peer pressure to some students because some
of them unknowingly monitored the progress of other
students in a negative fashion.

In the middle of the semester interviews, several
participants expressed a similar idea with respect to
when and how long the labs should be. Students attended
their lectures on Monday and Wednesday followed by a 3-
hour lab on Thursday afternoon. They speculated that
the 3-hour labs were too long and that the labs covered
too many concepts. A few of the participants suggested,
"Instead of once a week for 3 hours, why can't we have a
short lab right after each lecture. An hour and a half
to 2 hours maybe." Another felt that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107
a shorter and oiora focused lab would halp

na. Aftar you covar 'if' atatawant in class
on Monday, I lika to gat to tha hands-on part
in tha lab right away so I don't hava to wait
until Thursday to try things out. Usually by
Thursday [lab tima], you would hava introduced
things lika 'else if' and ' switch-case'
before I can master simple 'if-else.'
Tha idaa of "same-day lab" was introduced to othar

participants at tha and of tha semester interview.
Overwhelmingly, 20 of 21 participants wara extremely
positive toward tha idaa. Most responses wara:

Definitely, if wa can clear up a concept right
aftar wa sea it in class, it'll save tima for
me to search for similar examples in tha book.
That's something I usually do.
As long as tha labs ara not too long. Same day
sounds lika a good idaa bacausa wa can laarn a
small chunk at a tima.
Excellent idaa, except tha labs can't ba vary
long. It may ba difficult to finish a whole
program in 1.5 or 2 hours.
I can sea how it could halp with tha ideas
fresh in our minds and apply tham right away.

Tha only concern about that idaa related to tha
timing between tha lecture and tha lab. "If it's right
aftar tha lecture, it'll work, otherwise it would ba
just lika tha currant setup." Thus, tha concept of same
day lab may ba an affective learning method if tha labs
can ba scheduled correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108
Background in Mtth— uttics. Tha relationship

between computer scianca and mathamatics is as old as
tha £xeld of computer scianca. Owing to tha mathamati.cs
consonants in computer scianca, computer scianca
Instructors tand to believe that mathematics proficiency
has a direct impact on learning how to program.

A faw participants, mostly businass studants,
considarad thair waak mathamatics background as a raason
for thair poor parformanca, in a faw of tha labs in
which thay had to do simple analysis of algorithms in
tarms of tha mambar of computational oparations. Thay
might hava baan intimidatad by predicting tha numbars
which had a logarithm function in tha formula (binary
saarch). In anothar instanca with nastad loops,
dapandant variablas and indapandant loop control
variables causad major confusions among tha sama group
of studants. A chack of prerequisites indicated that
all studants in tha class had about tha sama amount of
mathamatics before this course. Tha prerequisite for
tha class at Montana Tech is collage algebra. Thus, all
studants had a strong enough background in algebra for
this course. Evan though all majors at Tech require 2
years of calculus except for Businass, most studants in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109
th« class wsrs frashsan and wara taking calculus
simultaneously. Thus, all studants in this course had
similar prior axparianca in mathamatics.

Tha businass studants wara just intimidated in
those two labs by thair own attitude in mathamatics.
Ona 18-year old businass studant providad her
explanation,

I knew tha number of guesses in tha
number game was related to log base 2. I just
panicked whan I couldn't remember tha
definition of logarithm. Luckily, you put
that on tha board aftar about half an hour
into tha lab. I could relate to tha fact that
aach guess would eliminate half tha numbers
from tha list. I just could analyse it
mathematically in tha lab. I just don't lika
math.

Contrary to soma opinion, mathematics majors did
not perform wall in those two labs in terms of thair
grades, time of completion, and avan thair attitudes
(Campbell 4 McCabe, 1984, pp. 1110-1112). Ona
mathamatics major offered his rationale, "I understand
tha lab and logarithm doesn't bother me. I just couldn't
relate tha guessing game and log base 2."

Programming is a required course which is taken by
engineering science, chemistry, and computer science
students in their freshman year. For business students,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110
it is a required courses to be taken in theix sophomore
year. Although the class had freshmen in most degree
areas, almost all of the business students were in their
junior or senior years. When participants were asked
about their timing for taking this course, the
participants blamed it on the subject matter and on the
campus-wide conventional wisdom among business students
that "we don't understand why business students need to
take a programming course. We heaurd that this course is
difficult and time-consuaiing so we waited. That's why
you have us seniors in a freshman-level class." When
they were asked if more aiathematics would help, most of
them responded, "Nothing will help. I don't like math.
If I have to pick between programming and math, I'd
rather program."

The attitude about math and programming might have
been different among students with different majors.
Nevertheless, their perfoxmance in the labs did not
reflect their attitude. For example, some of the best
lab reports were turned in by business students who
hated both math and programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill
Coop«r»tiv learning Environ— n t . Soma studants

usad intaraction among individuals os taams as a
laarning stratagy. In tha lab, studants wara ancouraged
to aithas work Individually os coopasativaly with a
partnas. It was tha intant of tha lab to avoid a lab
stsuctusa that studants would intasact compatitivaly.
Navas tha lass, savasal individual studants and soma taams
paid much attantion to tha psogsass of othas individuals
and taasis. Evan though studants wasa not gsadad on a
norm-safssancad basis to avoid "nagativa
intasdapandanca'r (Johnson, Johnson, £ Smith, 1991, p.
2) , savasal of tham pascaivad classas and labs as
compatitiva vanuas. Two computas scianca studants had
almost idantical conmants though thay compatad with
diffasant studants. "I lika to ba tha fisst to complata
aach lab. Wall, as long as I gat dona bafosa [ona othas
spacific studant], I guass I don't hava to ba fisst."
Whan ha was askad to eommant on tha s ignif icanca of
baing fisst, ha dalinaatad,

On a tast, wa gat a numasic scosa so that
I can maasusa my achiavamant against tha sast
of tha class with tha avasaga and avasything.
In yous lab, sinca most of us sacaiva 10 out
of 10 in avasy lab, tha only way fos ma to
chast my psogsass is my tima of camplation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112
The reason why I check on [this othar studant]
all tha time is bacausa ha's such a good
programmer so if I gat dona before him, I am
in good shape.

On tha positive side, tha majority of tha studants
in tha lab, however, interacted cooperatively with aach
othar. Not only did thay laarn to work collaboratively
with thair respective partnar or partners, but thay also
engaged in cooperative activities with othar groups and
individuals especially their neighbors or students in
their immediate vicinity in the lab. Their relationship
with their neighbors was very different from their
partners. The neighbor system was neither promoted nor
structured. It also lacked the basic elements of the
structures in cooperative learning (pp. 5-7) . Students
perceived activities or discussions among neighbors as
beneficial. As a matter of fact, several students asked
during the first two labs if they could discuss the lab
with students outside of their team. A 38-year old
business student complained about the inadequate number
of lab assistants but had positive comments about having
"good" neighbors:

There should be more tutors in the lab so
that we don't need to wait 20 minutes for one
of them to come back to my side of the lab.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113
Sometimes I wonder if the network ia down when
my program doaan't gat printed. Luckily, [my
neighbor] always helps. One time she just
printed her source code. Since her program
got printed before mine, she figured that my
machine had a bad connection. Sure enough, my
machine was off the net. Other times, she'd
help me debug when you and the tutors were
busy.

Some students also stayed after they turned in their lab
reports. This was not to do more experiments but rather
to provide help to their neighbors. One student
provided such good help to others that she became the
only lab assistant in the following year. She was the
only sophomore hired in the computer science department
as a tutor or lab assistant.

Gender Differences. There were observable gender
differences in terms of the students' willingness to ask
for help in the lab. Male students were eager to ask
the lab assistants whenever they had a question. Female
students, on the other hand, felt more comfortable with
partners and neighbors for consulting or assistance.
They might be more reluctant to ask for technical
assistance. One 35-year old business senior illustrated
her reason,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114
Lab assistants aca good, but thoy tond to

solve my problems too quickly for mo. Most of
tho timo, thoy solvo tho probloms for mo
without oxplaining to mo what I nood to do.
Thon I got stuck again in tho following stop,
so I liko to try figuring things out by mysolf
first. If I think about it long onough and
still don't have tho problom solved, thon I
ask.

In torms of tho longth or typo of tho questions,
malo students tended to ask short, direct questions.
Female students had longer questions. When female
students were interviewed and asked why they would go to
their neighbor before lab assistants, one 18-year old
computer science student responded, "Sometimes I have a
problem explaining which part of the lab I don't get,
and I don't want to take up too much of their time." A
chemistry student concurred, "It takes me a while to
explain to the tutor what I don't understand, so I
usually think about it for a while before I ask."

Male students, on the other hand, raised their
hands rapidly as soon as a problem was encountered.
Thus, their questions tended to be short, and tutors
could be seen moving from question to question quickly.
If a lab assistant was in the vicinity of a group of
male students, the assistant would usually answer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115
several questions asked by the same students intermixed
with several, questions by the students' neighbors.

Female students were somewhat more reflective and
deliberate in terms of using other resources. For
example, male students seesaed to do more typing and
compiling from observation. When they were asked why
they re-compiled their program every time they made one
simple modification, one male student responded, "1 like
to fix all my syntax errors so that I can run my program
because prograsis won't run with syntax errors. After I
get the program to run, I like to use the output to deal
with any potential logic mistakes." After an error was
found, a female student would be more inclined to make
the necessary changes and look at other part of the
program again before she re-compiled. Bernstein (1991)
contributed the difference in behavior or comfort level
of women in computing to their initial experience (p.
60) . The past computing and programming experience of
participants in this study agreed with Bernstein's
study.

The F» ctor. Differences in learning strategies
were observed among the students when they were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116
classified by ags. The attitudes toward computing and
programming were also different. The beginning of
semester survey revealed that, younger adults , in
general, had more computing and programming experience
than older adults (i.e. students of the age 25 and
older). Older adults' attitudes toward technology in
general were not as positive as that of younger
participants. One extreme view was from a 45-year old
business major: "The computer is ruining our future.
Mot only is the technology controlled by a small group
of elite like Gates [Bill], but computers are replacing
people in many ways. I have been avoiding computers all
my life." Not all older participants had this
apocalyptic view of computers. Nevertheless, that
attitude, unlike that found in the Morris' study (1992,
pp. 72-75) , was shared mostly by older participants and
did not change much through the course of the 15 labs.

The time it took for nontraditional students to
complete the lab assignments was noticeably longer than
traditional students. The last few students to turn in
the lab report in each lab were always non-traditional
student. Nevertheless, there was no difference in the
lab scores. One nontraditional student pointed out

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117
that, "I am slow in understanding how all the pieces
coma together." Most non-tradi.ti.onal students
responded, "I am also overwhelmed by all the things that
I have to learn In the lab. Turbo C, the editor,
getting files from the net." They also took more
deliberate steps In completing the lab reports or
experimenting with given programs. One participant
described herself as "careful." They tended to read the
programs before starting and worked out the possible
outcome of the program. While traditional students
tended to jump right In after the lab handout was given.
The younger group complied the programs more, made more
modifications, and even had more printouts before they
finally finished their labs. The younger group exhibited
more experimentation In the lab.

The Language C . The use of the language C in the
lab was a major concern. The conventional wisdom
suggested that C was not the best language in an
introductory computer science course (Dey fi Mand, 1992,
p. 11) . Since there was no programming prerequisite for
the first programming course at Montana Tech, to most
participants, this course was their first programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

course. Only a few minor problem* related bo th*
language C occurred in the lab. There were no major
complains about the choice of language from students.
Two students suggested the language C should be dropped
so that the language Java could be taught as their first
language.

As to the syntax of the language C, the use of the
semicolon in C presented a slight problem to students
who had BASIC or FORTRAN in high school. Semicolons are
used as statement terminators in the language C.
Understandably, students had Pascal experience who did
not seem to be bothered by the use o£ semicolons because
semicolons are also used as statement separators in
Pascal. A few students who had only programming
experience in BASIC complained that the rule of
semicolons was confusing. They were accustomed to
having the line feed or return to separate statements.
As a result, they either used too many or too few
semicolons. The compiler only picked up the problem
when too few were used. Mien that happened, all the
students had to do was to add semicolons wherever the
compiler suggested. On the other hand, because of the
flexibility of C, too many semicolons would not trigger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119
any oasaaga fron tha compiler. Unfortunately, the extra
samicolona sonatiaas changad tha maaning tha thosa
atatamanta. This took atudanta much longar to dabug.
On some occasions, even lab assistants ovarlookad tha
axtra samicolona. In tha proeass of mas taring tha uaa
of samicolona, a faw participants got frustrated; this
was axprassad as "I don't lika C. BASIC would never
have given me troubles lika that."

Most students had trouble with passing parameters
especially passing parameters by reference. It was
because of tha confusing nature of C in tha use of
symbols ampersand (fi) and asterisk (*) . An axtra lab
was designed to help students with problems unique to
the language C.

Overall, the language C did not present any major
problem in the lab. Thus, C did not have any
significant negative impact toward students' learning
how to program as has been suggested in some of the
literature.

Write-ups. Bach lab assignmient consisted of
several parts that were designed to help students
reflect on the concepts covered in the lecture. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120
write-up part of the lab was Intended to take up no more
than 25% of each lab out of 3 hours. Nevertheless,
actual tine spent on each write-up ranged from 10
minutes to an hour. "Does the result correspond to the
'ham and cheese' example In class? If yes. In what
way?" (see Appendix C) Is a typical question In the
write-ups. A logical "and" operation In programming was
not more complex than ordering a simple sandwich at the
dell. All students had to do was to relate a program to
a concept. There were two to three write-up questions
per lab assignment.

To some eager programmers who only wanted to do the
coding part, the last thing they wanted to do was
documentation. "Sometimes Z don't understand what you
ask and don't know what to write. If Z can finish the
programs in an hour, Z don't think Z need to explain
anything. At least the hard copy of the program or my
test runs should work," said a 17-year old computer
science freshman who just wanted to practice the
implementation part of programming in the lab. The
write-up part was designed to help students learn the
why instead of just the how regarding programming
concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121
On tha other hand, 20 out of 21 participants

responded positively to the write-ups. They considered
write-ups were a vital part o£ learning how to program.
However, they took different approaches dealing with the
write-ups. One quarter of the participants would finish
the whole lab assignment before they started doing the
write-up part of the lab report. A chemistry student
explained,

I like to have all the programs or design
done before I answer those questions. I like
to think about what I have learned In that lab
so that I can see the big picture. Your lab
write-ups are far shorter than my chemistry
ones. I usually have to spend the night to
complete chem lab reports.

Other students echoed this view and considered the
write-up part as the last steps of the labs. "Sometimes
I don't quite get what you are asking until I finish all
the steps in the lab. Even step 2 relates to step 1
directly, I. wait till the end."

The majority of students and participants did the
write-up parts of the lab as they progressed through the
labs. They simply followed the steps layout in the lab.
Thus, when they were asked to answer a question
following a program, they just did so without thinking
much about it. "The step by step instructions and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122
writo-iqps *x* th*s*, so I just tackl* th«m on* by on*."
Others took * oos* d*lib*r*to approach,

Th* writa-ups ax* usually th*r* to bs*ak
up psogxams ox experiments so that I can think
about what I am learning b*fox* I nov* to
another activity. I us* th* wxit*-up as an
indicator. If I can't do th* writ*-up in Stop
4, I don't start Stop 5.
Th* observations in th* lab, interviews with

participants, and grading th* lab report all r*v*al*d
that th* writo-up part of th* lab assignment was a
crucial part of loarning how to program. Th* writo-up
war* also *xc*ll*nt f**dback to th* instructor on how
well th* class or individual students war* doing.
How*v*r, owing to th* tim* constraint, sosi* students
rushed through th* lab and turned in sloppy lab reports.

In th* interviews, several studants *xpr*ss*d a
pref*r*nc* of post-lab writo-ups ins toad of in-lab.
Thoy wantod to turn in th* lab report th* following day
instoad of at th* *nd of each lab. "If I had nor* tim*
to r*fl*ct on what I am learning, I would do a lot
bettor on th* writo-ups." Oth*r students compared th*
n*w lab in programming with labs in other disciplines.
"My cham lab reports ar* du* th* day aftor so that w*
hav* tim* to think and writ*. Doing *v*rything in 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123
hours s m b s a. littl* bit rush." When participants ware
asked if take-home lab report would affect their take-
home assignments, most o£ them suggested the number of
assignments should be reduced.

Teaching and Learning Activities
Most programming teachers believe that laboratories

are effective because well-designed experiments in labs
offer a mode of learning that complements classroom
teaching (Hartel £ Hertzberger, 1995, p. 13) . Thus,
courses supported by short and relevant assignments are
more effective than courses without such laboratories
(p. 17) . Xt is, however, up to the instructor to devise
appropriate activities to facilitate the best learning
for the situation.

The lab activities were designed to enhance
learning programming in C in the newly designed labs at
Montana Tech. The activities could be divided into
three major categories of Record and Explain, Experiment
and Discover, and Design and Justify. Students shed
light on the impacts of each activities with candid
examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124
tocotd and Explain (RSE) Simple programs war*

given as pari; of the activities in alaiost every lab.
The activities were designed to stimulate the
sensitivities of students' ability toward subtle
differences in simple programs in C syntax and
semantics. The observations indicated that the students
liked R£E. "By running your programs, Z learned at my
own pace. Z usually just use the output to understand
the behavior of your program. Z felt Z learned C pretty
well." The purpose of RfiE could be best summed up by an
engineering student;

By fixing errors in your program, Z learn the
syntax and semantics of C without memorising
all the rules in the book. The compiler is
excellent with syntax mistakes. The semantics
problems take a little longer, but the output
of the program is usually good enough to
reveal them.

Several participants mentioned one particular lab in
which the sum of integers from 1 to 10 was supposed to
be in the variable sum as in figure 10.
Figure 10. Program Segment that Produced the Wrong Sum

sum * 0;
for (counter * 1; counter <* 10; counter++) §

sum * sum + counter;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

Even student with previous programming experience
did not immediately saa tha axtra semicolon, which is
shaded in Figure 10, after tha right parenthesis. Khan
tha variable sum was printed after tha for-loop, they
found tha sum was 11 instead of 55, tha correct answer.
They ware asked to explain the phenomenon in the lab
report. By using the debugger, they realized that the
for statement was executed 11 times as expected but the
statement, "sum * sum + counter;", was executed once
instead of 10 times. It was after the variable counter
had been incremented to 11 that the sum statement was
executed. By explaining the phenomenon, they understood
that the extra semicolon changed the meaning of the loop
and caused the loop to execute 11 times without the body
of the loop which was supposed to add the value of
counter to sum 10 times. They had to explain that for
the firat 10 times of execution in the for loop, the
statement, "sum * sum + counter;", was not involved as
the program had intended. After their explanation, they
were asked to fix the problem as documented in figure
11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126
Studanta liked R&E aetivitiM because th«y provided

a natural break in barms of pacing for tha studants in
tha lab. One studants who enjoyed R&E activities
reflected, "Even though I like all the activities in

Figure 11. Program Segment that Produced the Right Sum
sum * 0;
for (counter * 1; counter <= 10; counter++)

sum * sum + counter;

your lab, I like the Record and Explain best because I
am forced to stop and think what why the programs behave
in a certain way." Thus, R&E activities were successful
in helping students with the syntauc and semantics of
keywords as well as simple programming concepts in the
language C.

Experiment and Discover (E&D)
Experiment and Discover activities were designed to

encourage students to modify the program or programs in
the lab report. All the programs were available to them
on the network. Thus, students could download needed
programs to their computers without retyping any of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127
programs. Studants wars askad to modify tha programs to
parform a spacific task or just to run tha programs In
various ways. A chamlstry studant comparad tha ECO
actlvltlas In CS 1 lab with har chamlstry labs:
"Exparimant and dlscovar actlvltlas ara my favorita and
that's tha spirit of axparlmant In a laboratory."
Anothar studant concurrad, "Lika I said a coupla of
months ago, I lika modifying your prograais [E6D
actlvltlas] tha bast, but I faal good avan with doing
tha whola program in tha lab now."

Othar studants likad tha part of EtD that raquirad
tham to run tha programs in various ways and dlscovar a
concapt or an algorithm. "I lika axparlmant and
dlscovar actlvltlas, aspacially gamas lika guassing gama
that's similar to tha Prica is Right [tha TV show] to
damonstrata binary saarch. Who says watching TV is
bad!" Studants comprahandad tha algorithm fas tar by
laarning actlvltlas that wara not as dry as lacturing
(Bianat, 1993, p. 11) .

Othar participants likad E£D bacausa thay could usa
tha programs in tha lab as axamplas.

To axparlmant with your program is my favorita
bacausa wa hava all tha nacassary programs
thara and knowing that avan if wa mass up wa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

128
can always go back to tha beginning of tha
lab. And I learned a lot about programming
style and logic from those examples.

Design and Justify (DSJ)
Design and Justify (R&J) activities, in a way, were

the most difficult. Some students "feared" them because
of they involve the creative side of programming. DfiJ
was not language specific. Students were asked to
design an algorithm to complete a simple task, for
example, print all possible tickets in a lottery (see
Appendix E) .

In terms of time of completion, DtJ generated the
biggest difference. When D&J was the main activity in
the lab. The time required to complete the lab for each
student varied a great deal. A small group of students
of three to five, turned in their lab reports and their
programs in half an hour. On the other hand, 15 out 50
students still struggled at the end of 3 hours. Since
the creative process was essential in programming, DfiJ
provided the instructor a chance to guide students
toward a solution and in some cases the most efficient
one. For example, student were asked to print out all
possible outcomes of drawing 3 out of 10 balls labeled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129
from 'a' to 'j' as dascribad In lab assignmant 10 (saa
Appandix E) . Most studants cama up with a working
solution in a mattar of minutas. Soma staxtad
axparimanting with algorithm that thay dasignad by doing
a hand traea, soma convartad tha algorithm into a C
program, and soma dacidad to maka thair solution mora
afficiant. Sinea soma of tham had thair solution dona
in half an hour, thay wara askad by tha lab assistants
or tha instructor to justify thair solution in thair lab
raports. For thosa studants who had a solution but not
tha most afficiant, thay wara givan a hint about tha
numbar of outcomas thay ganaratad. Thara should ba
axaetly 120 tickats. Program sagmant in Figura 12 was
tha most common among thosa who triad to turn in thair
raport within tha first hour.
Figura 12. Algorithm 1 for tha Lottary Program

1. ganarata lattar form 'a' to 'j' callad balll
2. ganarata lattar from 'a' to 'j' callad ball2
3. ganarata lattar from 'a' to 'j' callad ba!13
4. if balll <> ball2 <> ball3 than print

balll ball2 ball3
o — n> not actual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130
Though th* algorithm worked, it generated 1000

(10x10x10) outcomes. Since only 120 tickets should be
printed, they were asked to eliminate unnecessary
configurations by generating only the configurations
needed. Most students csae up with the algorithm in
Figure 13 on their own.

Figure 13. Algorithm 2 for the Lottery Program

1. generate letter form 'a' to ' j' called balll
2. generate letter from riiMBfcBi to 'j' called

ball2
3. generate letter from to ' j' called

ball3
4. print balll ball2 ball3

Several students needed the lab assistants'
demonstration in order to get the most efficient
solution. Lab assistants were told to show those
students that their solution in algorithm 1 generated
conf igurations: '»**' , 'aab' , 'aac' , ..., all the way to
' j j j .' Clearly 'aaa' was necessary because once ball

was drawn, there were only 9 balls (from 'b' to ' j')
left. Almost all students changed their algorithm after
the illustration was made. The purpose of this lab was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131
to laazn nested loops as well as loop control variables
that were dependent.

Several students had a problem with Dfi J activities
because of the time limit. Some felt that "Design and
justify activities usually take too much time, I learn
just as much with the other two kinds [of activity] ."
Another business students gave almost an identical
comment: "The designing of algorithm takes too much
tisie. It's hard to complete a program in the lab. I
prefer other lab activities that I know I can get done."

On the other hand, some computer science students
had a diametrically different view. "I like designing
algorithm and writing whole programs. I like the
creative part of programming even though your examples
are good. I guess that's why I pick CS [Computer
Science]." Some also enjoyed the challenge: "I like to
start from the beginning of the whole program, it's more
challenging."

For slower students, time presented a major problem
with this activity. Nevertheless, with the availability
of help, participants and other students did not
complain as strongly as they about the physical setup of
the labs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132
Xnt«ryi«ir Summary

The major finding from inttzviaws and ond-of
semester survay was tha fact that studants considarad
tha labs to ba tha most significant learning element of
tha course. Both qualitative and quantitative data from
tha study supported that.

One of tha major findings from both tha mid-
semester and end-of-semester interviews was tha
importance of lab assistance. Both positive and
negative comments regarding lab assistance shed light on
how assistance should be offered.

Another important finding was the way that work
groups were formed. Participants had strong opinions
regarding what kind of partner they should have.
Clearly, if physical constrains would not permit them to
work alone, they definitely prefer to have a partner
with similar prior skills. Their learning experiences
were affected by that directly. Besides "official"
partners, neighbors played an important role in their
learning process for participants in teams or working
alone.

Strong feelings were also reported in relation to
the physical settings of the lab. On the other hand,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133
Turbo C prograaaaing nvironaont did. not protont much
problems for studants. Age, gondor, and background in
Mathematics affacted thair learning strategies only
slightly. Printed lab manual did not have much impact
at all.

The students expressed ideas in the interviews
concerning the structure of the lab. They discussed a
preference for same-day lab and take-home lab reports.
Participants clearly preferred the idea of mastering one
concept at a time by having a short lab right after a
lecture. They also favored having more time to finish
the write-up part of the lab report.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

CHAPTER 5

SUMMARY, CONCLUSIONSr AND RECOMMENDATIONS

Summary

Tha computer seianca department at Montana Tach has
designed and implemented a laboratory componant in tha
freshman programming couraa. This naturalistic casa study
was dasignad to invastigata how studants laarnad to program
using tha languaga C in tha lab anvironaant. Tha study
employed both qualitative and quantitative mathods. Two
assassmant survays wara dona. Studants wara obsarvad in tha
lab for 15 weeks. Two rounds of intarviaws wara conducted
during tha samastar. Rasaarch questions ralatad to studant
laarning strategies, tha physical environment, tha
programming anvironaiant, and teaching and laarning
activities.

During tha first weak of tha samastar, a studant
profile assassmant (saa Appendix A) was administered to
students in tha course. Tha results wara analysed and used
to select participants for in-dap th intarviaws.

Observations wara started from tha first full-weak of
tha samastar in tha lab and continued for all 15 waaks of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tha lab. Approximately 150 studants wara observed in tha
lab setting.

During tha first 7 weeks of observation, students were
selected purposefully for the interviews. These 21 students
participated din two in-depth interviews. Interviews started
in the middle of the semester. The same participants were
interviewed again at the end of the semester to affirm
several emerging ideas. Another student assessment survey
was done during the last week of instructions right before
finals week.

One focal point of this study was to reveal students'
learning strategies in the lab throughout the course of the
semester. Several learning strategies were identified.
Many students relied heavily on lab assistants to aid them
in their learning. Thus, the availability and quality of
assistance were crucial, and the delivery of assistance was
modified during the course of this study based upon the
observation and interview data.

All students enjoyed having neighbors for discussions,
consultations, or simply moral support. Thus, the closed
lab concept was a clear success. The closed lab provided a
cooperative interactive learning environment though it
lacked the structured elements in classic cooperative

with permission of the copyright owner. Further reproduction prohibited without permission.

U a m i n g (Johnson, Johnson, 6 Smith, 1991, pp. 5-8) . More
importantly, the formation of teams in the lab had major
effects on students' learning. First of all, with limited
space and machines and the large number of students, teams
consisting two or three students were formed out of
necessity. If the scheduling of the lab permitted, most
students preferred to work alone to ensure their
understanding of every concepts at their own pace. If
students had to be teamed, most participants favored a
partner with similar prior experience. The composition of
teams affected the learning of programming.

The sise and even the physical layout of the lab
prompted numerous comments from respondents. The difference
between the two rooms used as labs, in fact, related to the
number of complains that were heard from the interview
participants but all students in the labs.

Another focal point was the examination of the three
teaching and learning activities: Record and Explain (R£E) ,
Experiment and Discover (E£D) , and Design and Justify (D£J) .
RCE and BCD activities received overwhelming positive
comments. Both activities seemed to help students learn the
language element of programming. Comments on DfiJ
activities, nevertheless, received mixed blessings. Some

with permission of the copyright owner. Further reproduction prohibited without permission.

137
participants thought D6J actlvltlas related vary wall to tha
problem-solving or algorithm slda of programming. Soma
studants conplained about tha time It took for tha
actlvltlas. Bacausa of tha tima constraint, DfiJ actlvltlas
tand to alavata lavals of anxlaty among soma studants
aspacially In a faw labs whan tha DfiJ actlvltlas wara too
long. Tha culprit of tha anxlaty could hava stammad from
tha Instructor's Inability to proparly astimata tha langth
of tha axardsa problam and tha unpradlctablllty of tha
computars and tha natwork.

Conclusions and Recommendations
Tha laboratory modal for tha frashman programming

coursa has baan davalopad and tastad. Tha nawly davalopad
lab was wall-racalvad and provldad an axcallant alamant
which augmantad tha traditional Instructional alamants such
as lacturas, axamlnatlons, and wrlttan and programming
asslgnmants. Studants hava not only ambracad tha lab
concapt as a taachlng and laarning tool In programming, but
thay also considarad tha naw alamant mora important than all
tha traditional instructional alamants.

Tha succass, howavar, has not baan without cost. Owing
to tha lack of graduate teaching assistants, tha added

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138
contact houxs in th« lab hava baan tha sourea of debate
within tha computer scianca department cagaxding teaching
load. Tha 3 lab sactions occupied 2 laboxatoxy faci.lxti.aa
fox a total of 9 houxs a week. If tha policy of ona atudant
pax machine waxa to ba implemented, thaxa would naad to ba 6
lab sections and thus 18 lab houxs a waak In tha sasia 2 lab
facilities. With two lab assistants pax lab, tha computex
science depaxtmant needs to budget additional paxt-time
money (about $3500 each semes tax 8 $6.5/houx) to pay tha lab
assistants.

Elements within the lab such as leaxnlng stxategles and
leaxnlng activities play dlffexent xoles In the newly
developed lab. It Is the xesponsiblllty of the couxse
instxuctox ox lab fadlltatox to ansuxe tha lab conditions
axe favoxable fox leaxnlng.

Beqlnnlng-of-Samoatax Assessment
Students fxom sevexal majoxs took the Intxoductoxy

pxogxammlng couxse because It was xequlxed. Pxevlous
expexlence In pxogxammlng ox even computing cannot be
assumed fox a fxeshman couxse. It Is especially txue fox
non-computax science majoxs and non-txadltlonal students.
Thus, a beginning pxogxammlng couxse must be designed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139
anticipate a heterogeneous audience, and no assumption of
prior programming experience should be made.

End-of-Semes ter Assessment
From the end-o£~senester assessment questionnaires,

students considered the lab component of the course
extremely valuable. In fact, the lab part of the freshman
programming course was rated more important than any other
components. The end-of-semes ter interviews with
participants confirmed this finding. The newly developed lab
was a success. Thus, the lab component should be
incorporated in a beginning programming course. There may
still be a few bugs that needed to be work out, and perhaps,
new components can be added to enhance learning programming
in the lab.

Partners and Neighbors
The two rooms in which the labs were conducted could

not handle the number of students physically. The lab
environment created a collaborative learning climate for the
exchange of ideas (Knowles, 1984, p. 15) . The sheer number
of 50 students with only 2 lab assistants unintentionally
encouraged students to cooperate and collaborate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140
On th« other hand, participants had numerous opinions

about hoar tha collaboration should ba dona. Most of
preferred working alona than with someone with dissimilar
prior programming experience. Tha teaming method that
students paired with whomever they wanted was a bad idea.
When students outnumbered computers, more deliberate method
should be used for choosing or assigning partner to better
the collaborative learning climate. Students cared more
about the prior programming experience of their partners
than other factors such as gender, age, or major. Cases
should be avoided where one partner "did not know what was
going on" because the partner "controlled the keyboard and
went too fast" or where one partner feels the other partner
"had no business in a programming course."

Students should work alone in a beginning programming
course if it is possible because "watching it done is
different from doing it" and students need to "try every
tool in the Turbo environment to every concept in C ." For
heavy task-oriented activities, groups may side-track energy
toward relationship tasks instead of toward the task. Thus,
labs need to have enough machines for each student to work
alone.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141
Physical Environment

Regardless of tha partnarship circusstancas, tha
physical environment can play an important role in learning
how to program in the lab. The physical setup of the labs
including the computers must be viewed as resources, and the
facilitator must encourage students to devise strategies to
utilize them (Brookfield, 1986, p. 102). In this study,
participants made numerous comments about the physical
environments. Physical comfort is clearly important if
students are captive for 3 straight hours. Enough space
must also be provided to encourage discussions among
teammates or neighbors. Even the position of each computer
or at least the reset button can play a role in learning how
to program.

On-line Manual Versus Printed Manual
With the storage technology today, students will

clearly choose on-line manual over printed ones because the
two forms of manuals are identical in details now. The
difference between the two forms is the time it take to find
a command or the syntax of a keyword. On-line manuals are
more efficient than the printed ones for students in a
programming class. The on-line manual provides one key

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142
stroke to got to tho page where the printed manual would be.
More Importantly, all programming examples can be copied and
pasted onto the programmer's working window. As a matter of
fact, students In the lab used the printed manuals only
twice In all 15 weeks.

Post-lab Write-ups
The write-up portion of the lab report Is designed to

help students to get in-depth insights about an algorithm, a
whole program, or a program segment. It is a major learning
part of every lab assignment. For some students, the write
ups are used for reflective learning, and thus should not be
done in a hurry. Some students preferred to turn in the lab
report together with the write-ups the day after the lab.
More in-depth questions could be asked in the lab report if
a post-lab write-up is used in conjunction with an in-lab
one. The in-lab and post-lab write-ups are not mutually
exclusive. Their usage can be based on the lab particular
activities. Thus, to alleviate unnecessary anxiety for
students and to enhance reflective learning, write-ups
should be done as post-lab assignments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143
Teaching and. L»arninq Aetivitias

Tha t h r M activities of Racord and Explain (RfiE) ,
Expariswnt and Dlscovar (BSD) , and Design and Justify (DfiJ)
can ba usad Individually or in any combination dapanding on
tha matarial to ba laarnad. RfiE and EfiD racaivad
overwhelming positiva comments. Comments on DfiJ, on tha
other hand, ware mixed. One cognitive advantage of learning
in tha lab is tha way it forces students to experiment in a
structured fashion. For participants who ware initially
reluctant to modify tha given programs, these type of
activities encouraged them to find tha joy of eventually
understanding other people's code.

Students may feel overwhelmed when they sure given a
whole program to complete in 3 hours as in the D&J
activities. If they csui complete their design suid go over
their ideas with one of the lab assistsuits or facilitator to
make sure that they are on the right track, turning in their
progrsus or their algorithm with justification on the
following day stay facilitate learning. This approach to
doing DfiJ activities coincides with the post-lab write-ups
idea.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
Lab A«sistants

Tha Role of Lab Assistants. Lab Assistants ass
important to tha succass of tha lab in which atudants laarn
how to program. Thara waxa numssous commsnts on tha issua
of aasistsmca in tha lab. Tha faadback from participants
waxa mostly positive. Soma of tha nagativa commants ware
daalt with iannadiataly such as tha "no - touching policy," in
which assistants waxa ins true tad. not to touch students'
keyboards ox mica.

Weakly Meetings. Weakly meetings play a vital xola in
tha succass of tha lab program. Lab assistants need to ba
fami liar with each lab before it is given in order to assist
students efficiently. Tha weakly meeting can also ba used
to adjust tha method of assistance. Soma positiva or
nagativa commants can ba daalt with instantaneously. Since
these assistants are not trained teacher, improvements
should ba made from weak to week. For example, tha "no
touching" policy was implemented after tha eighth weak of
tha new lab because soma assistants took over tha keyboard
and finished tha programs for tha students without
explaining to tha students what caused their programs not to
work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
In the beginning of the course, lab assistants should

be trained to provide assistance equally. They should be
advised not to take over students' project and especially
not to control their keyboard. They must also not change
the students approach drastically to solving the problem
unless the approach Is total wrong. The lab assistants must
understand Individual student's solution to the lab problems
and guide the student to complete each lab problem. They
should not Introduce concepts that have not been covered In
the lectures to improve the program on which the students
are working.

Same Day Labs
In the mid-semester Interviews, almost half of the

participants mentioned that shorter labs with less concepts
covered would alleviate some of their anxiety toward the
amount of work In each lab. When the Idea was Introduced to
other participants, they all agreed with the Idea and said
they were eager to try If It could be implemented in the
following programming course. The foxmat of a programming
course in which two separate lectures on 2 different days
followed by a 3-hour lab on yet another day may not be the
best for learning. Instead of a full 3-hour lab each week,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146
2 shorter labs may ba usad avary week, and aach lactura Is
followed by tha short: lab which covers only tha concept of
tha day. Thus, hands-on activities can ba short and
students can learn in small steps. Tha lectures and labs
can ba more coherent. Both students and instructors can
receive daily feedback. With this approach, the lab portion
of the course can become the focal point rather than the
supplement to the lectures.

Recommendations for Further Research
Closed-laboratory in the introductory programming

course has been proven to be an effective learning tool
(Thweat, 1994, p. 81) . This study confims that it also
works in a small 4-year engineering school. This study also
describes how students learn in this situation. Future
research could examine if this lab model could be applied to
other computer science courses especially lower division
programming courses. Additional research would be
beneficial related to the affect of learning style has on
students in a programming lab (Marshall, 1995) . More could
be learned about students' learning strategies with respect
to learning activities and whether explicit instructions in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147
learning strategies would be effective. It nay also be
worth-while to do a study on same-day labs.

Internal elements in the lab are, however, not used
universally. Computer science lab infrastructure advocated
by pioneers in the field should also be investigated. For
exanple, the DTNALAB (Birch 4 Associates, 1995) provides
visualisation of when programming statements are executed,
and "course-ware" (Lin £ Associates, 1996) provides
interactive programs for students to experiment with
different concepts and visualize the walk-through of
algorithms. One could also examine ideas such as using a
subset of a language instead of the full implementation, as
a teaching tool as in Education C (Ruckert 6 Halpera, 1993,
pp. 6-9).

The Future
The laboratory component of the beginning programming

course at Montana Tech represents the future direction of
the computer science department. The hands-on pragmatic
approach is consistent with the mission of Montana Tech as
well as with its other engineering curricula. By learning
more about how students approach the new lab, instructors
can select strategies and design activities which will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148
inprov* lcasning. By gaining inosa Insights about lab
learning In the field of computing, similar approaches cam
ba tastad and applied to other courses.

Professors who went through computer science programs
when there was no lab may not see the need for the new
paradigm. Other instructors who use lectures as the only
form of teaching may also be uncomfortable with the change.
More importantly, the infrastructure is still being
developed and most ideas have not been tested as in other
science fields with a longer history than computing. Lab
books for computer labs are scarce. The vast number of
different languages being used may have been one of the
reasons why publishers are slow and reluctant to lend a
supporting hand.

There is a movement in the field of computer science to
utilize labs to help students learn. The job of the
educators who have used the lab approach to enrich students'
learning experience is to inspire colleagues through
meetings within their departments, computer science
conferences, and the literature; to train lab assistants; to
test other appropriate lab learning activities; to convince
administrators to support the approach financially.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

REFERENCES CITED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Abrial, J. R. (1980) . Tha apaci.fi.cafci.on language Z: basic
library, programming group. Oxford University, Uni tad
Kingdom.

ACM Curriculum Committae on Computar Science (1979) .
Curriculum 78: Recommendations for tha undergraduate
program in computer science. Communications of the ACM,
22(3), 147-166.

ACM Education Board (1989). Computer science as a
Discipline. Communications of ACM, 32 (1) , 9-23.

ACM/IEEE-CS Joint Curriculum Task Force Report (1991) :
Computing Curricula 1991. Communications of ACM, 34(6),
69-84.

Adams, F. (1975) . Unearthing seeds of fire: The idea of
Highlander. Winston-Salem, N.C. : John F. Blair
Publisher.

Anderson, C. L. (1991). Educating beyond the campus. Human
Ecology, Winter Forum, 16-19.

Anderson, J. R. (1980) . Cognitive psychology and its
implications. San Francisco: W.H. Freeman and
Company.

Backus, J. (1976) . Programming in America in the 1950s— Some
personal impression. International Research Conference
on the History of Computing (pp. 125-136) . Los Alamos
Scientific Laboratories, New Mexico.

Bernstein, D. D. (1991) . Comfort and experience with
computing: Are they the same for women and men?.
Special Interest Group Computer Science Education
(SIGCSE) Bulletin. 23 (3), 57-64.

Bierna, M. J. (1993). Teaching Tools for Data Structures
and algorithms. Special Interest Group Computer Science
Education (SIGCSE) Bulletin, 25(4), 9-12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

Birch, M. R., Boroni, C. M. , Goosey, F. W., Patton, S. D.,
Poole, D. K., Pratt, C. M., 6 Ross, R. J. (1995).
DXNALAB — A Dynamic Computer Science Laboratory
Infrastructure Featuring Program Animation. Twenty-
sixth SIGCSE Technical Symposium on Computer Science
Education (pp. 29-33). Nashville, Tennessee.

Bloom, B. S., & Associates. (1956). Taxonomy of
educational objectives handbook: Cognitive Domain.
New York: Mckay.

Booch, G. (1994) . Object-oriented analysis and design with
applications. Redwood City, CA: The Benjamin/Cummings
Publishing, inc.

Breuer S., 6 Zwas G. (1993). Numerical mathematics; A
laboratory approach. Cambridge University Press.

Brookfield, S.D. (1986) . Understanding and facilitating
adult learning. San Fransico: Jossey-Bass.

Brown, A. L. , £ Palincsar, A. S. (1989). Guided cooperative
learning and individual knowledge acquisition. In L.
B. Resnick (Ed.), Knowing, learning, and instruction.
Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc.

Bryant, R. , 6 Palma, P. D. (1993). A first course in
c o m p u t e r science for small four year CS program, A
Quarterly Publication of the Association for Computing
Machinery Special Interest Group on Computer Science
Education (SIGCSE Bulletin) , 25(2), 31-34.

Bruce, K. (1991) Creating a new model curriculum: A
rationale for Computing Curricula 1990. Education and
Computing, 7, 23-42.

Campbell, P. F., & McCabe, G. P. (1984). Predicting the
success of freshmen in a computer science major.
Communications of ACM, 27(11), 1108-1113.

Conti, G. J. (1977) . Rebels with a cause: Myles Horton and
Paulo Freire. Community College Review, 5(1), 36-43.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152
Conti, 6. J. , £ Fellenz, R. A. (1991). Teaching adults.

Tribal College, 18-23.
Cross, K.P. (1981). Adult as learners. San Fransico:

Jossey-Bass.
Darkenwald, 6. 6., £ Marriam, S. (1982), Adult education:

Foundations of practice. Mew York: Harper £ Row
Publishers.

Denning, P. J. (1992) . Educating a new engineer.
Communications of the ACM, 35(12), 82-97.

Devore, J., £ Peck, R. (1996). Statistics; The exploration
and analysis of data. St. Paul, MN: West Publishing
Company.

Dewey, John (1938), Experience and education. Mew York:
Collier Books.

Dey, S., £ Mand, L . R. (1992) . Current trends in computer
curriculum: A survey of four-year program. Special
Interest Group Computer Science Education (SIGCSE)
Conference Proceeding (pp. 9-14), Kansas City,
Missouri.

Dijkstra, E. W. (1980) . A programmer's early memories. In
M. Metropolis, J. Howlett, £ 6. Rota (Eds.), A history
of computing in the twentieth century. Mew York:
Academic Press.

Elias, J. L., £ Marriam, S. (1980), Philosophical fou"«**tions
of adult education, Krieger Publishing Company.

Foster, L.S. (1992). C by Discovery (2nd Ed.), El Granda:
Scott/Jones Inc., Publisher.

Freire, P (1973). By learning they can teach. Convergence,
4(1), 1-3.

Friedman, L. W. (1991) . Comparative programming languages.
Englewood Cliff, NJ: Prentice Hall.

Gagne, R. W. (1966). The conditons of learning. Mew York:
Holt Rinehart Winston, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Gay, L. R. (1992) . Educational raaaarch: Cong»fnei«s for
analysis and applications. Nmr Tosk: Macmillan
Publishing Company.

Gaits, R. (1994) , Concepts in tha classroom, programming in
tha lab. Twenty-fifth SIGCSE (Spacial In tar as t Group on
Computar Scianca Education) tachnical symposium on
computar scianca aducation (pp. 164-166). Phoanix,
Arisona.

Garsting, J. L., 6 Gamignani, M.C. (1988). Tha computar:
history, usas 6 limitations. Maw York: Ardslay Bousa.

Gibbs, M.E. (1989). Tha SEI aducation program: Tha challanga
of taaching future software anginaars. Communications
of ACM, 32(5), 594-605.

Glaick, J. (1988). Chaos: Making a naw scianca. Naw York:
Panguin Books.

Guba, E. G. (1978) . Toward a methodology of naturalistic
inquiry in educational evaluation. Los Angelas: Canter
for tha Study of Evaluation, UCLA Graduate School of
Evaluation.

Harrisberger, L., Heydinger, R., Saalay, J., £ Talburtt, M.
(1976). Experiential learning in anqinaarinq
aducation. Washington, D.C.: American Society for
Engineering Education.

Hartal, P. H. £ Hertzberger, L. O. (1995). Paradigms and
laboratories in tha core computer scianca curriculum:
An overview. Spacial Interest Group Computar Scianca
Education (SIGCSE) Bulletin, 27(4), 1 3 - 2 0 .

Huck, S. W . , Cormier, W. B. , fi Bounds, W. G. Jr. (1974).
Reading statistics and research. Maw York: Barper £
Row Publishers.

Impagliazzo, J., £ Magin, P. (1995). Computer scianca: A
breadth-first approach with C . Naw York: Wiley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Iv«y, B. (1992) . A case study of studwt lwrninq in micro-
computag baaed ehtmistgy laboratory. Unpublished
doctoral dissertation, Montana State University,
Bozeman.

Jastrow, R. (1987) . Towards an intelligent man. In J.
Watson, (Ed.). Information Systems for Management.
Plano: Business Publications, Inc.

Johnson, D. W . , Johnson R. T., & Smith K. A. (1991) .
Cooperative learning: Increasing college faculty
instructional productivity. The George Washington
University, Washington, D .C .

Jung, J. , 4 Brookshear J.G. (1994) . Experiments in computer
science (C Version) . Redwood City, CA: The
Ben j amin/Cummings Publishing.

Kahn, K. (1996) . Drawing on napkins, video-game animation,
and other ways to program computers. Communications of
ACM 39(8), 49-59.

Kernighan, B. W. , 6 Ritchie. M. (1988). The C programming
language. Englewood Cliff, NJ: Prentice Hall.

Kidwell, P.A., 6 Ceruzzi, P.E. (1994). landmarks in digital
computing. Washington, D.C.: Smithsonian Institute.

Knowles, M. S (1980) , The modern practice of adult education:
From pedagogy to andragogy (2nd ed.) , New York:
Cambridge Books.

Knowles, M. S., & Associates (1984), Andragogy in action—
Applying modern principles of adult learning, San
Francisco: Jossey-Bass Publishers.

Knowles, M. S. (1986) . Using learning contract. San
Francisco: Jossey-Bass Publishers.

Koffman, E. B. (1989) . Pascal: Problem solving and program
design, Reading, MA: Addison-Wesley Publishing Company,
Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155
Knuth, D. E. (1973) . Th> art of computar pgoqg«"-inq.

Reading, HU: Addison-Wesley Publishing.
Knuth, D.E. £ Pardo, L.T. (1976) . Tha aarly development of

programming languagas. International Raaaarch
Conference on tha History of Computing (pp. 197-264) ,
Loa Alamos Scientific Laboratories, Haw Mexico.

Leonard, J. R. (1991) Using A software engineering approach
to CS 1: A comparative study of student performance, A
Quarterly Publication of the Association for Computing
Machinery Special Interest Group on Computer Science
Education (SIGCSE Bulletin) , 23(4), 23 - 26.

Levy, S. P. (1995) . Computer languages usage in CS1: Survey
results. Special Interest Group Computer Science
Education (SIGCSE) Bulletin, 27(3), 21-26.

Lin, J. M. , Wu, C. C. , 6 Chiou 6. F. (1996), Critical
concepts in the development of courseware for CS
closed laboratories, Conference on Integrating
Technology into Computer Science Education (pp. 14-
19). Barcelona, Spain.

Lodsdon, T. (1980). Computer and social controversy.
Rockville: M D : Computer Science Press.

Lorenz, M. (1993). Object-oriented software development— A
practical guide. Englewood Cliffs: Prentice Hall.

Mageau, T. (1990). Teaching and Learning On-line.
Electronic Learning, 2, 26-30.

Marshall, L. (1995). Computers and Learning. Unpublished
doctoral dissertation, Montana State University,
Bozeman.

Mblave, S. (1986). Probability and statistics for
engineers (2nd ed.). Boston: FHS Publising.

Marriam, S. B. (1988) . Case study research in education: A
qualitative approach. San Fransico: Jossey-Bass.

Mbrriam, S. B. , 6 Caffarella, R. S. (1991). Learning in
adulthood. San Fransico: Jossey-Bass.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Moreau, R. (1984). The computer cornea of age: The people,
The hardware, and the software. Cambridge: MIT Press.

Morris, J. M. (1992) The effect o£ an introductory computer
course on the attitudes of older adults towards
computers. Twenty-third SIGCSE Technical Symposium on
Computer Science Education (pp. 72-75). Kansas City,
Missouri.

Moyer, tf. (1990) . An interview with Myles Horton. In R.
Fellenz £ 6. Conti (Eds.), Social environment and
adult learning, Bozeman: Center for Adult Learning
Research, Montana State University.

National Science Foundation (1992), America1s future: A
report of the Presidential Young Investigators
Colloquium on U.S. Engineering, Mathematics, and
Science Education for the Tear 2010 and Beyond.
Washington, D.C.: Directorate for Education and Human
Resource.

Newstrom, J. W., & Scannel, E. E. (1980). Games trainers
play: Experiential learning exercise. New York:
McGraw-Hill Inc.

Paxton, J. , Ross, R. J. , £ Starkey, J. D. (1993) . An
integrated, breadth-first computar science curriculum
based on Computing Curriculum 1991. Twenty-fourth
SIGCSE(Special Interest Group on Computer Science
Education) technical symposium on computer science
education (pp. 68-72), Indianapolis, Indiana.

Paxton, J. , Ross, R. J., £ Starkey, J. D. (1994). A
methodology for teaching and integrated Computer
Science Curriculum, Twenty-fifth SIGCSE(Special
Interest Group on Computer Science Education) technical
symposium on computer science education (pp. 1-5) ,
Phoenix, Arizona.

Plato, (1970). Msno (G. Grube Trans.). Indianapolis:
Hackett Publishing Company, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157
Prathar, R. E. (1992) . Computer Science in an undergraduate

liberal arts and sciences setting, Special Interest
Group Computer Science Education (SXGCSB) Bulletin,
24(2), 59-64.

Roberge, J. £ Suriano, C. (1994) Using Laboratories to
Teach Software Engineering Principles in the
Introductory Computer Scienec Curriculum. Twenty-fifth
SXGCSB(Special Interest Group on Computer Science
Education) technical symposium on computer science
education (pp. 106-110) , Phoenix, Arizona.

Roger, C. R. (1969). Freedom to learn. Columbus: Charles
E . Merrill.

Seaman, O. F. , 6 Fellenz, R. A. (1989). Effective strategies
for teaching adults. Columbus, Ohio: Merrill
Publishing Company.

Sebesta, R. W. (1996) . Concepts of programming languages.
Reading, MA: Addison-Wesley Publishing Company.

Shaw, M. (1991) . Informatics for a new century: computing
education for the 1990s and beyond. Education and
Computing, 7, 9-17.

Shiflet A.B. (1995) . Problem solving in C including breadth
and laboratories. St. Paul, MN: West Publishing.

Skinner, B. F. (1974). About behaviorism. Mew York: Alfred
A. Knopf.

Starkey, J. D. , 6 Ross, R. J. (1984). Fundamental
programming with Pascal. St. Paul, MN: West Publishing
Company.

Steinaker, N. , & Bell, M. R. (January, 1975) . A proposed
taxonomy of educational objectives: The Experiential
Domain, Educational Technology, 1 4 - 1 6 .

Sullivan D. R. (1990) . Computing today. Palo Alto, CA:
Houghton Mifflin Company.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158
Thveatt, M (1994) . CS1 closed lab vs. opan lab experiment.

Twenty-fifth SIGCSE(Special Interest Group on Computer
Science Education) Technical Symposium on Computer
Science Education (pp. 80-82). Phoenix, Arizona.

Tucker, A. B. , Bernat, A. P., Bradley, W. J. , Cupper, R. D.,
4 Scrag?, 6. W. (1995) . Fundamentals of computing I .
Mew York; McGraw-Hill, Inc.

Tucker, A. B. , 4 Garnick, O. K. (1991). Recent evolution of
the introductory curriculum in computing. Education and
Computing, 7, 43-60.

Weinberg, G. M. (1971) . The psychology of computer
programming. New York: Van Nostrand Reinhold.

White, M. A. (1988) . The third learning revolution.
Electronic Learning, 7(4), 6-7.

Winograd, T. (1983). Learning as a cognitive process—
Syntax. Reading, MA: Addison Wesley.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

APPENDICES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

APPENDIX A

BEGINNING-OF-SEMESTER SURVEY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS210 Introduction to Coaput<g S cince I Fall 1996
Wm, thm faculty of the Computmr Scimncm Department, ar*
inter mated in improving- this couram am much am wm can. Wm
appreciate it vary much if you could jumt taJtm about tmn
minutma to fill out thm following quma tionnairma aa
honmatly aa you can. Plmaam writs lmgibly.

Nama Major:____________ Aga: __________
Pleasa circle one in each of the following questions:
1. Gender: Male Female
2. Year in school:
Freshman Sophomore Junior Senior Graduate
3. Is this class required in your major? Yes No
4. Have you had programming experience? Yes No

if yes, please elaborate
Language Number of years School/Course

5. Have you used a computer before this class? Y e s No

if yes, what operating systems have you used?
DOS 0S2 Windows UNIX VMS unknown
others (list) __________________________________
name all software packages you have used:

6. Do you own a personal computer? Yes No
if yes, what?
286 386 486 Pentium Apple Mac
others (list) __________________________________

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

APPENDIX B

END->SEMESTER SURVEY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!

163

CS210 Introduction to Computer Science I
Course Evaluation
We, the faculty o£ the Computer Science Dapartmant, are
interested in improving this course as much ms we can. We
appreciate it very much if you could just taka about tan
minutes to fill out the £ollowing quastionnairas as
honastly as you can. Plaasa write lagibly. No one will
read any of this before the gradas have tumad. in.
1. Rank the following items in the order of importance to
learning in this class (the most important item should be
ranked number 1, and so on)
___________ Lectures and text
___________ Programming Assignments
___________ Tests
___________ Labs
___________ Help from tutor and/or instructor

2. How can the lab. be improved?

3. How can the course be improved?

4. What feature (s) of this course should be kept?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

APPENDIX C

LAB EXERCISE WITH RECORD AND EXPLAIN ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

CS210 Introduction, to Congot«g Seine* I
Lab Raport 6 logic and Truth Tmblmm

Naaa: Ni
1. Extract tha following fila from n:\\mtntsb\lab__k*ran.
The purposa of this program is obvious. Compila, link, and
run tha program. Racord tha rasults.
To connect to driva n:

go to DOS shall
typa in usa n: \\mtntsb\lab_kwan

Tha fila is in tha subdiractory cs210
include <stdio.h>
void main()
{ int operandl, operand2;
printf("\n\n\nTruth table of logical operation &&
(and)\n\n");
printf("operand 1 operand 2 operand 1 &&
operand2\n");
printf ("--- \n")

operand 1 = 0 ; operand2 = 0; /* both false */
printf("%4d %12d %20d\n",operandl, operand2, operandl &&
operand2);
operand 1 = 0 ; operand2 = 1;
printf(”%4d %12d %20d\n",operandl, operand2, operandl &&
operand2);
operand 1 = 1 ; operand2 = 0;
printf("%4d %12d %20d\n",operandl, operand2, operandl &&
operand2);
operand 1 = 1 ; operand2 = 1 ; /* both true */
printf("%4d %12d %20d\n",operandl, operand2, operandl &&
operand2);

printf("\n\n\n");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!

166

2. Dots th« rasult correspond to the "ham and chaasa"
axaapla in class? I£ yas, in what way?

3. Modify tha program to output tha truth table for tha
logical operator I I.

4. Prove tha DeMorgan' s Theorem I (opl I I op2) is
equivalent to !opl && !op2 by generating two truth tables.
Tour program should generate two tables as follow:

Truth table of logical operation not(opl or op2)
opl op2 opl I| op2 ! (opl 1 1
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

Truth table of logical operation (not opl) and (not op2)
!opl && !op2

1
0
0
0

5. turn in a hard copy of the program in step 3 and step 4 with test runs.

opl op2 ! opl ! op2
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

LAB EXERCISE WITH EXPERIMENT AND DISCOVER ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

CS210 Introduction to Compufcar Scimce X
Lab Raporfc 9 Saquantxal VS Binary
Nana:_____________________ Nana:________
In this axarcisms in this laboratory, ira add xrprovamants
to thm program in Examplm 5.16 of Smction 5.4. That
program mmploymd thm function PlayGamm to play a gums sing
gamm. Affcar mach addition, bm surm to tmst thm program.
To makm dmbugging masimr, thm program, uhieh is thm film
LAB051.C on your disk, has a gumssing rangm of 0 through 9.
Copy this film onto your disk.

1. This exercise examines two techniques for making
guesses. Play the game several times to get a feel for
its action. Try each of the following methods for
playing the games:
a. Guess the number in order, 0, 1, 2, until

hitting the target.
b. Guess the middle number of the range each time until

hitting the target. For example, for a range 0-9
with even number of choices, the first guess would
be 4 or 5. Suppose we type 4, and the computer
responds "Guess higher." Then our range is 5-9.
With an odd number of choices, the middle is 7.
The process continues until you find the number.

The first method is called a saquantxal saarch, and the
second is called a bxnaxy saazch. For each method,
what is the least number of guesses you have to make?
What is the most? Try the method you like best several
times on the range from 0-99. What is the most number
of guesses for each method? What is the most number of
guesses for each method for the range 0-1022? Which
method is faster for playing the game? Explain your
answer, giving several examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

APPENDIX E

LAB EXERCISE WITH DESIGN AND JUSTIFY ACTIVITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS210 Introduction to ComputT Science I
Lab Report 10
Mi Mi

1. Design an algorithm to print out all possibla outcomes
of lotto ACM. Assume ACM uses a lottery for fund raising
purposes and lotto ACM has ten balls labeled 'A' to xJr .
Three balls sure drawn at random each week. Print all
possible tickets as below with 8 per line and the total
number of tickets at the end.

lotto ACM
ABC ABD ABE ABF
ACD ACE ACF ACG
ADF ADG ADH ADI
AEI AEJ AFG AFH
AGJ AH I AHJ AIJ
BCH BCI BCJ BDE
BDJ BEF BEG BEH
BFI BFJ BGH BGI
CDE CDF CDG CDH
CEH CEI CEJ CFG
CGI CGJ CHI CHJ
DEI DEJ DFG DFH
DGJ DHI DHJ DIJ
EGH EGI EGJ EHI
FGJ FHI FHJ FIJ

ABG ABH ABI ABJ
ACH AC I ACJ ADE
ADJ AEF AEG AEH
AFI AFJ AGH AG I
BCD BCE BCF BCG
BDF BDG BDH BDI
BE I BEJ BFG BFH
BGJ BHI BHJ BIJ
CDI CDJ CEF CEG
CFH CFI CFJ CGH
CIJ DEF DEG DEH
DFI DFJ DGH DGI
EFG EFH EFI EFJ
EHJ El J FGH FGI
GHI GHJ GIJ HIJ

There are 120 tickets.
2. Justify your design by a walk through.
3. Discuss the changes you would have to make to print all
the tickets if lotto ACM has 45 balls labeled 1 to 45 and
each drawing draws 6 balls.
** Xf you test your idea with a program,
BBBHHBI«nless you sure going to plmnt am
Spring (conaidmr the number of pomaiblm
having thm program won't givm you any nor*
rmally want to write the program, plmaam

of pomaiblm tickets.

vmral trees next
tickets Hi) and
pointa! Z£ you

with permission of the copyright owner. Further reproduction prohibited without permission.

