JMAS: A JAVA-BASED MOBILE ACTOR SYSTEM
FOR HETEROGENEOQUS DISTRIBUTED

PARALLEL COMPUTING

By

* LEGAND L. BURGE III

Bachelor of Sciénce

Langston University

Langston, Oklahoma
1992

Master of Science
Oklahoma State University
“Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of
Oklahoma State University
in partial fulfillment of

~ the i'equirements for
the Degree of ,
DOCTOR OF PHILOSOPHY
December, 1998

COPYRIGHT

by
Legand L. Burge III

December, 1998

JMAS: A JAVA—BASED MOBILE ACTOR SYSTEM

FOR HETEROGENEOUS DISTRIBUTED

PARALLEL COMPUTING ..

Thesis. Approved:

Wl dageade

Waspe o 6. Tovrg 0.4

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I sincerely thank my graduate adviser Dr. K. M. George for the guidance, help and time he has
given me for the completion of my the’sis work. His direction and leadership helped inspire me to
venture into the advanced aspects of this work. Without the encouragement and help he has given
me, the completion of this work would have been impossible. I also sincerely thank Dr. H. Lu, Dr.
George Hedrick, and Dr. Rao Yarlagadda for serving on my committee. Their suggestions have
helped me to improve the quality of this work.

My special thanks goes to Dr. In Hai Ro and President Dr. Efnest L. Holloway, from Langéton
University, for the suppbrt that fhey have giving me throughout my studies here at Oklahoma State
University.

My respectful thanks goes to my parents Dr. Lega.nd L. Burge Jr. and Gwenetta V. Burge for
all the love and support they have given me in my life.- I also would like to thank all other members
of my family for the love, encouragement and confidence they have endorsed in me. Finally and
foremost, I thank God for giving me the opportunity to pursue a dream, and for the blessing of all

who made that dream come frue.

iv

TABLE OF CONTENTS

Chapter

1. INTRODUCTION. e e e e e e e e e s e e
1.1 Global Computing e e e e e
1.2 High-Performance Computing With Java
1.3 Mobile Agent Technology e
14 Thesis e e e e e e

1.5 Organization o e e e e

23 Java/DSM e e e
24 WebFlow e e
2.5 Javalin. e e e e e e e
26 ParaWeb e
2.7 ATLAS . e e
2.8 Ninflet e e
2.9 Popcorn e e e e e e e e e e e e e

2.10 Parallel Java Agents e

3. PROBLEM STATEMENT e it e e

3.1 Theoretical Foundation i i it i i it ittt e

Page

3.3 Motivation e, 25
3.4 The Mobile Actor Paradigm 27
4. JMAS: A JAVA-BASED.MOBILEACTORSYSTEM 33
4.1 Properties of Global Systems 33
4.1.17 Language Support it i i e e e e e 34
4.1.2 Exploiting Heterogeneity 34
4.1.3 Consistent Namespace 0 i e e e e 34
4.1.4 Scheduling and Load Balancing 35
415 Fault Tolerance e 35
4.1.6 Security e e e 35

4.2 JMAS Infrastructure e e e 36
4.2.1 Language Support in JMAS 36
4.2.2 Consistent Mobile Actor Namesin JMAS 37
4.2.3 Scheduling and Load Balancingin JMAS 38
424 Security in IMAS .+« o oot 38
4.2.5 Fault Tolerancein JMAS 38

5. IMASARCHITECTURE. e e e s e 39
5.1 Physical Layer e e e 40
5.2 Daemon La.yér 41
5.3 Distributed Run-Time Manager, 42
531 MessageHandler Lo o 44
5.3.2 ActorComtexto i i ittt e e e e e e 44
53.3 Scheduler e 45
534 ClassLoader e e .. 46

5.3.5

Load Balancer i i i i i i i e e e e e e e 48

5.4 Logical Layer« . 52

6. PERFORMANCE.EVALUATION. e s . 54
6.1 Benchmarks 55
6.2 Factors That Limit Speedup 56

6.2.1 Remote Executionof Actors. 57
6.2.2 Message Passing e 58
6.3 Traveling SalesmanProblem, 60
6.3.1 TSP Algorithm 60
6.3.2 Measurements e 61
6.4 Mersenne Prime Application. L 64
6.4.1 Mersenne Prime Algorithm 65
6.4.2 Measurements e 66

7. CONCLUSIONANDFUTUREWORK. 69
7.1 Conclusion e, 69
7.2 Future Work L, 70

BIBLIOGRAPHY e e e e 72
APPENDIX A: JMAS: INSTALLATION AND USER GUIDE 82
Al Settingup JMASonyourSystem 83
A2 Starting the JMASD-RTM i i e 84
A.3 Terminatingthe IMASD-RTM 85
A.4 Compiling Mobile Actor Programs 85
A.5 Executing Mobile Actor Programs 85
APPENDIX B: JMAS: MOBILE ACTOR API SPECIFICATION 87
B.1 Elements of the jmas.actor API 88

B.l.l Actor Class i i i e e e e e e e e e e e e e e e e e e e 89

B.1.2 MobileActor Class e 91

B.2 Elements of the jmas.utdd API 92
B.2.1 The ActorAddressClass 92
APPENDIX C: EXAMPLE MOBILE ACTOR PROGRAMS 94
C1 HelloWorld e 95
C.2 TravelTime 0 o it e e e e e e e e e e 98
C3 ParallelSum e 100
C.4 Parallel Quicksort e e e e e 103
C.5 Round Robin Migration through Market 107
C.6 Traveling Salesman Problem, 108
C.7 Mersenne Prime e e 117

Table

3.1

6.1

6.2

6.3

LIST OF TABLES

Page
Comparison of Global Computing FrameWorks. 21
Micro benchmarks for a 10 Mbit Ethernet LAN using TCP sockets.. 56
Estimating the Performance of TSP., 62
Estimating the Performance of Mersenne Prime Test. 68

Figure
1.1
2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
34
3.5
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

LIST OF FIGURES

Page
Global Computing Infrastructure 1
Architectureof JavaDC L . 11
Architecture of ARCADE System, 13
Design of WebFlow Management 15
Javalin Architecture L 16
Architectureof ParaWeb L L 17
Architecture of ATLAS 18
Diagram of the acquaintances of actors W, X ,Y,and Z2. 24
Actions performed by an actor in response to a communication. 25
Actorx sends Actory a message referring to a behavior f(). 28
Actory, _, executes a becomeremote OPeration. Lo L. 31
Actory creates aremote Actory. v i i e e e e e e e e e e e e e . 33
Creating Globally Unique Actor Names. 37
Four Layer Mobile Actor Architecture. 39
Users Logical View of GlobalSystem. 40
Message-driven model of execution. Lo oo 41
Distributed Run-Time Manager (D-RTM). 43
Process Flow Diagram of D-RTM. 43
Message Handler. e e 44
Building Objectsat Run Time., 45
Thread Scheduler. e e e 46

Operation of Java ClassLoader. 47

5.10

5.11

5.12

5.13

5.14

5.15

5.16

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Al

A2

B.1

Operation of JMAS ClassLoader. 48

CPU Market Hierarchy. 49
Host A Notifies Marketsof B,C,and D. 50
Load Balancing Policy. e 51
Load Balancing Algorithm. Lo L. 52
Computation Model. e .. 53
Logical View of Mobile Actor Architectures. 53
Test Environment. L e e e e e 55
TSP Algorithm. 61
Speedup of TSP. e e e e 63
Execution Time vs Load Time. o o L. 63
CPU Utilization of TSP. e e 63
Scalability of TSP. o e e e e e e e e 64
Mersenne Prime Algorithm. L o o oo 66
Speedup of Mersenne Prime.. Lo o oo 67
CPU Utilization of Mersenne Prime. 68
JMAS Directory Structure. 83
JMAS Graphical User Interface. 84

Is-a Relationship of Actors Objects using Inheritance. 89

CHAPTER 1

INTRODUCTION

Multicomputers represent the most promising developments in computer architecture due to
their economic cost and scalability. With the creation of faster digital high bandwidth integrated
networks, heterogeneous multicomputers are becoming an appealing vehicle for parallel computing,
redefining the concept of supercomputing [Tan92, Sta84]. As these high bandwidth connections
become available, they shrink distances and change our models of computation, storage, and inter-
action. With the exponential growth of the World Wide Web (WWW), the web can be used to
exploit global resources, such as CPU cycles, making them available to every user on the Internet
[BL96, Rey97]. The combined resources of millions of computers on the Internet can be harnessed to
form a powerful global computing infrastructure consisting of workstations, PCs, supercomputers,

and computing devices such as WebTelevision (Figure 1.1).

Figure 1.1 Global Computing Infrastructure.

1.1 Global Computing

The vision of integrating network computers into a global computing resource is as old as the
Internet[BL96][Sta84][GWtLT97]. Such a isystem should hide the underlying physical infrastructure
from users and from programmers, provide a secure environment for resource owners and users,
support access and rlocation of large integrated objects, be fault tolerant, and scale to millions of

-autonomous hosts. Some recent net\yp;f_}g799@pp;'qigﬁgwg.gpﬁrﬁoéb.cihersw }Q@?Q{QQ}E@Q_& [LL88], MPI

T e T

[GLS94], PVM-{Sun90], Piranha [GK92], MIST [Sa0G197], NEXUS [LI97], Network of Worksta-

Passing Interface (MPI) is a standard intended for use by all those who want to write portable mes-
sage passing programs in Fort;an .77 and C.-} The MP! interface is sui'gable for use by general MIMD
programs, ‘as well as those written in the more restricted sfyle of SIMD. P%llely_i_r}_;u_al_l\/l/aghj_llg
(PVM) is a programming environfnent for the development and execution of large concurrent or
parallel applicationsb. It permits:a hetel_'ogeneous collecﬁon of UNIX computers hooked together by
a network to be used as a single large parallel computer. The major goal of the Legion project
is to provide secure shared object and namespaces, application-controlled fault-tolerance, improved
response time, and greater throughput. Multiple language supporﬁ is another goal. CONDOR is a
software package for executing computation intensive type jobs on UNIX workstations connected by
a network. NEXUS is a po;table» run-time syste"m‘fdir task-parallel programming languages. It sup-
‘ports multiple threads of control,‘ dynamic Processor acquiéition, dynamic address space creation, a
global memory, and asyrnichronous evehté. GLOBUS is viewed as a networked virﬁual supercomputer
also known as a metacomputer: an execution énviroﬁinent in which high-speed networks are used
to. connect supercomputers, databases, scientific instruments, and advanced display devices. The
project aims. to build a sﬁbstrate of low-level services such as: communi'cation, resource location
and scheduling, authentiéé.tion, and data access, on which higher-level metacompﬂting software can
be built. MIST combines migratable PVM with global scheduling and loé.d monitoring. MIST is

designed to use idle cycles scavenged from shared networks of workstations to run existing PVM

]

progfams efficiently and effectively. WebOS is being developed with the objecti;/e of providing op-
erating system services for wide area applications such as resource discovery ‘and management, a
global namespaée, remote process execution, authentication, and security. The goal of Piranha is to
provide adaptive parallelism. Adaptive parallelism refers to parallel computations on a dynamically
changing set of processors: processors may join or withdraw. from the computation as it proceeds.
Networks of fast workstations are the most important setting for adaptive parallelism. Wbrkstations
at most sites are typically idle for significant fractions of the day, and thbée idle 6ycles may con-
stitute a powerful computing resource. _Most of these systemé require the user to have login access
‘to all machines used in the compu‘t‘atibn. In order to achieve heterogeneity all systems require the

maintenance of binaries for all architectures used in the computations. -

1.2 High-Performance Computing With Java

With the recently released standard Java components such as Remote Method Invocation (RMI)
[atoSM96b], Object S_erialization [atoSM96a], Java IDL (interface to the CORBA domain), and
performance boosters such as JIT J ava compilers, the HPCC community has been rapidly producing

a collection of Java APIs in the following areas to support high-performance computing:

matrix algebra
e image primitives

PDE primitives

parallel compiler primitives (e.g. lexers, parsers)

performance visualization and monitoring

load balancihg resource allocation, and cluster nianagement

Recently, researchers have proposed several approaches to provide a platform independent J ava-

based high-performance global computing infrastructure. These include Javalin [DoCS96a, DoCS97c],

Java/DSM [DoCS97b], WebFlow [aSU97b, FF96b, aSU97a, DoCS97c], IceT [oMCS97], JavaDC
[DoCS97al, Parallel Java [KBW97], Parallel Java Agents [KAB98], ATLAS [BBB96], Charlotte
[BKKW96], ParaWeb [BSST96], Popcorn [CLNR97)], and Ninflet [TMN98]. The use of Java as a
means for building distributed systems that execute throughout the Internet has also been recently
proposed by Chaﬁdy et al. [CDL*96], Fox et al. [FF96a]“andbimplemented in [Van97, Ven97].
Javalin is an infra.st;ucture for global computing.‘ The system is baséd on Internet software that
is interoperable, iné‘reasingly secure, and ubiquiéous. Javalin’s architecture and implementation re-
quire participanté fo have access to only a J ava-enabled Web browser. J é.valin is a prototype system
that consists of bl;okers,vclients, and hosts. WebFloQ is a particular programming paradigm im-
plemented over WebVM and follo;vs a dataflow progréﬁming model. WebVM is a mesh of servers
that manage and coordinate distributed corﬁpﬁtations. A WebFlow application is given by a com-
putational graph, visually edited by eﬁd-usérs using Java applets. The aim of the IceT project
has been to mutually incorporate approaches and techniques found in Internet programming with
established and evolving distributed computing paradigms. It is a novel framework for collaborative
and high-performance ‘distributed computing which is built upon a Java substrate. IceT addresses
the ideas of harnessing geographically-remote resources for 'anonymous utilization, portability of
prbcesses and dafa, and distributed security issues. JavaDC - Java for Distributed Computing - is
a web-based environment for maﬁaging the execution of parallel and distributed SIMD applications

written usmg MPI [GLSQ4] and PVM [SunQO] and does not provide support for most distributed

S e e e T

e - - e ,_,/~_,.~.,_/~~-~--r

heterogenequs computmg apphcatlons Parallel Java Agents is a framework for parallel computing
in locally confined scalable computing clusters based on agents that communicate through asyn-
chronous messages. Charlotte supports distributed shared memory, and uses a fork-join model for
parallel programming. Tasks may. be subxﬁitted to several servers, providing fault-tolerance and
ensuring timely execution. ParaWeb provides two separate implementations of a global computing
infrastructure, each with a different programming model. Their Java Parallel Class Library imple-

mentation provides new Java classes that provide a message-passing framework for spawning threads

on remote machines and sending and receiving messages. ParaWeb’s Java Parallel Runtime System

is implemented by modifying the Java interpreter to providé global shared memory and to allow
transparent instantiations of threads on remote machines. ATLAS provides a global computing
model, based on Java that is best suited for tree-based computations. ATLAS ensures scé,lability
using a hierarchy of managers. POPCORN provides a Java API for writing parallel programs. POP-
CORN applications are decomposed ‘by the programmer into small, self-contained subcomputations,
called compulets. The API facilitates something like RMI, except the POPCORN application does
not specify a destination on which the compulet is to run the execution. Rather, a "market” iwhich
brings together buyers and sellers of the CPU, deterbm'inevw'hich >se11er will run the compulet. Ninflet
facilitates RPC based computing of numerical task-in a wide area network. Java/DSM is a platform

for programming heterogeneous environments using Java and software Distributed Shared Memory

(DSM).
1.3 Mobile Ageht Technology .

Mobile agents areba convenient paradigm for distributed computing [Doc95, DoCS96b, Whi94b,
Whi%4a, Inc94, Grag95, BFD96, Rie94, SH97 ,F'UoCaIQG, Pei97, LDD96, KKT92, 0CS96, Age97, rL.96,
HBB96, MC96, 0T96, Aged7]. The agent specifies when and where to migrate, and the system
handles the transmission. This makes mobile agents easier to use than low-level facilities in which
the programmer must explicitly handle communication; butvmore flexible and powerful than schemes
such as process migration in which the system decides when to move a program based on a small
set of fixed criteria. ‘A mobile agent carries all of its‘ internal state with it which eliminates the need
for separate communication steps. The agent migratves to a machine performs a task, migrates to a
"~ new machine, performs a task that might be depenaent on the éutcome of thé previous task and so
on. Mobile agents a‘llowv a‘vdistributed applibation to be Writtgn as a singIe progra¥n. Mobile agents
can be viewed as extensions of the client/server model. Clients and servers can priogram each other

and applications can dynamically distribute its server components when it starts execution.

Early mobile agents systems include: Agént Tcl {Grag5], HI'TP-based mobile agents [LDD96],

Messengers[UoCal96], Oblig[fDRC94], Telescript [Whi94b], TACOMA [0T96], and Ara [Pei97].

Agent Tcl i§ a prototype system that uses the Tool Command Language (T'CL) as the mobile
agent language. Agent Tcl is brovided with explicit commands to send/receive Tcl scripts to/from
remote machines. The infrastrucfuré for HTTP-based mobile agents uses -the Hypertext Transfer
Protocol (H TTP) for agent transfer.and communication, faking advantage of this widely accepted,
platform independent protoéol. Agents are encapsulated in MIME—l'ike‘messageS for transport. The
TACOMA project focuses on operating system support for mobilé agents and how agents can be used
to solve problems thé.t are traditionally done by dperating systems. TACOMA is ba.s.ed oin UNIX and
TCP. The s&stem currently supports the followiﬁg'languages: C, Tcl/Tk, Perl, Python, and Scheme.
Ara - Agents for Remote Actions - is an application independent and language-neutral éxecution
platform for mobile agents written in genera.l‘ intefprgt,ed languages. Obliq is an object-oriented
scripting language:for distributed computation. Computétions are defined in terms of Oblets; active
objects that are distributed over vvmulbtip.le ma.chines. Telescript technology is similar to Agent Tcl,
with the exception of more security features imposed in the system. It is used to supplement system
programming lan‘guagés such as C and C++. Méssengers are autonomous objects [BFD96], each
capable of navigating through the underlying virtual ﬁetwork and performing various tasks at each
node. Applications are written from the point of view of the Messenger as they navigate through the
system. Applications therefore can compute in unknown.network topologies. Applications that have
been suggested for mobile #gents include distributed information retrieval, active documents, active
e-mail, network management, electronic commerce, controlling remote devices, and collaborative

applications.

Some recent mobile agént systems provide support for plaﬁform independent Java. applications.
These include: OBjectSpaces Voyager [Ob'j9"6],“General Magicg Od:ysséyb[OijG], and IBM’s Aglets
[rL96]. All of the current systems are 100 peréent pure Java and use features of JDK 1.1 [DD96, |
Inc95]. With the release of nr.10bi1e agent systems developed using the new standard Java cbmponents,
as well as, performance boosters such as JIT Java compilers, Java-based high-performance global

computing may soon become a reality.

1.4 Thesis

In this thesis we introdupe_mobile actors; a parallel programming paradigm for distributed parallel
computing based on mobile‘agénts and the actor message passing model [AHP91, BVN91, Hew77].
The Actor-based méssage passing model supports dynamic architecture topologies that make it
ideal for disfributed parallel comvputing. We implement a prototype system (JMAS) based on ithe
mobile actor Ipodel using Java technology [DD96, Ham96, Inc95]. Iﬁ barticular, we provide a mobile
actor API (Appliéation Programming Intérface) for writing mobile actor programs. Applications are
decomposed by the programmer into small, self-contained subcomputations and distributed among a
‘virtual network of Distributed Run—Tim'e Managers (D-RTM); which execute and manage all mobile
computations. Lastly, we evaluate the performance of our syétem, and sh'ov;r that our system is well
suited for course grain computations in a global heterogeneous environment. Qur experiments were
ran using two benchmérbkszr a Mersenne Prime Applic'a;tion , aﬁd the 'i‘raveling Salesman Problem.

In summary, this thesis is three-fold:

1. To introduce the mobile actor programming paradigm for global computing based on mobile

agents and the actor message passing model.
2. To implement a prototype system based on mobile actors using Java technology.

3. To evaluate the performance of our mobile actor systé’m.
1.5 Organization’

The thesis is divided into the following chapters:

e Chapter 2: A detailed review of literature related to current Java-based global computing

architectures that motivate the research conducted in this thesis is presented.

o Chapter 3: Discusses thesis objectives and theoretical foundations on which this research is

based. In particular, we introduce mobile actors.

Chapter 4: Discusses technical issues associated with the configuration of a Mobile Actor

System. Introduces JMAS: A Java-Based Mobile Actor System.

Chapter 5: Discuss the implementation specific design of the JMAS architecture. In particular,

we discuss the design of thg Distribﬁted Run-Time System ‘and how Java technoiogy is applied.
Chapter 6: Discuéses the perfor@wce eyaluéﬁipn of ‘our mobile actor system.

Chapter 7: A sumrfiary.of the thesis and s’ugges’tion“s for future work are presented.
Appendix A: Contains a detailed ingtallat‘ion / uéefé guide for 'JMAS.

Appendix B: Gives the specification for the: Jh/{AS Mobilé Aétor API.

Appendix C: Includes JMAS example programs.

CHAPTER 2

LITERATURE REVIEW

There has been much work in providing collaborative use of coﬁxputational resources over a giobal
network. As described in Section 1.1, some models of global computing use low-level communica-
tion systems, others use‘high-level dedicated systems. Althoﬁgh these systems offer heterogeneous
collaboration of multiple systems in parallel, they involve rather complex maintenance of different
binary codes, mﬁltiple execution enirironments, and complex underlying architectures. Distributed
computing over networks (i.e. local networks, intranets, or the internet), has emerged as a technol-
ogy with tremendous promise and potential, oWing in part to the emergence of the Java Program-
ming Language and the World Wide Web. Java, Because_: of its platform-independence, overcomes
the complexity issues of maintaining diﬂ"erent binary codes, multiple execution environmeﬂts, and
complex underlying architectures. -It offers the basic infrastructure needed to integrate computers
connected to the ‘Internet into a distributed compﬁta.tignal resource for runniné parallel applications

On numerous anonymous machines.

In the following sections, we give a detailed description of several Java-based high-performance
global computing infrastructures that motivate the research conducted in this thesis. Thé sys-
tems can be largely categorized into two — those that use active objects [BFD96] [SH97] [CM96]
[fDRC94] as a computing paradigm [DoCSQGa.][DoCSQ?a.] [TMN98] [BBB96] [oMCSQ7] [CLNR97]

[BKKWQG][aSUQ?b], a.’n'bd those which do not [BSST96][DoCS97b] [KAB98].
21 IceT

The aim of the IceT project [oMCSQ'f] has been to inéorporate approaches and techniques found
in Internet programming with established and evolving distributed computing paradigms. This in-
cludes the ideas of harnessing geographically-remote resources for anonymous utilization, portability
of processes and data, as well as, security issues that may arise. Extended features incorporated into

IceT include: dynarhic merging and splitting of virtual machines, multi-user awareness, portability

10

of processes and data across. multiple virtual machines, and a framework for multi-user prograins.
IceT builds upon traditional message-passing paradigms found in distributed computing, such as
PVM {Sun90}, and combines with it svide accessibility and portability of processes as found in both
Java and Internet programrﬁing paradigms. Processes in IceT execute in parallel across multiple
networks, among multiple users, and share information using IceT’s me.ssage-passing‘ substrate. Un-
like PVM, processes need not be provided to each _cofnputational résource in the IceT environment. ‘
Processes are able to transfer and install themselves on remote machines pfoviding unbounded file
system and network‘ access. The major Java components that make sp IceT consist of a ClassLoader
class, SecurityManager class, and the Java Virtual Machine (J VM) Throﬁgh the Java ClassL‘oader,‘
processes represented as Java bytecode can be uploaded, insfca;ntiated, and executed on remote hosts:
Programmers must explic_itly supyply the addréss pf the code to be uploaded. Bytecode executing
on remote hosts has no login or file access and is subvject' to security restrictions imposed by the
owner of the hosts. The SecurityManager class provides a means for imposing elementary security
restrictions. The JVM provides Java bytecodes with a uniform, system-independent view of the

underlying architecture.

2.2 JavaDC and ARCADE

JavaDC and ARCADE {DoCS97a] are developed with the premises that web is becoming an at-
tractive framework for solving distributed applications. This is realized in particular because a
web interface can be made platform independent. The ARCADE environment extends the focus of
JavaDC to more general applicaﬁions which consists of multiple heterogeneous ‘modules interacting

with each other to solve an overall problem.

2.2.1 JavaDC

JavaDC - Java for Distributed Computing - is a web-based environment for managing the execution
of parallel and distributed SIMD (Single Instruction Multiple Data) applications written using MPI
[GLS94] and PVM [Sun90]. Such applications based on this model execute the same program

on different subsets of the program data. JavaDC does not provide support for more distributed

11

heterogeneous computing applications. Users of JavaDC are able to develop a parallel environment
on a high-performance workstation cluster (HPC) in one domain, run an application on the HPC
using executables and input/output files located in another domain, and monitor its progress. As

shown in Figure 2.1, the architecture of JavaDC consists of four components:

e The Web Client is a WWW browser. The Java Client is a g"raphical user interface which runs
under the browser environment. The Java Client interacts with the user and communicates
with the Java Server over the network specifying the applicatioh and resource requirements

for the target systems.

e The Web Server is a HTTP-server. The Java Server is a Java-based server which is the main
working engine of JavaDC. It collects the users specification and executes the application on

the HPC.

e The HPC (High Performance Cluster), is a cluster of workstations which form the execution

environment.

e The application site stores the application executables and data input/output.

N i] i
' 1 = '
v | web | U [Web |
1 T 1 > s
v |Server] V| Client| 1. 1Speify splkatonsaot
A 1 § '
¥ T 1 1 [} ToRouror rEquircmcols
' : ! ! ! .
. : ! ! ! 2 Gateapplication
1 H 1 1 '
t : t [l i 3. Ron the application.
i :) 1 1
1 i .
' ¢ ' ' ! 4 Diglyaamsad
1 H 1 1]
1 1 [1 resulis
! CGl H 't 3
! N] t '
1 i 1
! SCl:Ip(: ' !
' H i 1 1
t B ' 1 v
] H i 1)
i .) t t
i H 1 t 1
i N 1 1 A
i i v M ¥ ¥
Application ! ! ! ;
. ['
Site Java (1) 1 |Java !
1 1 B H 1
. 2 Server| | (4) Client|
domain , H ! !
] 3 ¥ t
1 i 1 t
t 1 ll i
1 1 [¥

Figure 2.1 Architecture of JavaDC taken from [DoCS97a).

12

2.2.2 ARCADE

ARCADE is an integrated environment designed to provide support to collaboratively design, ex-
ecute, and monitor multidisciplinary applications on a distributed heterogeneous network of work-
stations [DoCS97a]. It extends JavaDC to more general applications. The system consists of the -

following sub-environments:

e The monitoring. and steering interface, allows multiple users to monitor the execution status

of the applications, as well as, examine intermediate and final results of large data sets.

@ The resource allocation and ezecution interfd_ce, provides support for specifying the hardware
resources required for the execution of the application. Resources could be chosen statically
or dynamically during the execution by the users or by the system based on the current and

predicted loads of the systems.

e The application design interface, allows the hierarchical specification of the execution modules

and their dependencies. (similar to dataflow) -

The overall goal of the environment is to provide an easy to use, portable, and easily accessible
environment that provides support through all phases of application development and execution.
As shown in Figure 2.2, the ARCADE éystem is a three-tier architecture. The front-end consists
of a web browser (client)b, which interacts with the Java User Interface Server (UIS) that provides
information and services as needed by the client. The UIS also launches an Execution Controller
(EC), which manages the overall ’execﬁtion of the appiication by starting up user modules on the
specified resources. This is a centralized approach to managing and’ executing user computations
on HPCs. The EC interacts with the last-tier called the Process Controllers (PCs), which run on
individual resources in the execution environment. All of the logic is embodied in the middle tier,
allowing the front-end and back-end to be very thin, thus making it feé.sible to run on low-end

machines and keep additional loads on the execution machines to a minimum.

13

Application
Modules

Application
Modules

Application
Modules

Figure 2.2 Architecture of ARCADE System taken from [DoCS97a].

2.3 Java/DSM

-Common parallel programming paradigms consist of ehareii memory (for multiprocessors), and
message passing (for multicomputers). Shared memory provides the advantage of a convenient
message depository for fast processor to processor communication. Such systems are complex and
are very hard to build. In converse, multicompliter systems are easy to build with the disadvantage
of a more complex software system. Efforts to combine the adva.nto,ges of multiprocessors (easy to
program) and rnulticomputers (eaey to‘ build) have lead to communication para'digms that simulate
shared memory on multicomputer systems. These paradigms allow multicomputers to communicate
through Distributed Shared Memory »(DSM) [BNQG]. Distributed Shared Memory is an attractive
abstraction because it provides processes with 1iniform access to'local and remote information. This
uriiformity of access simplifies programming, eliminating the nee(i for separate mechanisms to access
local state and remote state informatiorx. Java/DSM is a system for programming heterogeneous
computing environments based upon Java and software DSM [DoCS97b]. Java/DSM transparently

handles the hardware differences and the distributed nature of the system. The underlying software

14

system is complex and requires costly communication strategies to maintain memory coherence.
Java/DSM consists of a JDK-1.0.2 based parallel Java Virtual Machine on the TreadMarks DSM
system [KCDZ94]. It includes a distributed garbage collector and supports the Java API with very

few changes.

2.4 ‘WebFlow

WebFlow [aSU97b, FF96b] is a general purpdse Web based visual interactrve programming environ-
ment for coarse-grai}n‘ distributed computing built on top of standards such as HT'TP, Html, and Java
[LDDY96] [Ham96]. The environment consists of a three-tier architecture with the central control
and integration WebVM layer in tier-2, 'rrlteract-ingwith the visual graph editor applets in tier-1 and
legacy systems in tier-3. The WebVM layer (tier-2) is a runtime environment that consists of a mesh
of Java web servers such as Jeeves [Inc97] from Javasoft or Jigsaw [Con96] frorrl MIT/W3C which
coordinate distributed computation represented as a set of interconnected coarse-grain dataflow
Java modules. Modules run asynchronously, are nrobile and communicate by exchanging Java ob-
jects along their dataflow channels. WebFlow is a particular programming paradigm implemented
over WebVM and given by a dataflow programming model. Modules are written by developers
who need not be concerned with mane.gement and coordination functions. As shown in Figure 2.3,
WebFlow management is implemented as three sub-components: SessiohManager, M‘oduleManager,
and ConnectionManager. The SessionManager receives graph specifications from the graph editor
applet (tier-1), and creates an image of the whole compute-web using module proxy objects called
ModuleRepresentations. WebFlow then decides on the decomposition strategy and notifies the Mod-
uleManager to start a ModuleWrapper that runs modules and notifies the ConnectionManager about

the connectivity required by a module.

15

% i WebFlow Editor Applet

Java Wodule

UNIX Module

Native Module

Figure 2.3 Design of WebFlow Management taken from [aSU97b].

_ 2.5 ‘Javalin

Javalin is a Java-based global computing infrastructure that -consists of three kinds of participating
entities: clients, brokers, and hosts [DoCS96a]. A client is a.‘ piocess seeking cémputing resources; a
host is a process offering computing resources; and a broker is a process thatJ Coordinates the supply
and demand for computing resources. As shown in Figure 2.4, J‘avé.lin is a simple architecture which
enables anyone connected to the Internet.or and Intranet (via a Web browser) to participate. Clients
register with brokers their taéks to be run, hosts register with brokers théit intentions to run tasks.
Brokers. assign the tasks to the host and forward the results back to the client. By simply pointing
a hosts browser to a ‘known broker URL, users automatically make their resources available in a
distributed compﬁtation. In particular, Javalin software is downloaded to the hosts browser. This

software allows the host to accept tasks to be executed in favor of the broker.

16

......... 1 Clients

Brokers

Figure 2.4 Javalin Architecture taken from [DoCS96a].
2.6 ParaWeb

Within the ParaWeb framework, users may execute existing unmodified thread-based Java applica-
tions remotely on faster computation resources, or they may execute them in parallel on a variety

of platforms across the Internet [BSSTQG]. ParaWeb achieves parallelism in Java through two ap-
proaches:

1. A Java Parallel Runtime System (JPRS).

2. A Java Parallel Class Library (JPCL).

The JPRS sui)port a distributed shared memory franiework, whefeas, the JPCL supports message
passing. Executing standard thread-based program across multiple platforms on the JPRS requires
presenting these threads with the illusion of ‘shared memory. Providing communication mecha-
nisms between remote threads supported oﬁly by .the JPCL class library is easiest to do using a
message passing framework. The parallel class library in ParaWeb provides mechanisms for the
remote creation and execution of threads, and facilitates communication between them. As shown

in ParaWeb’s architecture (Figure 2.5), the following sequence of steps are performed in order to

execute a parallel program.

17

1. Each server (i.e. A, B, and () start daemons which register with a load scheduling server

(which keeps track of idle servers).

2. Remote threads are created when the client contacts the scheduling server to request an address

of a remote idle server.
3. The scheduling server respond; with the a_,ddress of the requested serve‘r.
4. The client sends compiled byteﬁcode‘to the remote server for execution.
5. The remote server returns the results.‘

6. The client then notifies the schéduling server to inform that it has finished using the remote

Server.

Server B
Mac

Server A
PC

Scheduler

L i
f - - \ Server

Client

User Prog.

Figure 2.5 Architecture of ParaWeb taken from [BSST96].

The JPRS is a modified Java interpreter:which allo§vs threads to be instantiated on any remote
machine that is running the modified interpreter. The Java interpreter on each machine coordinates
with the other interpreters to maintain the illusion of a global shared address space. Consistency
among replicas in the global shared address space is enforced through a release consistehcy‘ protocol.

The runtime system relies on existing Java mechanisms for concurrency and synchronization. -

18

2.7 ATLAS

The ATLAS system is designed to exploit network resources of the world as a giant distributed
computer, and to develop an infrastructure that exploits idle resouréeé [BBB96]. ATLAS realizes
this by combining éxisting mechanisms and policiés from Ja.‘v;a._ a.nd ‘Cilk [BJK+95] together with
some new mechanisms and policies that extend ATiJAS into a global computing infrastrﬁcture. Cilk
is a.. C-based parallel mﬁltithreaded programming language together wi’c‘hba runtime system that
provides thread sche_duling based on the ’cééhnique of work stealing (i.e. idle processors steal threads
from random machines). Cilk also pfqvides fault-tolerance and adaptive parallelism. ATLAS adapts
the Cilk programming model to Java (to enforce 'hete'rogeneiti:y); it extends the Cilk work-stealing .
scheduler; and it borrows mechaﬁiéms to provide adaptive paiéllelism and fault tolerance. The

ATLAS system architecture consists of clients, managers, and compute servers (Figure 2.6).

dit > mmger
Compute | Compute Compute

SEIVer. SETver Server

Figure 2.6 Architecture of ATLAS taken from [BBB96].

Clients with applications to run contact the local manager to find any idle compute servers. It
then connects to the server to run the application. During execution, idle servers steal work from

those that are busy.

19

2.8 Ninflet

Ninflet is a Java based implementation of the Ninf (Network infrastructure for global computing)
[TMN98] system which facilitates RPC based computing of numerical task in a wide area network.
It was designed to overcome some of the limitations of Ninf providing a more uniform, finer-grained
0bjéct~based programming model. The Ninflet system consists of three components, a server, dis-
patcher, and client. The underlying architecture conceptually resembles that of the Javalin system
[DoCS96a]. Servers in Ninflet are Hosts in Ja&alin, the dispatcher in Ninflet is represented as a

broker in Javalin, and clients are in both Ninﬂét and Javalin.

2.9 Popcorn

The POPCORN project provides aﬂ iﬂfrastrﬁcture for coarse grain globally distributed computation
_over the internet. The infrastructure is deSigned té harness the millions of processors of the Internet
which care to participate at any given moment. A market-based approach of CPU time underlines
the system which consist of buyers and sellefsyof CPU time. CPUs that are idle become the open
market, while those that have heavy loads try to sell (of distributed) tasks to other CPUs‘ in the
market. The POPCORN programming paradigm achieves parallelism by concurrently spawning
off many sub-computations, termed compuletes. The underlying system automatically sends these

computelets to a market of CPUs. This is maintained by a centralized manager.

- 2.10 Parallel Java Agents

Parallel Java Agents [KAB98] is a frameWork for parallel computing in locally confined (i.e. all ma-
chines. are located in close proxi.mity),ﬁvscalable co‘mputin’g: clusters interconnected by a high-speed
LAN. The framework consists of agents which communicate throubghr é.synchronous invocations.
Agents are dynamically placed (through migration) using an adaptive placement strategy enforced
by the underlying software system. The framework has not been implemented, but various com-
putations have been simﬁlated using the adaptive placement strategy. Future development of thé

system utilizes existing Java Agent systems (e.g ObjectSpace’s Voyager [Obj96]).

CHAPTER 3

PROBLEM STATEMENT

Table 3.1 shows a comparison of current J ava-b.ased'global cqmputing frameworks as discussed
in Chapter 2. With the exception of Atlas [BBB96] and Parallel Java Agents [KAB9S], none of the
previous proposed systems support process migration. Both Atlas and Parallel Java Agents suppbrt
migration through an underlying softwafé system based on complex s’cheduﬁling algorithms; which
incorporate work stealing and adaptive placement strategies. Each frame;vork is based on an un-
derlying system to distribute processes a.r}n'ong processbrs in the system. ParaWeb [BSST96] allows
the programmer to explicitly map ‘p‘rocesses to prdcessors utilizing a Java Parallel Class Library
(JPCL). With the ekception of IéeT _[QMCSQ7], Ja.va.lin4[DQCSQ6‘a], ParaWeb, Ninflet [TMN98],
and Popcorn [CLNRQ7], gil frameworks are restricted to execbuteT on distributed systems consist-
ing of High Performancé or Scalabi’e ComputingA Clusters (HPC/SCC), Network of Workstations -
(NOWs), or even specific ‘Distributéd Shared Memory (DSM) architectures (i.e. TreadMarks system
for Java/DSM [DoCS97b]). All other systems support global architectures interconnected via the
intranet/internet. Most framevforks support a wide véria.tion of programming paradigms. Those
based on active objects [BFD96] [SH97] [CM96] [fDRCQ4] use a deploy on demand method similar
to Java Applets [Ham96][DD96] to di}l'stribute a computation. Or, they consist of an API which
utilize variants of PVM [Sun90], MPI [GLS94], and aétive 'ob'ject"s} Both ParaWeb and Java/DSM
use a paradigm that allows proceksses;to share oB jects‘ through a global name space. Both fréme—
works require a complex underlying s'oftwére system to maintain memory coher‘ence among shared
objects. Webflow [é.SU97b, FF96b]‘ and ARCADE [D0C897$.] prq_gfamming is based. on objects
and the dataflow model. Webflow also provides a visual programming tool to develop distributed
applications. ParaWeb and ATLAS [BBB96] are based on Java Threads [OW97] and require a mod-
ified Java interpreter. Parallel Java Agents [KAB9S] is developed on top of ObjectSpace’s Voyager
[Obj96] Mobile Agent System for scalable computing clusters. It uses a variant of actor [Agh86)

communication among agents. With the exception of Parallel Java Agents, and Java/DSM, each

20

21

framework uses an underlying system that includes a single scheduling server to remotely distribute
threads among distributed computation servers in a network. AIthough this simplifies the imple-
mentation, tvhis strategy is not efficient and fault-tolerant, as the centralized server may become a
bottleneck and is a single point of failure. In the following section we present a framework for actor-
based distributed mobile comput_ation. This parallel programming paradigm allows computations
to 'be expressed as a set of actors(‘ with additional feafures of mobility and navigational autonomy.

This model s.upport'sv' ﬁne, medium, and large grain parallel computations in a scalable high speed in-

5 an ung (lar

terconnection network. I:L_P/rgxiggs n undg_r_ly_mgéfgghpﬁlpggrk for_nr;nwg_(iilmﬂ/ large grain heterogeneous

A e
Table 3.1. Comparison of Global Computing FrameWorks
” Framwork “ Granularity II Migration “ Process “ Programming “ Hardware ” Software ”
B Placement Paradigm Architecture Architecture
IceT coarse N/A ’ system {Active object) global centralized
.using PVM
JavaDC fine/large N/A system (Active Objects) HPC centralized
' (SIMD) . using PVM/MPI
ARCADE fine/large N/A system dataflow HPC centralized
(SIMD) '
Java/DSM coarse/large N/A system Shared objects TreadMarks complexed memory
| DSM Machine coherence soft.
Webflow coarse /large N/A system {(Web based) mesh of Java centralized
. dataflow servers
Javlin large N/A system Java Applets global . centralized
ATLAS coarse/large system system Java Threads NOwW centralized {modified
. Java interpreter)
Ninflet fine/large - NJ/A system Java Threads global centralized
I Popcorn coarse/large N/A system Active Objects global centralized
Parallel Java fine/large system system actor model SCC Voyager Mobile
Agents Agent System
ParaWeb coarse/large N/A user/system Java threads global centralized (modified
(DSM) global . Java interpreter)

3.1 Theoretical. Foﬁ'ndation

Multicomputers represent the most promising developments in _computer architecture due to their

economic cost and scalébilityf./ With the creation of many digital high-speed integrated networks
10mic cost and scalabiut

——

[Tan96], heterogeneous multicomputer systems will be used to_ solve many complex parallel and

distributed computations [Hay88, Sta84]. Initially, researchers followed strictly message passing as
e P e R,
a common parallel programming paradigm for multicomputer systems. Programmers must explicitly

locate processes and communication can be synchronous or asynchronous. Today, several variants

22

]

of the message passmg paradigm ha.ve been proposed WIthlP,_thf htera.ture [Agh89, BFD96, BN84,
e
Rie94, Sta84, BN96]. The remote procedure call paradigm provides a method of allowing programs

to call procedures lo}cated on other machines. Information is transported from the caller to the callee
in parameters that are transparent to the programmer. Procedures are statically placed throughout
the system to be invoked by remote synchronous/asynchronous procedure calls. The communicating
object paradigm regards a distributed system as ‘a.set of statically compiled processes communicating

with each other via messages. The system’s intelligence is- embod1ed in the processes, wh11e the
1€ 5yS

e e ettt e s

messages contain simple, passive pieces of information. Objects are stationary and communicate
through asynchronous messages.- This paradigm has been extended to support dynamic or active

objects which are deployed on demand through the internet /intranet. Active objects make it easy

to write groupware, multiplayer games, and net-centric applications DSM provides the illusion

of shared memory across a loosely coupled system Processes communicate through the globally

e e A A i acirmer et o o

shared-address space. Each ma.chme wh1ch contains a globally shared obJect must ma1nta1n a level

- o .

of cons1stency ‘\lvith eachwr’epllca. in the system. Con51stency/memory coherence protocols must

be used which require additional communication overhead. Recently, autonomous mobile agents

have begun to be recognized as a new computing paradigm for distributed systems [Ven97],[Doc95],

[KZ97). An autonomous mobile agent is a program that can change its behavior and migrate
fppatibi=

from machine to machine in a heterogeneous network dynamically. Mobile agents have the ability

to adapt to the computing environment. In th1s resea.rch we present a communlcation para.digm

among mobile agents tha.t 1ncorporates actor-based message pa.ss1ng to support dynamic a.rchltecture

topologies for distrlbuted parallel computations Through mob111ty agents are able to migrate and

S

adapt to the computing environment. This is ideal for global computation in which a.pplica.tions
can take advantage of under utilized resources a.nd locality of reference of data in such systems”
where the communication bandwidth may be smaller, relia.b‘ili-ty is lower, and latency is higher. The
concept of actors was originally proposed by Hewitt [Hew77], and later by Clinger [Cli81], Agha
[AKP90, AHP91, AMST91, CA91}, Sami [SVN91], Baude [BVNQl], Athas [AS88] and in [MC96].

The r_nodel has been proposed as a basis for multiparadigm programming in [Agh89] and has been

23

used as a programming model for multicomputers in [Agh86, BVN91]. Actors are stationary objects
that communicate through asynchronous messages. Actors can be dynamically created within a

system. We formally define an abstraction of the actor model with the semantics of mobility and

navigational autonomy. We express mobile agents as actors using mobile actor semantics. Lastly,

we show that our model prgvi/des\.i new _solution to progrg_r_nniing massively distributed parallel

e NN, e et i i

computations. We provide simple examples to illustrate this method.

3.2 - The Actor Model

Actors are self-contained, interaeti,ve, ,au‘sonomous cornponents of a eomputing system that commu-
nicate by asynchronous message passing. Actors are characterilzedvby an identity (i.e. mail address),
a mailbox, and a current behavior. Moreover, a mail address may be included in messages sent
to other actors - this aliows those ka‘.ctors te communieate with the ecrer whose mail address they
have received. The ability to communicate mail addresses of actors irnplies that the interconnection
network topology qf actors is-dynamic. The assumption provirles generality: a s‘gatic topology is
a degenerate case in which system reconfiguration is not allowed. This dynamic interconnection
network topology implies that the underlying resources can be represented as actors to build a sys-
tem architecture. Each time an actor processes a communication, it also computes its behavior in
response to the next communication it may process. In general, the replacement behavior of an
actor may represent the creation ef new actors, or a simple change of state variables, such as change
in the balance of an account. It may also represent changes in the eperations; rvhich are carried
out in response to the message. For er(ample, suppose a database actor receives a query request
communication. In response, it will perform the query, which will be used to process the next mes-
sage. A set of procedures end a list ef acquaintances deﬁne the behavior of an actor. Acquaintances
represent actors whose meil addresses are known to the actker. Because all actor communication is
asynchronous, all messages are buffered in mail queues until the actor is ready to respond to them.

Messages sent are guaranteed to be received with an unbounded but finite delay.

Each actor may be thought of as having two aspects that characterize their behavior:

24

1. its acqua.intances which is the finite collection of actors that it directly knows about;

Diagrammatically we will represent a situation in which an actor W knows about an actor
X by drawing a directed arc from Wto X (Figure 3.1). W and X are mutual acquaintances

[Hew?77].

Wiows X
Khnows dout W
Wknows about Y
Kiowschn ¥ |
Yinows dbou Z

Figure 31 Diagraxn of the acquaintances of actors W, X, Y,‘ and Z.

2. the action it should take when it is sent a message. These actions provide a primitive set of

operations to:

e send messages asynchronsly to specified actors,
e create actors with specified behaviors, and

e become a new actor, assuming a new behavior to respond to the next message.

All computé,tion in an actor' system is the reSultv: of ‘processihg fnessages. Therefore, an actor’s .
behavior is a function of the messagé accepted. Figure 3.2 illustrates the behavior of an actor
in response to a message[AghSﬁ]. The become primitive is used as >a mechanism for chgnging
the current behavior, and for indicating when the actor may begin processing the next message.
[AKP90] proposed a call/return communication operator which provides a simple abstraction
to express process dependenée using' synchronous communication. In call/return communication,

an object invokes another object and waits for it to return a value before continuing. This is

25

analogous to a synchronous remote procedure call (RPC) [AS88]. In order to achieve maximal
concurrency, we generally do not want to block a sender of a call/return message send; if the actor
invoked is located on another node.. Therefore, it has been shown in [AKP90] that call/return-
communication can be transformed to semaﬁtically equivalent asynchronous message sends with

corresponding continuations.

1 2 mmmee— n n+! n+2
Address ; .
x| ==
mail queue.
become
. =~ \\ y
send _--~ . o
Pral ! \\\-, ' .
[AY
Massage create \ _
. . \ 1 2

Address e
gy o I

mail queue

Figure 3.2. Actions performed by an actor in response to a communication.

3.3, Motivation

The actor primitive operétors (ie. send, create, and 'becorﬁe) form a simple but powerful set on
which to build a wide range of higher-level abstractions and concurrent. programming paradigms.
In this paper, we present a communication pa:adigm among mobile agents that incorporates actor-
based message passing to support dynamic architecture topologies for massively distributed parallél
computations via the Internet. We build upon the actor primitive operators and extend the semantics
of the actor model to sﬁpport actor mobilit& and navigational autopomy. Currently, message passing

models provide process mobility /migration through transportable and autonomous mobile agents

26

[BFD96, Gra95, Inc94, Whi94b]. Although agent technology is commercially in use, there has been
no formal characterization of agent performance. Researchers and developers assume that mobile
agents consume fewer network resources than the client/server models, andvthat they are feasible and
efficient to support large scaleb distributed applications [0Cal96). Although the assumption clearly
holds for specific applications [BFD96, Gra95, Ine94, Whi94b], the range of applications for which
it holds is unknown. Therefore, it is difficult to choose a communication-paradigm for a distributed

application [0Cal96].

The behavior of the actor model is 'forrno.lly characterized as a feasible and efficient model to pro-
gram fine grain parallel applications on multicomputers w1th a higii speed ‘i_nterconnection network.
It has been proposed as a concurrent programming la.ngua.ge model due to its inherent concurrency
in the evaluation of expressions [Agh86, AKPQO, Agh89, AHP91, MC96]. It has been shown that
support for large-scale concurrent systerns’requires building on simple programming primitives in-
corporated into the a'ctor model to form multiparadigms [Agh89].'v Actor architectures for solving
fine grain applications on multicomputers [AghSG, AHPO91, AS88], as well as, actor-based frame-
works for solving large scale applicetions in a heterogeneous computing system [AP91] have also
been proposed. Concurrency issues such as: divergence, deadlock, and mutual exclusion have been
addressed in [Agh86], along with the mathematiedl theory of computation that any kind of discrete
behavior can be physically realized {Hew77). Although there is sufficient research Supporfing the
actor model to solve fine/large grain applications on a tightly coupled’ system, tiiere has beenb no
actor-based solution to soive. large soale data intensive distributed applications which may be inter-
connected by costly communication links._ Iu order to support this environment, locality of reference
and resource management (i.e. load balancing) must be addressed; as processes must be able to
migrate throughout the system. In the nexf section, we adciress the issue of locality of reference and
resource managemenﬁ through actor mobilityi Current actor-based systems require a tightly coupled
underlying software system w}iicii implicitly distributes actors among processors in the system, as
well as transvparentlyv provides global access to all behaviors in the system. Through actor mobility

no centralized software system is needed to provide access to all behaviors in the system. Actors and

27

their behaviors are distributed throughout the system explicitly by the programmer using mobile

actor constructs.

3.4 The Mobile Actor Paradigm

In this model, all processes in a heterogeneous system are considered to be actors. There may be
several actors mapped to a processor. Actors encapsulate a single process which is the only process
that may be used to execute an actor’s behaviors. This prohibits multiprocessing within actors.

Actors may be partitioned into classes namely primitive and non-primitive.

e Primitive actors correspond to the usual atomic types such as numbers and characters. They
are sent directly in messages. Primitive actors are immutable. Their identity may be rep-
resented by their state (i.e. the behavior of an actor is the same always and everywhere)

[Agh86).

. Non-pn'.mitive:actors have an identity that is represeﬁted by a reference, a current behavior
that includes the methods that define the actions that the actor can take upon feceipt of
a message, and a set of acquaintances that the actor can communicate with. When a non-
primitive actor is sent a message, it is actually the réference to a behavior and it’s arguments,
if any, that is sent (Figure 3.3). The behavior being a.‘proc‘edure (method) stored on the

- local machine of the re'cipient.v Sif}ce all actof corhmunicati‘dn is jasynéhronoﬁs, thg method of

communication is analogous to the asynchronous remote procedure call (RPC) [AS88].

Figure 3.3 illustrates a communicatiofl send from Actorx to Actory. In response to the commu-
nication, Actory agsumes the behavior f(); which executés and retubms the résult. Noﬁce that
the behavior f() must initially reside on the remote ﬁachine B. Step (1): Actorx, on machine
A sends the communication [f(),args..] to Actory on machine B; Actorx, then becdm_es a new
actor Actorx,,, (possibly itself or to await the result). Steps (2) and (3): ACtO’I‘ym receives the

communication [f(), args..], and in response to the communication assumes the behavior f(). Step

28

(4): Actory,, returns the result to Actorx on machine A. Lastly, step (5): Actory, becomes

Actory,, ., (possibly itself).

{ MACHINE: B

m+1

Address
"of Y

Local Memory

Figure 3.3. Actorx sends Actory a message referring to a behavior f().

High-level communication, synchronization and coordination abstractions can be formed from
primitive/non-primitive actors collectively. Some examples are synchronization bérm’er actors or
mutez actors [AP91]. The barrier actor allows processes to synchronize ata s.peciﬁed point within an
execution. A mutez actor would prow}ide synchroniz#tion acces.s. to a critical section. By developing
these hich level abstractions; it is easy to address concurréncy issues such as: divergence, starvation,
deadloék and mutual exclusion [Agh86]. |

A mobile actor is a ‘non-‘primitive ‘a.ctor with the semantics 6f mobility and navigational auton-
omy. Navigational autonomy is the degree to which a message can be viewed as an object with
its own innate behavior, capable of making decisions about its own destiny. The actor model in-
herently enforces navigational autonomy allowing addresses of actors to be communicated and thus

providing a dynamic interconnection network topology. Such a computing model provides support

29

to deal with non-deterministic problems which require network reconfigurations, non-deterministic
communication, and dynamic process coordination.

An important degree of flexibility available in actor semantics involves the ability to carefully
control the articulation of details to be included in specifications. That is, the constraints on the
behavior of a system of actors can be specified in as much or as little detail. Therefore, the behavior
of an actor can be characterized as large, medium, or fine grain. In many practical distributed
applications, the over consumption of local resbur;es don’t allow computations to be processed
efficiently. A more feasible solution would be to migrate the process to least consumed resources, or
to move the process to a data server or communication partrier in order to ;educe network load by
acces‘sing a data server or communication pa’rth,_erA By local cbmmunication. We propose a strategy
for remote execution and process migration using the actor-message passing paradigm (i.e. for load
balancing, and locality of reference of data/beilaviors). A remote execution‘ includes the transport
and start of execution of a process on a remote location. Process migration includes the transport
of process codey, execution stafe, and data of t‘._heip'rocess; processes may be restarted from their
previous state. |

We extend the actor primitive Qperatidns iﬁ response to a message with‘sen.lantics to support
actor mobility. The semantics of actor mobility are enforced: upon receipt of a mess#ge, or when
dynamically creating another actor on a remote location. These extended primitive operations allow
computations to migrate after expiicit checkpointing by the programmer, or the undérlying system.

The behavior of mobile actors consists of two kinds of actions in response to a message:

1. becomeremote COMpuUtes a rep’lacemeﬁt behavior on the local machi'néi and migrates to a location
on a remote machine. The migrated actor is characterized by the identity (i.e. it’s mail

address), and mailbox of a specified location of an actor on a remote machine.

2. createremote & New actor on the local machine and migrate to the remote location, assuming

a new behavior to respond to the next message.

30

Actors and their behaviors to be migrated are known as carried—functions and can be in the form of
source code, or native bytecode [Ham96, Inc95]. Information sent along with the carried-function are
its arguments along with the process state informatio_n. The becomeremote Primitive operator causes
an actor to receive the local communica;tioxi, bind to a behavior in response to the communication,
migrate the actor along with it’s behavior to the new location, then continué processing at the new
location. The new location is the local machine of an acquaintance. The migrated actor assumes
the identity and mailbox of an actor whiph resides at the new location on the remote machine. The
migrated actor no longer exist on the origination maéhine_a. This atlows the migrated actor to take.
advantage of accessing local resourcés (i:e. data, and ‘communication with other local actors) at

remote locations.

The becomeyemote primitive operatipn provides a convenient method for é.ctors to migrate when
replacing the current behavior in response to a communication. Explicit checkpointing (i.e. for
load balancing and locality of reference) within the code, or from the underlying system could
occur before a becomeremote opera.tion; allowing the actor to migrate to the best possible location.
Consider the case where an actor needs to process data maintained on a remote machine. Actors
which reside on the remote machine do not maintain the behavior to continue processing the data.
Data can either be sent to an actor with the desired behavior located on another machine (i.e. using
the send primitive). Or, an actor whq resides on the same machiﬁe as the needed behavior could
be sent a meésage to reference the remote data. In r.espbon'se to the communication, the replacement
behavior could be migrated to the remote machine ‘for processing. The éemantics of the becomeremote
operation are the same as the original become primibti'vve, if the remote identity and machine are the
same as the initiatiﬁg actor’s identity.

Figure 3.4 illustrates a becomeyemote Operation from Actft‘yr'ym_1 on machine B. Actar'ym_1 be-
comes a new Actory,, and assumes a new behavior f(). Actory,, migrates to machine A assuming
the identity /mailbox of X. All replacement behaviors are computed 1n response to communications
sent to Actorx én machine A. Notice f() is migrated to machine A and does not need to initially

reside on machine A. Step (1): Actory,_, which assumes behavior g(), executes a becomex.af()

31

operation. Step (2): Actory, ,; becomes a new Actory,,, and assumes a new behavior f(). Steps
(3) and (4): In response to communication m, Actory,, migrates to machine A assuming the iden-
tity /mailbox of Actorx. Step (5): Actorx, continues execﬁting its current behavior f(). Lastly,

Step (6): Actorx, computes a replacement behavior in response to communication n + 1.

MACHINE: A

Address :
sl N =~

mail queue

Local Memo

Soﬁrce or
Native Bytecode
o4

Intérconnection
etwork

MACHINE: B

m-1

Address of \ E E -

Figure 3.4. Actory,_, executes a becomeremote Operation.

The creation of actors is not limitedv to the domain of the local machine, but may span the global
system. The createremote"primitive opefation causes the migration of a dynamically created actor
with specified behavior(s) (i.e.. its maiI'Qﬁeﬁe along with its behavior is created and transferred
to the remote location). It creates a unique mail address which is returned to the initiating actor.
Through the use of the createre,;;,;te operation, programmers are also able to explicitly map actors
to machines. This is useful when statically placing actors throughout the system. Actors are also
able to spread themselves dynamically across a global system. This may occur if behavior methods
contain createremote Statements; allowing actors created remotely to create other actors on remote

machines, and so on. It is also useful during load balancing in which actors must migrate to least

32

consumed processors. This could occur after an explicit checkpoint within the code or from the
underlying system.

Figure 3.5 illustrate‘s a createremote Operation executed as a statement in behavior g() by Actorx,
on machine A. The remote location is machine B. The new actor’s identity is Y on machine B,
and it assumes the new behavi_or f() in response to a communication. Notice f() is migrated to
machine B and does not need to initially reside on machine B. Step (1): Actm; x, executes the
statement createp f(); to create a remote actor assuming the new behavior f() on machine B. Step
(2); The new Actory along with its mailqueue is created lbcally on machine A. Step (3): Actory,
along with its mailqueue are migrated to vthe remote mach.ine B. Steps (4) and (5): Actory,
receives a communication, and assumes the behaviof fO. Lastly, Step (6): Actory, computes its
replacement behavior (possibly itself) in response to commuﬁication 2. When developing a mobile

actor system, newly created remote actors could construct mailqueues after migration occurs. This

is an implementation issue.

MACHINE: A

Address
of X |

A .
Intgrconnection
’ .

+ - Network :

(5) Execute

Figure 3.5. Actorx creates a remote Acto'rf .

CHAPTER 4

JMAS: A JAVA-BASED MOBILE ACTOR SYSTEM

4.1 Properties of Global Systems

Explditing the resources of millions of computers on the Infernet to form a powerful global compuﬁng
infrastructure is the goal of this research. Such an infrastructure should provide a single interface
to users that provides large amounts of computing power, while hiding from users the fact that
the system is composed of hundreds to thousands of machines scattered across the country. Our
vision is to create a system in which a user sits at a workstation, and has the illusion of a single very
powerful computer. In this section, we discuss the teqhnical issﬁes associated with the construction of
a global computing infrastructure which executes mobile actor computations. A mobile actor system
is a multi-user, heterogeneous, globa;l compﬁting environment for executing distributed actor-based
computations. A Iﬁobile actor system must support two basic tasks - fhe creation and migration
of remote actors, and the communication between actors distri‘buted throughout the system. In

addition the system should:
e provide language support for the mobile actor programming model,
e provide a single consistent namespace for actors within fhe sysfcem,
e provide an efficient execution schedule between actors maintained on the loéal machine,

e be able to distribute the load evenly among the machines participating within the distributed

system,
. exploit heterogeneity,
e be fault tolerant, and

e be secure.

33

34.

4.1.1 Language Support

The programming language used in a mobile actor system should support the underlying compu-
tation model on heterogeneous machines; therefore, requiring the language to be interpreted to
provide portability. The language shoﬁld be easy to uée; allowing the user to link in the desired
libraries, or use constructs provided By an Application Programming Interface (API). Langﬁage
support should provide constructs to create remotﬁef actors throughout the distributed system, as
well as, send communications between‘ _a.cto;s within the system. Commuhication in mobile actor
systems is point-to-point, non-blocking; asynchronous, buffered, anci may consist of complex objects.
The language should be able to support the mobile actor communication paradigm. The 1anguage

should support static or dynamic placement of actors throughout the distributed system.
4.1.2 Exploiting Heterogeneity |

Creation of remote actors requires the migration of code along with its state information. In order to
support heterogeneity, mig;a.ted code needs to be iﬁ a format that is not dependent on the underlying
system. Therefore,‘requiring the need and use of native machine code or bytecode [BFD96]. Each
machine within the system should contain a server that sends and receives migrated code and state

information of mobile actors.

4.1.3 Consistent Namespace

Sending a message requires the receiver’s current locality be known to the sender. In a mobile actor
system, an actor’s where-abouts are abstractly represented by its mail address. The entities used to
define a mail address determine the efficiency of name translation, as well as, the degree of location

transparency. There are two strategies that could be used:

1. Use of location-dependent entities tightly coupled with actors offers efficient name translation

at the expense of location transparency.

2. Location-independent entities allow location transparency but increase name translation time.

35

4.1.4 Scheduling and Load Balancing

Scheduling and load balancing policies must accommodate the heterogeneous and distributed na-
ture of 1;,he mobile actor system. An efficient method for automatically scheduling parallel sub-
computations across the distributed system should insure that all machines within the distributed
system are fully utilized; taking é,dva.nta.ge of idle CPUS. In geﬁéral, such a method will need to be
ad&ptive and may require keeping tr_ack of the load on different machines and thev communication
patterns betweéh differéht actors. Scheduling on‘the lbcal system, must ihsu;'é no starvation among

local processes.
4.1.5 Fault Tolerance

In a global system; it is certain that at any given instant several machines, communication links, and
disks will have failed. Thus dealing with féiluré and d&namic reconfiguration is a necessity. There
is a trade-off between performance and different levels of fault tolerance. Fault tolerance can occur
within the system itsglf, or within the application. Fault tolerance should be addressed to the extent
necessary without compromising the performance of ihe system. In most systems, it is desirable to

just consider fail-stop faults of hardware components, including both processors and the network.

4.1.6 Security

The issue of security is of foremost concern. In most global compﬁting systems, participation
requires either dvo‘wnloé.dingva.vnd runhihg an executable, or‘d_ow‘nlo‘a.d‘ing unknown source code and
then compiling it. The code may contain bugs or viruses that can destroy or spy on 1oca1 data. In
addition, objects that are migrated betweeﬁ mé.éhihes within the system may also contain bugs or
viruses. Becauée mobile actors can migrate from machine to ma.chine,v'security policies should be

enforced to insure the actor is valid. Such as:.

o using cryptographic authentication protocols, or

¢ using digital signatures.

36

In addition, all messages communicated within the system should be encrypted. Providing security -
policies compromises the performance of the system; because, all communications and migrated

code must be encrypted before transmitted, and decrypted before béing processed.

4.2 J MAS Infrastructure

JMAS is a globally distributed computing environment for execﬁting mqbile actor computations.
JMAS is designed using Java technology [Inc95], and réquires a programming style different from
commonly uéed approaches to distributed compufing. JMAS allows>a programmer to create mobile
actors, initialize their behaviors, and send them messages 'using constructs provided by the JMAS
Mobile Actor API. As the computation unfolds, mobile actors have the ability to implicitly navigate
autonomously throughout the underlying network. New messages are generated, new actors are
created, and existing actors undergo state change. J MAS also makes mobile actor locality visible to
programmérs to give them explicit control over éctor placement. Howevér, programmers still do not
need to keep track of th‘ev locatioﬁ to send a message to a mobile aéfor; Data flow and control flow
of a program in JMAS is co,ncurreﬁt and implicit. A programmer thinks in terms of what an actor
does, not about how to thread the execution of different actors. Communication of mobile actors is

point-to-point, non-blocking, asynchronous, and thus buffered.

4.2.1 Language Support in JMAS

JMAS is based on the Java Programming Language and Virfcual Machine of JDK1.1 [Inc95]. JDK1.1
contains mechanisms thaﬁ allow objects to be read /written t§ streams (object seria;lizafion) [atoSM96a],
as well as, an API that provides construcfs to dynamically bﬁild objects at run-time (i.e. Reflec-
tion package [java.lang.reflect]). We exploit heterogeneity through Java’s platform independent (i-e.
write once run anywhere) ﬁamework. We 'provide a Mobile Actor Af‘I for developing mobile actor
applications using the Java Programming Language. Mobile actor programs are compiled using a
Java compiler that generates Java bytecode. Java bytecode can be executed oﬁ any machine_ con-
taining a Java Virtual Machine. Actors in JMAS are light-weight processes called threads. The

API provides constructs which allow programmers to create mobile actors using static or dynamic

37

placement, to change an actor’s state, and to send an actor communications.

4.2.2 Consistent Mobile Actor Names in JMAS

JMAS implements a simple location-dependent naming strategy tightly coupled with mobile actors
within the system. Each mobile actor within the system is given a globally unique identi‘ﬁer. This
identifier is bound to only one address by the underlying message system. These bindings may
change over time; if for example, a mobile actor ‘migra‘.tes to a different machine. In such a case,
messé.ges are forwa;ded to the new location by the underlying message sysfém. It has been shown in
[BN95], that forwarding messages in a distributed system consisting of N machines requires in the
worst case N — 1 message rounds. Our strategy performs fast creation and translation of globally

unique identifiers using the naming function below:
N(ObjectName) = Object Name + T'ime + orig + counter@dest

Where T'imne is the current time on the local system, orig is the location which invoked the creation
of the new actor, counter is a monotonically incrAeasing local counter, and dest is the destination
machine where the new actor will be created. As illustrated in Figure 4.1, actors which are created
within the system must first register with the local nameservice. Each actor whether created local
or remote ma.inta.ins a globally unique name. Although this is a simple approach, the disadvantage

is that identifier names could become lone. increasineg the communication overhead..

WTgB(cgH)RA

‘VTBBCB'@-’B

*

1.Reg.\Won A

‘ %N

o 1.Reg. WonB
’,,.’w T A(C @A WT TP 2ZReg. Won A
A \\BB(CB) G 3.Reg.\V on B
NameService NameService
Machine A Machine B

Systein time = T
counter =c,

Figure 4.1. Creating Globally Unique Actor Names.

System time =Ty
counter =cg

38

4.2.3 Scheduling and Load Balancing in JMAS

The JVM implements a timeslice séhedule of threads 6n Window95 systems, and a pre-emptive
priority-based schedule for UNIX/Windows NT Systemé. JMAS forces a pre-emptive, priority-based
schedule among threads; regardless of the underlying architecture. The efficiency of an actor-based
computation on a loosely coupled architecture dep.ends on where different ac_toré are placed and the
communication traffic between them. Thus, the placement and migratioﬁ of actors can drastically
affect the overall performance. We implement a’ decentralized fault-tolerant load balancing scheme
based on the CPU market strategy pro‘p‘osed in [CLNR97]. The market strategy is based on CPU-
time. Entities within the system consist of buyers and'sellgrs. A selier allows its CPU to be used
by other programs. A buyer serves as a machine wantiné to off-load work ito a seller. A meeting‘
place in which buyers and sellers are correlated is known as a market. This strategy is intended for

coarse-grain applications.

4.2.4 Security in JMAS -

Security issues are not addressed in this prototype system. Policies could be enforced to en-
crypt/decrypt all Java class files-and messages sent throughout the system. Use of any strategy

will compromise the overall performance of the system.

4.2.5 Fault Tolerance in JMAS

Machines used within the JMAS infrastructure are fa.uit tolerant to the eﬁ,ctent necessary with-
out compromising overall system performance. The limit of our concern vis with fail-stop faults
of hardware components, and the network.‘ The ur_xdeflying communication éystem will g»1v1ara.ntee
the delivery of messages through the use of reliable, communication-oriented TCP sockets[Tan96].
Further, if a host should fa._i!, then J MAS will remove thét host froﬁi the current CPU Market con-
figuration. Software faults are handled through the use of Java Exceptions [Inc95]‘ and are not of

our concern.

CHAPTER 5

JMAS ARCHITECTURE

The architecture of JMAS is organized as a series of layers or levels, each one built upon its
predecessor (Figufe 5.1). The lowest levél(physical layer) is the actuai'physical network, which
may consist of a LAN/WAN of PCs and/or workstations. It could also represent a global network
such as the Internet. The second layer (daemon léyer) consists of the collection of daemons
residing on all physical machines parti'cipiating in the distributed system. Ea‘ch daemon listens on a
reserved communication port receiving corr.l»municat.ions fhat could cornsist of messages or migrating
computations. Upoh receipt of a communication, it is passed to the third layer. The third layer
consists of Distributed Run-Time Managers (D-RTM). The D-RTM is resbonsible for message
handling from/to local/remote processes, scheduling and load balancing ‘of processes. The forth
layer (logical layer), consist of the actual application specific compﬁtations on the local machine.
Com‘putations are expressed as mobile actors. Each actor is encapsulated with a beh#vior, an
identity, a mail queue, and one thread. The logical layer shows each actor and its acquaintances

(i.e. A knows about B and C, ...etc).

Logical i
Network
B :

D-RT™™
Network l }.

-®
Daemon : ‘
Network Daeron Daesmon Dagmon
———

Physical) D lammnm
Network

. i

1

i

. '-‘

{ atjuna.cs.okstam.cda acs.oksute.edu chester.cs.oksute.edu]

Figure 5.1. Four Layer Mobile Actor Architecture.

39

40

In the following sections, we give a detailed description of the JMAS architecture. In particular, we

discuss the components of each layer, and show how Java technology is applied.

5.1 Physical Layer

The physical layer is the actual physical network, which may consist of a LAN/WAN of PCs and/or
workstations. These systems are referred to as scalable computer clusters (SCCs), or networks of
workstations (NOWs) [ACP95]. Both systems are developed within a trusted environment. There-
fore security issues are not a major concern. The disadvantage is that the scalability of these systems
is limited to the resources available to the system administrator. The physical layer could also rep-
resent a global network such as the Internet. A global framework is dynamic, and scales to millions
of machines. This creates an unsecured environment; prone to malicious mobile code, and computer
hackers. Security is a major concern. Architects of global systems provide security using encryp-
tion/decryption techniques on all communication messages and mobile code within the system. The
JMAS prototype was developed for testing in a secure, trusted environment. As shown in Figure
5.2, users of a global system can have different logical views of the underlying physical network; and

views may overlap.

Figure 5.2. Users Logical View of Global System.

41

5.2 Daemon Layer

The daemon layer is implemented as a collection of daemon threads residing on all physical nodes
participating in the JMAS distributed environment. The responsibility of the daemon thread is
to continuously monitor the network, recéiving local /remote communication messages and mobile
computations arriving from other machines. JMAS supports a rﬁessages-driven model of execution
(Figure 5.3). There is no local/remote peer-to-peer communication between mobile actors within
the system. All communication is routed thrqugh areserved port of a daemon thread residing en the
local machine. The reserved port for JMAS'is 9000. Message reception by the daemon thread creates
a thread within the actor which executes the speciﬁed method with the message as its argument. -
Only message reception can initiate threadexecution. Fufthermore, thread execution is atomic.

Once successfully laﬁnched, a thread executes to completion without blocking.

Actor Context ’ . Actor Context

* Z

[redte W] / \ R _’,,-(.‘fcnd Y comun) l

. ,\ ' [Create Z]

Daeanon
Network

{ Machine B |

\ X : ™N gR anote Create] _,—“"/‘f@

[v'."omm firomn Z) e
; s
! -

Dacmon
Network

Machine Aﬁr

Physicyl Layer

Figure 5.3. Message-driven model of execution.

42

Communication messages in JMAS are denoted as Tasks. As shown below, a Task contains infor-

mation such as:

e the destination of the Task.
e the origination of the Task.

e the type of Task:.

— a communication from another mobile actor, or

— remote Java bytecode and/or a migrated process.

5.3 Distributed Run-Time Manager

The Distributed Run-Time»Manager‘(D-RTM) is the most complex of the four layers. It is contained
within each daemon in‘the system. Therefore, the daemon layer and D-RTM layer are tightly
coupled. Th‘e D-RTM contains the basic underlying software that provides the traﬁsparent interface
to the global system. The D-RTM was designed using a layered virtual machinve desigp built on
top of the Java Virtual Machine (JVM) using JDK1.1 [Inc95] (Figure 5.4). The Basic sequence of

operations carried out by the D-RTM is shown in Figure 5.5. The D-RTM has several functions:

To handle all incoming Tasks (i.e. Message Handler)
o To prepare actor processes to run on the local system (i.e. Actor Context) v

To load java bytecode (e.g. java objects) from local /remote locatibné(i.e. BehvLoader)

To schedule local/remote threads using a pre-emptive, priority schedule (i.e. Scheduler),

To manage the CPU load on the local machine (i.e. Load Balancer).

® N ok

Mesg Handler|—> Actor Context

7y - Y [y 7'y

Y

Load Balancer Scheduler BehvLoader <—‘

Java Virtual Machine (TVM)

Figure 5.4. Distributed Run-Time Manager (D-RTM).

i Messaw 3 ActorContext
A) . FY
S 4
LoadBalancer Schgduler BehvLoader

Receive Task

. If Task is an actor

e Check load
e Ifload > Threshold then goto 7

Else if Task is a communication .
e Check Message Handler queue for actor; If forwarded, goto 8

If actor, block until communication received, OR If communication, block until actor received
e Prepare actor to run '

Load class into. interpreter

Schedule actor

Inform LoadBalancer, goto 1

Forward Task, update Message Handler queue of new location, goto 1
Forward Task to new location, goto 1

Figure 5.5. Process Flow Diagram of D-RTM.

43

44

5.3.1 Message Handler

The message handler is responsible for routing Tasks which consist of communications to local actors.
As illustrated in Figure 5.6, messages are stored in a table of message queues (i.e. ma.ilboxeg).
A mailbox coﬁld have one or more actors within the local actor context associated to it. We
implement the table of mai‘lboxes.a.s a hash table. We use Ja;v#’é Hashtable class provided by the
Jjava.util package. Because Java implements its Hashtable és,a.synchronized object, each access to
the Hashtable is a.tomic. This is very useful for our multi-threaded environvm‘ent. Each mail address
hashes to one mailbox in the table. In 6rder to‘vachieve mé‘ximum parallelism, the table is accessed
by subprocesses. Messages from a d‘esiréd mailbox are forwarded asynchrono‘usly tb actor processes

whose identity is denoted by the mail addresses of the mailbox.

HASH
TABLE

Moitadde | ,r l l e] l |

/ Mn:;m- ‘ ___' ____________ l]

CX .

Mai::dci' _—>| “; """""" LI J

)

|

|
Mailadd -
e — [—11

MESSAGE
QUEUES

Actor Context

Figure 5.6. Message Handlér.

5.3.2 Actor Context

The Actor Context is responsible for instantiating an object, wré.pping the object within a thread,
and supplying the thread to the Scheduler. It also maintains a table of system information. Such

as:

45

The actor Identity

The current behavior

The current method (communication being executed)

The total (idle) time actor waited in ready queue before receiving a communication (msec)
The total timé to load the actor (msec)

The current running time (msec)

Objects in JMAS are built during runtime. Information about an.object during runtime is obtained

using Java Reflection [Inc95]. The classes needed to pérform these operations are obtained from

the java.lang.reflect package of the JDK1.1. Figure 5.7 illustrates the procedure of instantiating an

object HelloWorld and calling its hello method.

Example:

// Instantiating an Object; calling its comstructoxr

Class cl = loadClass("HelloWorld");

Object[] arg = new Object[] { new String('hello") };
Class[] param = new Class[arg.length];

for(int k = 0;k< arg.length;k++)

param[k] = arglk].getClass();

Constructor x = cl.getConstructor(param);
x.nevInstance(arg);

// Calling one of the object methods

Mefhod m‘; ' _
m = cl.getMethod("hello",null);
m.invoke(null,null);

Figure 5.7. Building Objects at Run ‘TiIhe.

5.3.3 Scheduler

JMAS implements a pre-emptive, priority-based scheduler among threads. Each thread is assigned a

priority that can only be changed by the programmer. The thread that has the highest priority is the

current running thread. Processes with a lower priority are interrupted. To ensure that starvation

46

does not exists among threads we implement a round-robin schedule among local processes. As
illustra.ted in Figure 5.8(a), incoming threads or threads instantiated loqally, are given a piiority—
initially low. Threads are then placed into a queue data structure. The scheduler dequeues a ﬁhread
from the list and assigns it the highest possible priority—causing the this thread to run. After a
_ given time ¢, the thread is stopped and insérted back into the list. This process continues until ail
threads within the list terminate (Figure 5‘.8(b)). The scheduler could be interrupted by the load
balancer; if the CPU reaches its computation threshold. This will cause the current running thread

to suspend and migrate to a remote machine to continue its execution:
LOW_PRIORITY

‘ Running
thread

MAX_PRIORITY

LOW_PRIORITY

Running
thread

MAX_PRIORITY

Figure 5.8. Thread Scheduler.

5.3.4 ClassLoader

Objects needed for execution in a program are loaded to the Java interpreter by the Java classloader.
As shown in Figure 5.9, the Java Classloader loads classes to the interpreter using the following

sequence of operations:

1. Check if the class already exists in the local cache. If not,

47

2. check if the class is a system class. If not,
3. check the local disk. If not found,

4. NoSuchClassFound exception is thrown.

|| Check i —
Java ClassLoader I - ‘ " Cache J

NoClassFoundException

. Figure 5.9. Operation of Java ClassLoader.

In order to work around the security restrictions provided by the JVM and to load classes from
remote locations, we implemented our own classloader. The BehvLoader allows classes to be loaded
over the network and stored within the local cache. The BehvLoader loads classes to the interpreter

using the following sequence of operations’ (Figure 5.10).

1. Check if the class albready exists in‘ ‘the local cache. Ifb not,

2. check if the class is a system class. If pot,

3. Check the local disk. If not found,

4. check the remote disk where the requevst originated. If not found,

5. NoSuchClassFound exception is thrown.

48

Check

JMNAS
Behvi.oader

NoClassFoundException

Figure 5.10. Operation of JMAS ClassLoader.

Different features can be added to the BehvLoader to provide security. Such as:

¢ encryption/decryption of class files

¢ use of signatures

5.3.5 Load Balancer

We implement a load balancing scheme based on the CPU fnarket strategy proposed in [CLNR97].
The market strategy. is based on CPU-time. Entities within the system consist of buyers and sellers.
A seller allows its CPU to be used by other programs. A buyer serves as a machine wanting to
offload work to a seller. A meeting place in which buyers and sellers are correlated is known as a

market. CPUs are chosen from the market using three selection policies:

1. Optimal (Best) selection,
2. Round-Robin selection, or

3. Random selection.

Developing a Market of CPUs

We implement a decentralized hierarchical method for organizing the CPU market. Each machine

within the system is responsible for managing a market. Therefore, the process of managing a

49

market is distributed throughout the system-increasing xﬁarket reliability and availability. When
starting the system, the D-RTM initializes its market by registering itself with machines designated
within a configuration file set by the system administrator. Those machines willing to sell their
CPU respond with a message SELLER, and are added to the market as sgzllers. Machines who wish
to buy CPU time respo‘nvdi With a message BUYER, and are added to the market as buyers. Those
v;rho do not respond (i.e. system down) are not .added to the market: This market maiﬁtained by
the D-RTM, 'contaihs the secondary machines Jon which to off-load remote ‘processes. As shown in
Figure 5.11, this creates a logical hierarchy of machines: Each node within the hierarchy, withrthe
exception of the bottom most nodes, aie‘dénoted as market _ﬁanagers. Communication overhead
is minimal. CPUs wishing to sell their time’gdd‘themselves to the market By notifying a market
manager (Figure 5.-11). Buying from the marke.t" is.a bottom up process. Nodes at the lowest level
become overloaded faster. Once a gi{/en node X is denoted as a buyer, ali nodes who'are descendaﬁts
of X are also denoted buyers. This approach requires collaboration among system administrators
to organize an optimal hierarchy; This is not suitable for a giobal environment which - must-scale to‘

hundreds or thousands of Ihachines.

A'sNarket: BC.D

LC.

Offload

SELLER o SELLER BUYER
D's Market B

Figure 5.11. CPU Market Hierarchy. .

50

We modify the hierarchical method, By allowing market initialization and registration to be
bi-directional. Not only does the D-RTM register itself with machines designated by the system
administrator, but machine also registers itself with the D-RTM. In such a situation, the market
is organized by rﬁanagers who are logically connected in a (complete) multidirectional topolﬁgy.
Because machines belong to more than one market, this configuration increases the communication
overhead substantially. Communication increased from one message round to an expensive multicast.
As shown in Figure 5.12, not only do machines B, C, and D notify machine A‘ when buying or selling
their CPU time, but, machine A must also notify machines B,C, and D when buying or selling its
CPU time. Changesbin the CPU status (i.e. Buy‘er./S'eller), are notified to all machines within a
market using a wéak consistent replication‘ strategy.‘ We use weak consistent replication in order
to reduce the communicatioh over head. Notifications are replicated throughout the system by
piggybacking the CPU stétué of the current Ir;achine along with Tasks that contain communication
sends. For example: when an actor on mac_h'ihe B receives a communication from and actor on
machine A, the CPU market on machine B is upda’Fed with the new CPU status of machine A.
Although, machines are not instantly notified of a market change, use of this weak repliéation

strategy provide eventual message delivery that is tolerated in our system [BN95].

SELLER

A’sMarket: BC.D

SELLER SELLER BUYER
C*s Market: A B's Market: AD Dfs Market: AB

Figure 5.12. Host A Notifies Markets of B,C, and D.

51

Load Balancing Policy

Each machine within the distributed system maintains a data structure with information about the
current machines withip its ma.rket.. These rﬁachines are denoted as buyers, or sellers. The load
factor on the machine is relative to the number of threads currentiy running on the local machine.
Other factors could also ,bé used to determine the load. Such as: the total load on the machine,
heuristic informa.t‘ion, the actual CPU utilization, and ‘the siée of the computation. »Most of these
metrics are more complicated to determine. As shown in Figure 5.13, the Ldad Balancer maintains

a load below 75% of the threshold, and 25% of the threshold above the minimum load (i.e. zero).

T
BUYER
| T
Ty — ——— — — - — — — — — — — —
SELLER
Than=.25*T 0
Taax =.75*T T=THRESHOLD

Figure 5.13. Load Balancing Policy.

Before starting a thread on the local'machine, the load balancer checks the current load to insure
that is within tile threshold. If ;c}ie load is ﬁot within the current threshold, the load balancer
off-loads a local process to machines within its market who wish to sell their CPU (Figure 5.14).
If there are no sellers within the market, the load balancer starts the process locally, and tries to
off-load processes later. Note that the D-RTM is now a buyer of CPU time and needs to inform its
market managers of its new status. We use a weak replication strategy by piggybacking the current
status of a machine along with Tasks that contain communication sends. By default the status of a

machine is seller. Therefore this field is changed to status buyer.

52

Load Balancing Algorithm:

Variable Definitions:

t: Task (communication sent throughout system)
load : Integer to denote the current load on the local machine

Threshold : Integer to denote the load limit on the local machine
BUYER,SELLER : constant to denote the state of the machine

CPUStatus : enumerator to denote the state of the machine (BUYER/SELLER)

host : contains the host location of an available CPU _
scheduleLocal(t) : schedules the Task t (i.e. an actor) on the local machine

scheduleRemote(t, host) : schedules the Task ¢ (i.e. an actor) at the location host
getAvailHost() : returns an available CPU (SELLER) from the market,
updateMarket(¢) : update the CPUStatus of the machine from which the Task ¢ originated

LoadBalancer :
1. Receive Task ¢
2. If t is an actor

if load + 1 < Threshold, then

. set CPUStatus to SELLER
scheduleLocal(t)

increment load by 1
Else

set CPUStatus to BUYER
host = getAvailHost()

scheduleRemote(t, host)
Else if t is'a communication

updateMarket(t)
forward task to Message Handler

3. goto 1

Figure 5.14. Load Balancing Algorithm.
‘5.4 Logical Layer

The logical layer consists of thg actual applicat'}on specific computations that are executing on the
local machineé. The computation model coﬁsists of mobile actofs wh“i.ch envcapsulat‘e: .a behavior, an
identity, a mail queue, and one thread (Fvigure 5.15). Each computation runs in its own thread, and
may communicate with any other thread on the local /remote maphines. Computations are expressed’
as Java programs using mobile actor semantics provided by construvcts of the JMAS Mobile Actor
API. The mobile actor API gives programmers the ability to create actors, change the state, or
send communications to mobile actors within the global system. The underlying resources can
be logicallf represented as mobile actors to build dynamic architecture topologies (Figure 5.16).

This dynamic architecture gives the programmer an illusion of a global computer that can run

53

concurrent, distributed, and parallel applications. Impleinentation details of the underlying system
are transparent to the programmer in the logical layer. A complete source listing of mobile actor

programs is given in Appendix C.

Figure 5.15. 'Cvomput_ati‘on Model.

Figure 5.16. Logical View of‘ Mobile Actor Architectures:

CHAPTER 6

PERFORMANCE EVALUATION

JMAS offers the basic infrastructure needed to integrate computeré connected to the Internet into
a distributed computational resource: an infrastructure for running coarse-grain parallel applications
on several anonymous machines. Currently, cluster computing in a LAN setting are already being
used extensively to run computation intensive applications. Through t}‘le‘ efforts of GIMPS (Great
Internet Mersenne Prime Search), a groué of more than 700 workstations and PCs computed the
35th known Mersenne prime in 88 hours [Doc98]. In [Las97], the 48-bit RSA code was cracked using
3,500 workstations spread across Europe, and ‘the 56-bit DES was cracked, using approximately
78,000 computers [DESQ7]. The examples abbve shbw tha.t‘users are willing to participate in global
computing efforts, é.nd that ‘there are applications that can be run \}ery efficiently in wide area

networks. In this section, we pfesent results of the performance of our JMAS prototype. As shown

in Figure 6.1, we conducted our experiments in a heterogeneous environment consisting of:

¢ 1 Sun MicroSystems Enterprise 3000, configured with two UltraSparc processors each running

at 256MHz.

1 Sun Ultra Sparc workstations, configured with one 120 MHz processor.

1 Sun Sparc 5 workstation, configured with one 120 MHz processor.

14 Sun Sparc 20 workstations, each configured with one 200 MHz processor.

1 Sun Sparc 10 workstations, configured with one 166 MHz processor.

Each machine is connected by a 10 and 100 Mbit Ethernet. All experiments were conducted under
the typical daily workloads. We tested each algorithm under a controlled environment of D-RTMs
that were used strictly to run our experiments. CPU selection from the CPU market, was performed

by the D-RTM using a round-robin selectioﬁ'policy. Under our controlled environment, an optimal °

54

55

selection policy achieves the same results as round-robin CPU selection. We did not run our exper-
iments using a random CPU selection policy. This was done to insure that all processes mapped to
one and only one machine. In order to obtain a relative performance of our system, we calculate

the average of the execution times over N = 10 experiments, producing an arithmetic mean (AM):

1 N
M= — 5" Time;
N - tme;

Where Time; is the execution time for the ith experiment. All experiments are compared with

performance metrics obtained from similar computations on stand-alone workstations.

14 SUN W‘\R(20's

Slo] o] gleddior
HHH h

SUN Ultra SPARC 10

Internet

STUN Ulira SPARC

Figure 6.1. Test Environment.

6.1 Benchmarks

The overhead of migrating actors to remote locations and passing messages between remote actors
are of great interest. We present experimental results for our prototype using two benchmarks: a
Traveling Salesman application, and a Mersenne Prime application. We discuss their implementation

and performance using the JMAS infrastructure.

56

6.2 Factors That Limit Speedup

A number of factors can contribute to limit the speedup achievable by a.parallel algorithm executing
in a global infrastructure such as JMAS. An 'obvious constraint is the size of the input program.
If there is not enough work to be done by the number ef processors available, then any parallel
algorithm will not show an incfease in speedup. Second, the number of process creations must
‘be minimized. In particular, we are concerned with the creation of remote actors throughout the
distributed system. La.stly, in a global environment were communication cost is high, the number
and packet size of inter-process commun.ica.tion's must Be limited. Table 6.1 shows the performance
of two micro-benchmarks to calculate the execu’tion time fef communication éends, and remote class
loading using the JMAS prototype. A Iﬂicro-benchmark is a.‘small experiment used to monitor the
performance of underlying system operations. Results were obtaiﬁed using a test packet to send a

communication, and load a Java class file between two machines.

Overhead secs
Send .006-.010
Remote Class ‘
Loading .15-.28

Table 6.1. Micro benchmarks for a 10 Mbit Ethernet LAN using TCP sockets:
In general, the total cost of distributing a program for parallel execution is defined as:
Tcost = TOtalleadTime + TotalcommTime + TOt’ale;:ecTime

Where TotalioqdTime is the time to load the needed Java class files to each machine within the system,
Total commTime is the time spent sending communications between a.ctoi's,' and TotalezecTime is the
time spent by all machines executing the fraction of the computation. Moreover, the total time to

distribute the needed Java class files across N machines is:
TotalipeaTime = (N - 1) * t10ad

Where t),qq is the average time to load the needed Java class files to one machine within the system.

We assume that the machines are organized using a master-slave topology. Such that, the master

57

is used to process a subcomputation, as well as, distribute N — 1 subcomputations and receive the
partial results from the other N — 1 slave machines. Assuming we distribute the load evenly among

N machines. Then the time to execute a fraction of the computation is:
TOtalezecTime = tseq/N

Where tg, is the total sequential execution time for the application. Given the load distribu-
tion above, if each subcomputation sends at most k¥ messages, then the communication overhead

TotalcommTi,,;e can be defined as: -
TotalcommTime :(N - 1) *k *lgend

Where t¢1,4 is the average time to send a communication between two machines. Given N machines,

we derive a general formula to define the total cost of distributing a program for parallel execution.

TCost(N) = (N -]-) * tload + (N -]-) * ko* tse'n.d + tseq/N Eq]‘

We can estimate the performance of a given a.pplica.tibn using Equation 1. As shown below, in order

to benefit from parallelization the following inequality must hold:
TCost(N) < tseq

(N -]-) * tload + (N -]-) * kox tse'n.d + tseq/N < tseq

Solving the inequality, we find that the total cost (i.e. Tcost(IN)) is less than the sequential execution
time (i.e. t4eq) for:
N < tseq/(tload + kx tsend)

6.2.1 Remote Exeéution of Actors

As a mobile actor computation unfolds, mobile actors have the ability to implicitly navigate au-
tonomously throughout the underlying network; causing the migration of code. On each of the .
experiments conducted in this chapter, we calculated the average time to load a Java class file over

the network. On a standard 10 Mbit Ethernet network the time to load a remote class file ranges

58

between .15 and .28 seconds (Table 6.1). On average it takes .20 seconds to load a class file across
the network; When considering distributing an application across several machines, one must take
into consideration an upper bound on the amount of parallelism that can be exploited by distribut-
ing processes throughout a global system. In particular, we focﬁs on the overhead associated with
loading Java class files across the network (i.e.‘ TotalioedTime)- Wg can calculate the maximum
number of machines p, needed to distribute thevparallel computation without compromising the
performance in speedup by finding the minimum execution time. The minimum execution time is
the minimum va.luev‘of the continuous fﬁhction Tcost(p) on a glosed bounded interval [1,p]; where
P = tseq/ (tzoad+k*tsend‘). We can »simpllify our calculation by assuming the communication overhead

is minimal (i.e. ts¢ng = 0). Giving the gehéral formula for the total cost,
Tcost(N) = (N — 1) * tiogd + tseqg/N
Taking the derivative of Tops:(p) with respect to p gives:
| Téost(P) = tioad = tseq /P’
Setting T¢,.;(p) = 0 and solving for p, gives
P = |4/ tseq/t10ad] Eq.2

Therefore, we can estimate the maximum speedup S as:
§= tseq/TCost(p)

Tcost(p) =2 x tload\/‘ tseq/tioad = ticad

Giving,

24 tgeq tseq/tload + tseq
4 x tseq - tload

S =

Eq.3

6.2.2 Message Passing

As stated in Chapter 5, communication in JMAS is asynchronous, reliable and connection-oriented.

Messages between two actors, must be routed through a D-RTM on the local machine on which

59

the two actors reside. The Java Virtual Machine requires allv communication to go ‘through the
Java network layer (i.e. java.net) énd the complete TCP stack of the underlying OS. This causes
a substantial software overhead compared to communication libraries of parallel machines. Using
JMAS, a single message can be sent from one actor to another within .006-.010 seconds on a stan-
dard 10 Mbit Ethernet LAN (Table 6.1). As long as abplicatioﬁs ‘are coarse grained, the overhead
of opening a socket connection can be ignored. Since.message passing using Java TCP sockets is
slow compared to dedicated parallel machines, and communication delays of large networks of het-
erogeneous machines is unpredictable, only cbmputation—intensive parallel applications beneﬁt from
the JMAS infrastructure. In particuiar, we can estimate the» performance of a parallei computation
given the total communication overhead (i;e. TcommTime), and the total overhead (i.e. TjoadTime)
associated with loading Java class ﬁles throughout the network. If k and toend are constant, then
the communication oyerhead (i.e. T;ommTime(N) : (N-1)xk=x tsendv) ‘is a linear function of N;
where N denotes the total machines used. We can calculate the maximum number of machines p
needed to disttibute the parallel computation by taking the deriyati\}e of Equation 1 with respect

to N; where N = p. Giving,
Té'ost (p) = tioad + k* tsend — tseq/P2

Setting T}, (p) = 0 and solving for p, gives

p= L\/ tseq/(tioad + k * tsend)] Eq.4
Therefore, we can estimate the maximum speedup S as:

S = tseq/TC'o.~zt (P)

Tcost (P) =2% tload\/tseq/(tload +kx* tsend) - tloati)

Giving,

_ 2 tseq \/tseq/(tload +kx* tsend) ~+ tseq

S
4% lseq — (tload +kx* tsend)

Eq.5

In the next two sections, we present the experimental applications used for performance evaluation.

60

6.3 = Traveling Salesman Problem

Our first application is a parallel solution to the Traveling Salesman ProBlem (TSP). The Traveling
Salesman Problem is as follows: given a list of n éities élong with the distances between each pair
of cities. The goal is to find a tour which starts at the first city, visits each city exactly once and
returns to the first city, suéh that the distance traveled is as small as possible. This problem is
known to be N P-complefe (i-e. no serial algorithm exists that runs invtime polynomial in n, only
in time exponential in n), and it is widely Believed that no polynomial time algorithm exists. In
practice, we want to compute an approximate solution‘, i.e. é. single tour whose length is as short as
possible, in a given amount of computatiop timve.’ |

More formally, we are given a gfaph G= (N, V, W) consi'éting of a set N of n nodes (or cities),
a set of edges V = (¢,7) connecting cities, and a set of nonnegafive weights W = w(i, j) giving

_ the length of edge (3, j) (i.é. the distance from city ¢ tovcity 7). The-graph is.directed, so that %m
edge (3, 7) may only be traversed in the direction from ¢ to j, and edge (4,%) may or’ may not exist.
Similarly, w(i,) does not necessa.ril’y equal w(y, 1), if both edges exist.

There are a great many Ualgorithmsfor this important problem, some of which take advantage of
special propertiés like symmetry (edges (3, j) and (7,1) alwa;.ys exist or do not exist simultaneously,
and w(i,j) = w(j,?)) and the triangle inequality (w(i,j) <= w(i, k) + w(k, 7)Vi,7,k). In this
a.pplica.tibn_we assume none of these properties hold. For simplicity, though, we assume all edges
(i,7) exist, and-all w(i,j) are positive integeré (note fﬁhat setting some w(, j) fo be very large

effectively excludes it from appearance in a solution).
6.3.1 TSP Algorithm

We take a naive approach to solving the TSP using an Exha.ustive—SeaIch. The exhaustive-search
algorithm searches all (n—1)! possible paths, while keeping the best path searched so far. We generate
all possible paths ﬁsing ‘a Permutation() function on the number of cities n. The pérmutation
function generates a lexicogra.phical ordering of all possible paths. We divide the permutations

equally among a set of processors p; such that each processor searches (n — 1)!/p possible paths

61

(Figure 6.2). Processors are arranged in a master-slave design. A complete source code listing of

the TSP solution using mobile actors is given in Appendlx C.6.

Variable Definitions:

n : Integer to denote the number of cities

p : Integer to denote the number of machines

mintour : Integer to denote the permutation of the best tour sea.rched

start : Integer to denote the starting permutation in lexicographical order

stop : Integer to denote the ending permutation in lexicographical order

resultTour : Integer to denote the best tour search for a specified range lexicographically
itself : Actor address of itself

cust : Actor address to send result

range : Integer to denote the total permutations (tours) to check

Permutation(i) : Generates the ith tour in lexicographical order

behavior Master :
1. mintour =0
2. range = (n-1)!/p
3. for each processor i : 1 top—1do

create a Remote actor assume behavior Slave, return address of actor as z
send start = (i*range), stop = ((i+1)*range), and the address of itself to =

4. become itself and wait for P results
5. fori: 1topdo

receive resultT our
if Permutation(resultTour) distance < Permutatlon(mzntour) distance

set mintour to resultTour

behavior Slave : ‘ _
1. recv start, stop, and address of cust to send result
2. mintour = start
3. for i equal start to stop do

if Permutation(z) distance < Permutation{mintour) distance
set mintour to i

4. send mintour to cust
Figure 6.2. TSP Algorithm.

6.3.2 Measuréménts

In order to complet.e our set .of mea.surérﬁents in a reasonable amquﬁt of time we chose to test our
TSP solution primality for N = {4, 5,10, 13} cities. Wé ébnductgd the experiment in an environmenf
consisting of up to 15 ma.chines, and compared the results with a sequential application running on
a SPARC 20 workstation. As shown in Figure 6.3, theré is no significant gain in performance fof
N < 10. This is due to the overhead associated with loading Java class files across the network.
Figure 6.4 displays the execution time of a TSP solution for N = 5 versus 1ts remote Java class

loading time. As the number of machines p increase, the load time increases, causing the execution

62

time to increase; exceeding the execution time for a sequenﬁal solution. Notice we achieve the
best performance for p = 4 machiﬁes. For N > 10, our TSP solution gives better performance
than serial execution. In pa.fticula.r, for N = 13 the speedup obtained is close to linear. Due to
limited resources, we were‘unable to test the scalability of the application for lé.rge values of p.
We estimate the performanée of our TSP application using EQuations 1,2 andka;‘n average lbad time
tioad = -15 secs. As illu_stfated in Table 6.2, the é.verage CPU utilization for the best possible number '
of machines p is 50%. As the numbef of Processors p appro#ch (N — 1)!, the speed‘up obtained will
decrease significantly; due to under utilizé.tion of processors and the overhead associated with loading
Java class files across fhe network (Figure 6.5). The estimates are also reflected in Figuré 6.3. These
results show that our fra.mewqu, is well sﬁitéd for course grain apblicationé. The TSP application

also scales well to lﬁrge computation sizes (Figu“re 6.6).

Prob. Size || t,q secs || Max. p || Max. S | Utilization
N=5 Cities || 3.007 |l 4 2.24 56%

N=10 Cities || 24.441 12 6.33 52.7%
N=13 Cities || 36655.848 |i 494 24742 50%

Table 6.2. Estimatiné the Performance of TSP.

JMAS Performance of TSP
T T

T T T T N T
14| e
N=13" -+--
=5 F--
. N=g e
12 F . -
»;*l) '
.'*‘.)
10 | y 7 k
+
g 8 : best S b
a
* . [e et S .
6] T -2 .
4 - "hest S b
A e T iy = S
2 Eoprre®’ -*——-.E’.,___.B___ ‘‘‘‘‘ J
e ‘ B
0 sl . 1 \\" ak 1 1 A Il 1
0 2 4 [8 ' 10 12 14 16
Processors p
bestp (N=5) best p (N=10}

Figure 6.3. Speedup of TSP.

%Utilization

Time (secs)

JMAS Performance of TSP
T T

T T
3+

25+

Execlime’ —<— |
LoadTime” -+

1.5
1k
05| B
- ’+""
0 e 1 1 1 ' I 1
0 2 4q 6 10 12 14
Processors p
Figure 6.4. Execution Time vs Load Time.
'+ MAS Performance of TSP
100 T T T T T 1
e — M
ey S
~+ ‘-'—__F-'"'""—-——____'N'ﬁ' -
N=Z e
80 + 4
.‘!
60 | B 1
y 8
‘\.\‘ .
y
oF 3 8 -
' .
!\‘. 'E‘\“--B
o N P - y
3 B el
'x‘ . . . : 'T'---..__B
“\
i & 1 1 I 1 .
2 4 6 8 10 12 14 16
Processors p

_Figure 6.5. CPU Utilization of TSP.

63

64

JMAS Performance of TSP

T

02" o
14} L Sgt
P -
o L
= L eom
12k A
10 4

Cities N

Figure 6.6. Scalability of TSP.
6.4 Mersenne Prime Application

For our second application, we implemented a parallel primality test which is used to search for
Mersenne prime numbersi [Doc98]. This type of application is well suited for our infrastructure. It
is very coarse grained with low communication overhead.

A Mersenne prime is a prime number of the form 2P — 1, where the exponent p itself is prime.
These aré tl;aditionally the largest known primes. Encfypinn and decryption methods are typical
applications which utilize large primé numbers. Searching and verifying Mersenne primes using
computer technology has been conductve“dl since 1952 [Doc98]. TQ date 37 Mersenne primes have
been discovered. Only up to the 35th Mérsenne prime has been verified. The current record holder
is 21398269 _ 1 and was discovered through the use of dver 700 PCs and workstations worldwide.

With larger and larger prime exponents, the search for Mersenne primes becomes progressively more

difficult.

65

6.4.1 Mersenne Prime Algorithm
In our implementation, each prime is tested based on the following theorem:
Lucas-Lehmer Test: For p odd, the Mersenne number 2?7 — 1 is prime iff 2P -1

divides S(p — 1); where S(n + 1) = §(n)? — 2, and S(1) = 4. The proof can be obtained

from [Doc98].

We develop a mobile actor program to test for Mersenne primality, given a range of prime numbers
(Figure 6.7). Processors are arranged in a master-slave desigh. As shown below, our application
" works as follows:

Given N machines and a range r of prime numbers, we divide the search such that:

each machine tests for a Mersenne prime using the Lucas-Lehmer Test for a range of

primes. Each range is of size r/N.

A complete source listing of the Mersenne Prime application is in Appendix C.7.

66

Variable Definitions:

r: Integer to denote the amount of primes to test
N : Integer to denote the number of machines

Lucas(z) : Performs Lucas-Lehmer test on z

itself : Actor address of itself

cust : Actor address to send result

range : Integer to denote the range of primes to-check

start : Integer to denote the starting prime number

stop : Integer to denote the prime number used as a sentinel
T€CUcount : INteger to denote the total results received

PRIME : enumerator returned from Lucas(x); if is a prime number
SINK : message to denote the termination of a subcomputation

behavior Master :
1. range = r/N
2. for each processori: 1to N —1 do o
create a Remote actor assume behavior Slave, return address of actor as z
send start = (i*range), stop = ((i+1)*range), and the address of itself to z

become itself and wait for N results
set recveount = 0

receive result -

if result is. SINK

increment recvcount by 1
Else
print "27¢*¥t _ 1 is PRIME!"
7. if recvcount < N, then goto 5

o Ok

behavior Slave :

1. recv start, stop, and address of cust to send result
2. for 7 : start to stop do

if Lucas(z) is PRIME
send i to cust
3. send SINK to cust

Figure 6.7. Mersenne Prime Algorithm.

6.4.2 Measurements

For our measurements, we chose to test the Mersenne primality for all exponents between 4000 and
5000. Known primes within this range are 24253 — 1 and 2%423 — 1. The reason for selecting this

range is that:

1. we tried to make the number large enough to simulate the true working conditions of the

application,

2. we wanted to keep them small enough to be able to complete our set of measurements in a

reasonable amount of time.

67

We conducted the experiment in an environment consisting of up to 15 rna,chineé, and compared the
results with a sequential application running on a SPARC 20 workstation. As shown in Figure 6.8,
our application scales to 15 machines linearly. The speedup obtained is slightly lower than linear
speedup. This is because we decompose the range of primes to be tested unevenly in terms of the

amount of work to be done.

MAS Performance of Mersenne Prime-Application
T T T T T T

Processors p

Figure 6.8. Speedup of Mersenne Prime.

24000 24999

For instance, testing‘if —1is prime, can be done much faster than testing if —1is prime. We
split the ranges in groups such that, the last maéhine receives the last group consisting of the largest
numbers. Due to limited resources, we were unable to test ’phe svcala,bility_ of the application for large
values of p. We estimate:the performance of the Mersenne Prime‘application using Equations 1,2;
where the average load tim’e tioaqd = -20 secs, and the average séquential exeéution time t5., = 83432
secs. As shown in Table 6.3, results show that the application scales up to 646 machines with an
overall speedup of 323. From our results we can assume that for p > 646, the range of primes to

test decreases causing under utilization of CPUs (Figure 6.9). Also, for every new machine added,

the time to load Java class files increases causing a decrease in performance.

Application tseq secs || Max. p Max. S || Utilization
Mersenne Prime || 83432 323 . 646 50%

Table 6.3. Estimating the Performance of the Mersenne Prime Test.

MAS Performance of Mersenne Prime

YUtilization

100 : — . : r T
] ‘4000-5000° <—
80 |- b
60 | -
40 - .
20 - . S . .
0 i 1 1 i 1)
2 4 b 8 10 12 14 16
Processors p

Figure 6.9. CPU Utilization of Mersenne Primé.

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis we introduce mobile aciors; a parallel programming paradigm for distributed parallel
computing based on mobile agents and the actor message passing model [Agh86]. The Actor-based

message passing model supports dynamic architecture topologies that make it ideal for distributed

pérallel computing. We implement a prototype system\ (.JMAS)} based on the mobile actor model
R e
using Java technology. JMAS is a globally distributed‘cornp.uting environment for executing mobile
‘actor computations. JMAS is designed using J ava tecnnology [Inc95], and requires a programming
style different from commonly used approaphes to distributed computing. J MAS allows a prdgra.m—
mer to create‘mobile actors, initialize their behaviors, and éend them messages using constructs
provided by the JMAS Mnbile Actor API. As the computation nnfolds, mobile- actors have the
ability to implicitly navigate autonomously throughout the underlying network. New messages are
generated, new actors are created, nnd existing actors undergo staté change. We evaluate the per-
formance of our system uéing two benqhmarks: a Mersenne Prime Application, and the Traveling
‘Salesman Problem. The degree of parallelism obtained from distributing mobile actofs throughout

the system is limited due to the overhead associated with migrating Java class files, and the amount

of inter-process communication. In particular, we-are bound by the number of processors

P = O(1/fea/ troaa + * tren)])

to distribute the parallel computation; where #¢, is the:sequentia.l execution time of the application,
tioaa is the average time to load the needed Java c]assv files to one machine, % is the total message
rounds sent per machine, and ts.nq is the average time to send a communication between two

machines. Given p we can estimate the speedup S as:

S= tseq/TCost (P)

69

70

When the enhanced performance using p machines, is denoted as a general formula

TCost(p) :> (P - 1) * tload + (P - 1) * ko« tsend + tseq/N

the speedup is,

2 * tseq \/tseq/(‘tload + k * tsend) + tsetj
4 x tseq - (tload +k* tsend)

S =

Our estimates for the TSP and Mersenne Prime 'applicationé, show that each‘application scales
to large numbers of machines N. But fcﬁ- N > p, we estimate a decrease in pérformance; 'due to the
under utilization of CPUs, and the signiﬁcélit overhead éSsociated with loading the needed Java class
files and sending communications throughout the system. These results Sho@ that our frame@ork is

well suited for course gfain apblications.
7.2 Future Work

In order to improve the performance of Java programs for high performance cdm.puting, the echﬁ- :
tion time for interp:etihg Java bytecode must be addressed. Performante boostefs such as a JIT
(just in-time) Java compiler providéva_, méré eiﬁciént execution of Jaya applications [Inc95]. Some
JIT compilers give increases in performance that matqh the execution of 6ptimized C combiliers.
We suggest the incorporation of a JIT Java compiler to improve the performance of JMAS. Is-
sues such as fault tolerance and security need to be addressed and implemented within the JMAS
framework. High-level communication abstractions should be addressed within the' JMAS Mobile
Actor API. Examples are barfier actors, mutex actors, call/return communication, ahd actorSpaces
[AP91]. Distributed I/0, exéépﬁ@n handliﬂg, and the intergration of mobile actorsan(i sequential
applications using graphical user interfaces, need to be addfessed. The prototype also needs to be
tested on machines running Micrésoft Windows NT and 95 operating systems. Providing support
for connection-less commuvnication uéing UDP sockets could .irnprove the performancevof actor com-
munication, as opposed to TCP sockets which involve communication overhead to establish and
maintain a reliable connection. A connection-less commpnication system woﬁld be useful in écalable

computing clusters, or networks of workstations. Lastly, more work needs to be done to provide gen-

71

eral formulas for estimating the performance of parallel compuations distributed among a network

of machines unevenly.

BIBLIOGRAPHY

[ACP95] T. Anderson, D. Culler, and D. Patterson. A case for now (network of workstations).

In IEEE Micrbcomputer. IEEE, 1995.

[Age9T] AgentSoft. AgentSoft’s - produéts: LiveAgent and SearchAgent.

http://www.agentsoft.com, 1997.

[Agh86] G. Agha. Actors: A model of concurrent computation in distributed systems. M.LT.

Press; 1986.

[Agh89) Gul Agha. Supporting multiparadigm programming on actor architectures. In Proceed-

ings of Parallel Architectures and Languages Europe, pages 1-19. LNCS, 1989.

[AHP91) Gul Agha, Chris Houck, and Rajendra Panwar. Distributed execution of actor pro-
grams. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel

Computing. Santa Clara, 1991.

[AKP90] G. Agha, W. Kim, and R. Panwar. Actor languages for specification of parallel compu-
tations. DIMACS Seriés in Discrete Mdthematics and Theoretical Computer Science,

00, 1990.

[AMST91] Gul Agha, I. Mason, S. Smith, and C. Talcott. Towards a theory of actor computation.
In 3rd International Conference on Concurrency Theory CONCUR ’92, pages 565-579.

LNCS, 1991.

[AP91] Gul Agha and R. Panwar. An actor-based framework for heterogeneous computing

systems. Journal of Parallel and Distributed Computing, 21, 1991.

72

[AS88] -

[aSU97a]

[aSU97D]

[atoSM96a]

[atoSM96b]

[BBBYS]

[BFDY6]

[BGog]

[BIK+95]

73

W. Athas and C. Seitz. Multicomputers: Message-passing concurrent computers. IEEE

Computer, 2:9-23, 1988.

NPAC at Syracuse University. Computing on the Web: New Approaches to Parallel
Processing Petaop and Ezaop Performance in the Year 2007. Online Technical Report,

http://www.npac.syr.edu/users/gcf, /i)etastuff /petaweb/, 1997,

NPAC at Syracuse University. WebFlow: A Visual Programming Paradigm for Web
and Java Based Coarse Grain Distributed Computing. Online Technical Report,

http:/ /www.npac.syr.edu/projects/javaforcse/cpande/sufurm.ps, 1997.

JavaSoft a trademark of Sun Microsystems. . Java Object Serialization.

http://chatsubo. javasoft.com / current /serial/index.html, 1996.

JavaSoft a trademark of Sun Microsystems. Java Remote Method Invocation (RMI).

http://chatsubo.javasoft.com/current/rmi/index.html, 1996.

J. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An infrastructure for global
computing. In Proceedings of the Tth ACM SIG.OPS European Workshop on System

Support for WorldWide Applications. ACM SIGOPS, 1996.

L. 'Bic, M. Fukuda, and M. Dillencourt. Distributed computing ﬁsing autonomous

objects. IEEE Computer, 18:55-61, 1996.

L. Burge and K. George. An actor based framework for distributed mobile computa-
tion. In PDPTA - Parallel Distributed Processing Techniques and Applications. CSREA,

1998.

R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: An

efficient multithreaded runtime system. In Proceedings of the 5th ACM SIGPLAN, pages

[BKKW96]

[BLY6]

[BN84]

[BN95)]

[BN96]

[BSST96]

[BVNO1]

[CA91]

74

207-216. Symposium on Principles and Practice of Parallel Programming (PPoPP),

1995.

A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing on
the web. In Proceedings iof the 9th Conference on Parallel and Distributed Computing

Systems. PDCS, 1996.
T. Berners-Lee. Www: Past, presént and future. IEEE Computer, 18:69-77, 1996.

A. Birrell a.nd B. J. Nelson. I,mplemeht,ing"remote procedure calls. ACM Transactions

on Computer Systems, 2:39-59, 1984.

L. Burge and M. Neilsen. Variable-rate timestamped anti-entropy. In ISMM Interna-
tional Conference on Parallel and Distributed Computing and Systems. Tth IASTED,

1995.

L. Burge and M. Neilsen. A decentralizéd algorithm for communication efficient dis-
tributed shared memory. In 11th Annual Symposium on Applied Computing - Dis-

tributed and Parallel Processing. SAC, 1996.

R. Brecht, H. Sandhu, M. Shan, and J. Talbot. Paraweb: Towards world-wide bsuper-
compu‘ping. In Proceedings of the Tth ACM SIGOPS Eur_opean Workshop on System

Support fbr WorldWide Applications. ACM SIGOPS, 1996. »

F. Baude and G Vidal-Naquet. Actors as a parallel programming model. In Proceedings
of the 8th Symposium on iheo’retical Aspects of Comfutér Science, page 480. LNCS,

1991.

C. Callsen and G. Agha. Open heterogeneous computing in actorspace. Journal of

Parallel and Distributed Computing, 21:289-300, 1991.

[CDL*96]

[Cli1]

[CLNR97]

[CMY6]

[Con96]

[DD96]

[DES97]

[Doc95]-

[Doc98]

75.

K. Chandy, B. Dimitron, H. Le, J. Mandleson, M. Richardson, A. Rifkin, P. Sivilotti,
W. Tawaka, and L. Weisman. A world-wide distributed system using java and the
internet. In Proceedings of the 5th IEEE Internation Symposium on High Performance

Distributed Computing. IEEE HPDCS, 1996.

W. D. Clinger. Foundation of actor semantics. Technical Report AI-TR-633, MIT

Artificial Intelligence Laboratory, 1981. .

N. Camiel, S. London, N. Nisan, and O..Regen. The popcorn project: Distributed
computation over the internet in java. In Proceedings of the 5th Internation World

Wide Web Conference. W3, 1997.

W. Chang and D. Messerschmitt. Dynamic deployment of peer-to-peer networked ap-
plications to existing world wide web browser. Proceedings of the Telecommunications

Information Network Architectures (TINA), 1, 1996.
WWW Consortium. Jigsaw Web Server. http://www.w3.6rg/pub/www/jigsaw, 1996. .
H.M Deitel and J. P. Deitel. Java How to Program. Pﬁntice Hall, 1996.

DESCHALL. Internet-linked computers challenge data encryption standard. Technical

report, Press Release, 1997.

Online Document. Mobile Agents: Are they a good idea? http://www.eit.com

/goodies/list/www lists /www-talk.1995q1/0764.html, 1995.

Online Document. Mersenne Primes: History, = Theorems and ~Lists.

http://www.utm.edu/research/primes/mersenne.shtml, 1998.

[DoCS96a] University of California at Santa Barbara Dept. of Computer Science. Javalin:

[DoCS96b)]

[DoCS97a]

[DoCS97b]

[DoCS97¢]

[[DRCY4]

[FF96a]

[FF96b)

[FK97]

76

Internet-Based Parallel Computing Using Java. Online Technical Report,

http://www.cs.ucsb.edu/ danielw/Papers/wjsec97:ps, 1996.

University of Maryland College Park Dept. of C'ompu'ter Science. Network-aware Mobile

Programs.- Online Technical Report, http://www.cs.umd.edu/ TiR/ CS-TR-3659, 1996.

Old Dominion University Dept. of Computer Science. Web Based Framework for Dis-
tributed Computing. Online ‘Techni'cal. Report, http://www.cs.odu.edu/ techrep /techre-

ports/TR_97 21.ps.Z, 1997.

Rice University Dept. of Computer Science. Java/DSM: A Platform for Heteroge-
neous Computing. Online Technical Report, http://www.cs.rice.edu/ -weimin/papers

/java97.ps, 1997.

University of California at Santa Barbara Dept. of Computer Science. Super-
Web: Res‘e‘arch Issues in Java-Based Global Computing. Online Technical Report,

http://www.npac.syr.edu/projects/javaforcse/cpande/ UCSBsuperweb.ps, 1997.

L. Cardelli for DEC' Research Center. Oblig: A language with distributed scope.

http://www.research.digital.com/SRC/Obliq/Oblig.html, 1094.

G. Fox and W. Formaski. Towards web/ java based high performance distributed com-

puting - ahd evolving virtual machine. Iﬁ Proceedings of the 5th IEEE Internation

Symposium on High Performance Distﬁbuted Computing. IEEE HPDCS, 1996.

G. Fox ahd W. Furmanski. ‘Towards.web /java based high performance distributed com-
puting - an evolving virtual machine. In Conference on High Performance Distributed

Computing, page 10. IEEE, 1996.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-

tional Journal of Supercomputer Applications, 1, 1997.

[GK92]

[GLS94]

[Gra95]

[GWtLT97]

[Ham96]

[Hay88]

[HBBYS]

[Hew77]

[Inc94]

[Inc95]

77

D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary
experience with piranha. In Proceedings of the 6th ACM International Conference on

Supercomputing. ACM, 1992.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with

the Message-Passing Interface. MIT Press, 1994.

R. Gray. Agent tcl: A transportable agent system. In Proceedings of the CIKM Work-

- shop on Intelligent Information Agents. Fourth International Conference on Information

and Knowledge Management (CIKM ’95), 1995."

A. Grimshaw, W. Wulf, and the Legion Team. The legion vision of a worldwide virtual

computer. Commaunications of the ACM, 20:39-45, 1997.

M. Hamilton. Java and the shift to net-centric computing. IEEE Computef, 1:31-39,

1996.
J. P. Hayes. Computer Architecture and Organization. McGraw-Hill, Inc, 1988.

D. Halls, J. Bates, and J. Bacon. TUBE: Flezible Distributed Programming Using
Mobile Code. http://www.cl.cam.ac.uk/users/dah28/position-final /position-final.html,

1996.

C. Hewitt. Viewing control structures as patterns of passing messages... Journal of

Artificial Intelligence, 8:323-364, 1977.
Oracle Inc. Oracle press release. Technical report, Oracle, 1994.

Sun Microsystems Inc. The Java Virtual Machine Specification.- Online Technical

Report, http://java.sun.com, 1995.

[Inc97]

[KABYS]

[KBW97]

[KCDZ94]

[KKT92)

[KZ97)

[Las97]

[LDD96)

[LI97)

[LL8S]

78

JavaSoft Inc. Jeeves Java-based Web Server. Online Technical Report,

http:// www.jé,va.sbft.com /javastore/jserv, 1997.

A. Keren and Institute of Compute‘f Science Hebrew Universify A.Barak. Parallel Java

Agents. http://cs.huji.ac.il/, 1998. '

L. Kale’, M. Bhandarkar, and T. Wilmarth. Design and implementation of parallel java
with global object space. In PDPTA International Conférénce, pages 235-244. PDPTA,

1997.

P. Kelcher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed shared-
memory on standa.rd workstations and operating systems. In Proceedings of USENIX.

USENIX, 1994.

H. Koch, L. Krombholz, and O. Theel. A Brief Introduction into the World of Mobile

Computing (extended abstract). http://www.tm.informatik.th-darmstadt.de/, 1992.

J. Kiniry and D. Zimmerman. A hands-on look at java mobile agents. IEEE Internet

Computing, 1:21-29, 1997.

A. Lash. '48-bit . crypto latest to crack. C-NET: The Computer Netwérk.

http:/ /www.news.com/News /Item /0,4,7849,4000.ktml, 1997.

A. Lingnau, O. Drobnik, and P. Domel. An HTTP-based Infrastructure for Mobile

Agents. http:// wwv&.tm.informatik.uni-fra.nkfurt.de /agents/ WWW4-paper.html, 1996.

Argonne National Laboratory and USC Information Science Institute. The Nezus Mul-

tithreaded Runtime System. http:/ /www.mcs.anl.gov/nexus,v1997.

M. Litzkow and M. Linwy. Condor - a hunter of idle WOr.kstations. In Proceedings of

the 8th International Conference of Distributed Computing Systems. ICDCS, 1988.

[MC96]

[Obj96]

[0Cal96]

[0CS96]

[oMCS97]

[0T96]

[OW97]

[Peid7]

[Rey97]. |

[Rie94]

[rL.96]

[Sa0GI97]

79

Microelectronics and Computer Consortium. - Rosette Reference Manual.

http://www.mcc.com/projects/carnot /rosette, 1996.
ObjectSpace. Voyager. http://www.objectspace.com/Voya.ger, 1996.

University of California at Irvine. MESSENGERS. Online Technical Report,

http://www.ics.uci.edu/ bic/messengers, 1996.

Sewdish Institute of Computer Science. AKL, AGENTS, and Penny.

http:// Www.sics.se/ ps/agents.html, 1996.

Dept. of Math and Emory University Computer Science. IceT: Distributed Computing

and Java. Online Technical Report, http://www.mathcs.emory.edu/ gray/, 1997.

University of Tromse’s. Tacoma. Online Technical Report,

http://www.cs.uit.no/DOS/Tacoma, 1996.
S. Oaks and H. Wong. Java Threads. O’Reilly, 1997.

H. Peine. Ara - Agents for Remote Action. http://www.uni—kl.de/AG-Nehmer/Ara./,

1997.

F. Reynolds. Evolving an operating system for the web. IEEE Computer, 1:90-92,

1997.

Doug Riecken. M: An architecture of distributed agents. Communications of the ACM,

37:48-53, 1994.
Tokyo research Lab. Aglet Workbench. http://www.trl.ibm.co.jp, 1996.

Computer Science and Engineering at Oregon Graduate Institute. MIST.

http://www.cse.ogi.edu/DISC/projects/mist/overview.html, 1997.

[SH97]

[Sta84]

[Sun90]

[SVN91]

[Tan92]

[Tan96]

[TMN98]

[UoCal96]

[Van97]

[Ven97]

80

M. Singh and M. Huhns. Internet-based agents: Applications and infrastructure. IEEE

Internet Computing, 1:8-9, 1997.

J. A. Stankovic. A perspective on distributed computer systems. IEEE Transactions

on Computers, 33:28-41, 1984.

V. Sunderam. Pvm: A framework for parallel distributed computihg. Concurrency:

Practice and Ezperience, 2, 1990.

Y. Sami and G. Vidal-Naquet. Formalization of the behavior of actors by colored peri
nets and some applications. In Proceedings of Parallel Architectures and Languages

Europe. PARLE, 1991.

A. Tanenbaum. Modern Operating. Systems. Englewood Cliffs, N. J. : Prentice Hall,

1992.
A. Tanenbaum. Computer Networks. Englewood Cliffs, N. J. : Prentice Hall, 1996.

H. Takagi, S. Matsuoka, and H. Nakada. Ninflet: A Migratable Parallel Object Frame-

work using Java. http://ninf.etl.go.jp/, 1998.

Dept. of Computer Science University of California at Irvine. MESSEN GERS: A Dis-
tributed Computing Environment for Autonomousv Objects. Online Technical Report,

http://www.ics.uci.edu/ bic/messengers, 1996.

L. Vanhelsuwe. Create your own supercomputer with Java.

http://www.javaworld.com /javaworld /jw-01-1997/ jw-01-dampp.html, 1997.

Bill Venners. Solve real problems with aglets, a type of mobile agent.

http://www.javaworld.com/javaworld/jw-05-1997 /jw-05-hood.html, 1997.

81

[Whi94a] J. White. Mobile agents make a network an open platform for third party developers.

IEEE Computer, 27:89—90, 1994.

[Whi94b] J. White. Telescript technology: The foundation for the electronic marketplace, general

magic white paper. Technical report, General Magic,. 1994.

. APPENDIX A

JMAS: INSTALLATION AND USER GUIDE

82

83

A.1 Setting up JMAS on your System

JMAS is distributed as both source and a zipped class library and may be downloaded from the
fhe following URL: http : //a.cs.okstate.edq/ ~ blegand/JMAS. JMAS is written entirely in Java.
This release has been developed under JDK1.1-3;> Due to time constraints it has only beeﬁ tested
on Sun Solaris. Future testing will include LINUX and Win95/NT. Unless you plan on re-compiling
from the source, setting up JMAS is easy. First, unpack the distribution somewhere convenient.

This should create the following tree of directories .

MAS

)]

Jdoc mas Jexamples /public market.conf

Figure A.1. JMAS Directory Structure.

If you plan on running JMAS fromlthe zipped binaries (JMAS.zip), they are located in the t;:)p
level directory. Just include the path of lockation of the MAS directory in the environment variable
JMASPATH. Next, include the JMAS.zip file in your CLASSPATH. If you plan on reéompiling
from the source, add the location of the MAS directory to your CLASSPATH. For example, if I
unpacked the distribution in rriy home direct.ory. To work from the zipped binaries, ﬁly JMASPATH

and CLASSPATH might be set as follows:

JMASPATH = SHOME/MAS

CLASSPATH = $JAVAHOME/lib/cla‘sses._zip: $JM_ASPATH/jmas.zip
To work from the recompiled source, my JMASPATH and CLASSPATH would be:

JMASPATH = SHOME/MAS

CLASSPATH =$JAVAHOME/lib/classes.zip: ‘$JMASPATH/jmas

84

Make sure that your CLASSPATH includes the default Java packages as the first entry in the

CLASSPATH.

A.2 Starting the JMAS D-RTM

Before starting JMAS take note that there exists a directory public in the top level directory. All
executables written using JMAS MUST be put into this directory. The directory is a repository
where remote actors can locate publicly available behaviors on your system. You must also denote
any other machine you would like in your market cluster. This information is stored in the mar-
ket.conf, which resides also in the top level directory. Make sure that the machines you list are also
running JMAS. In order to change the current threshold value for your machine, modify the second
parameter within the file jmasd in the $JM ASPAT H /bin directory.

To start JMAS, issue the command jmasd [-1] at the command prompt; where the -i is optional.
To run with the GUI specify the -i option. Once JMAS is up and running you should see a graphical
user interface which displays information about the current processes running on the local machine,

the current CPU market, and a Threshold meter which displays the current load (Figure A.2).

TSPboot]) ed
TSP[boot] 5 i a.cs.okstate.edu
TSP[result] \ eslabsvr.wslab.okstate.edu
TSPSolver(improve] , a.cs.okstate.edu
TSPlresult] , ; esws01.wslabokstate.edu
TSPlresult] A . esws02.wslab.okstate.edu
TSPlresult] ; ; Tesws03.wslab.okstate.edu

eslabsvr.wslab.okstate.edu <BUYER>
ws01l.wslab.okstate.edu <SELLER>
ws02.wslab.okstate.edu <SELLER>

CPU Market -

Figure A.2. JMAS Graphical User Interface.

85

A.3 Terminating the JMAS D-RTM

JMAS can be terminated through the GUI (i.e. closing the GUI window), or by issuing a UNIX
system command. Because the JMAS D-RTM runs in the background, a process id must be known
in order to kill the process. For UNIX macﬁines this is obtained using the ps command. To kill the

process, at command prompt issue:

% kill -9 < id >

A.4 Compiling Mobile Actor Programs

Compilation of mobile actor programs follows the same procedure for cdmpilation of standard Java
applications (i.e. javdc). Programs may be debuggéd using the standard Java debugger (i.e. javab).
Programs may be written as a Java application (‘i;e.v with a main()), or as an mobile actor application
(i.e. using a boot() method). Writing a program using a boot() method will be discussed in a
future section. NOTE: JMAS is not aware of program modifications when recompiling programs.
Therefore, the system must be rebooted in order to remove the last copy of the Java class from the
system cache. Future versions of JMAS will provide a system command to purge the local cache

during recompilation.

A.5 Executing Mobile Actor Programs

There are several methods you can use in-order to exegute actor programs. J MAS ¢an invoke actor
pfogra.ms that are boot strapped with a boot() method, or you can write a Java program that
instantiates an actor object for use. Invoking actor programs through their boot method is very
simple. Given the code provided in th(‘e. Mobile Actor API (Appendix‘B.l.l), we can invoke the

HelloWorld program by issuing the fdllowing command at the systeni prompt:
% jmas HelloWorld

Process status information can be obtained by issuing the same command with the —ps option. It

can also be viewed visually through the jmasd graphical user interface (Figure A.2).‘ Issuing the

86

command jmas —ps produces the following result.

Process status for [a.cs.okstate.edu] <2,0'/. Load>: 2 Jobs...

id behv 1Time : cTime orig.
932343411 HelloWorld[boot] =~ 0.12 4.0 a.cs.okstate.edu
932343412 WorldActor[world]. 0.10 ‘ ©10.2 . a.cs.okstate.edu

Note: All code must be placed within the public directory. As shown below, in order to integrate
actors within a java application , all you need to do is create an instance of the actor or mobile
actor object. Because actors communicate using“'a.synchronbus messages there is no way to obtain

the result back to the main. This feature will be added in future versions of JMAS.

public class StartActor

{
public static void main(String args[])
{ : .
MobileActor ma = new MobileActor();
ActorAddress ha = ma.createRemote("HelloActor","a.cs.okstate.edu");
ma.send(ha,"hello");
}

APPENDIX B

JMAS: MOBILE ACTOR API SPECIFICATION

87

88

This section provides the interface to the Mobile Actor API. The mobile actor API consist of
two packages: jmas.actor, and jmas.util. Each package contains the classes needed inorder to write

mobile actor programs. Both packages must be imported in every mobile actor program.

B.1 Elements of the jmas.actor API

The Mobile Actor API provides the methods to int‘erface with actors wifchin the JMAS environment.
This API allgws users.to create acfors (local or remote), replace actor behayior (local or remote),
terminate an actor, and send a commuﬁicgtion betv;/een actors. The API also provides methods
which allow actors to get the available host from the CPU market. There ére also methods which
allow an actor to qﬁery the local machine, or a.'remoteir‘nachine for the current load. Given these
functions, actors can‘be written aé intelligent agehts; capable of ﬁakiﬁg their own decisions on where
to create remote actors, or the next 1océtion to continue processing. |

The classes of the actor API are as follows:

o Actor

o MobileActor

Conceptually, an actor can be thought of as an iject with the following data member, a mail
address, and the following functional methods:send(),create(), and vbecome(). The semantics of
these oﬁerations follow the standard actor definition of the primitive operations given in [Agh86].
Ob jects which extent from this class may only perform their methdds on the 1océl ﬁlachine. These
constructs provide useful mechanisms for writing éoncurrenf/p‘arallel programs on v(rorkstzitions or
multiprocessor systems which may not have network access to remote resources.

A mobile actor has all the characteristics and function.ality o‘f basic.actors with the ’extension of
the following two functional methods: becoﬁzeRemote() and createRemqte(). The semantics of these
operations follow those given in [BG98]. Objects which extent from this class may perform their
methods on the local, as well as a remote machine. As illustrated in Figure A.1, we can represent

actors and mobile actors using an Inheritance hierarchy. Below we give the interface of the actor API

89

for writing actor and mobile actor programs. These interfaces provide the only methods needed in

order to develop actor/mobile actor applications. We also give a simple example of using constructs

from each API.

Actor Cléss

Figure B.1. Is-a Relﬁtibnship of Actors Objects using Inheritance.

B.1.1 Actor Class

Class jmas.actor.Actor implements Serializable

Description: Implements actor semantics on the local machine

Data Members:

protected ActorAddress addr;

Constructors:

none

Methods:
public ActorAddress getAddress();
-- returns the address of itself (implied)

public void sink();
~- terminate or destroy actor

public void sénd(ActorAddress a, String comm);
-- send comm to Actor a

public void send(ActorAddress a , String comm, Object[] param);
-- send comm & param[] to Actor a '

90

public void send(ActorAddress a String comm, Object param);
—-- send comm & param to Actor a

public void send(String comm);
-- send comm to itself

public ActorAddress create(String behv, Object[] acq)
-~ create behv with acql[] on local machine

-- return identity

public ActorAddress create(String behv, "Object acq)
-- create behv with acq on local machine

-- return identity

public ActorAddress create(String behv)

=~ create behv on local machine

-- return identity ’

public¢ - void become(String behv, Dbject[] acq)
-- become new behv with acq[] on local machine

public void become(String behv, Object acq)
-— become new behv with acq -on’local machine

public void become(String behv)
~- Dbecome new behv 'on local machine

Example of Usage -

In the following example, the cu'rrent> actér aSsufnes. th_e.‘béhavior HelloActor and réceives a commu-
nicatibn hello. Upon feceipt of the communication, it executes the hello method. The cﬁrrent q.ctor
then creates a new actor W, which_‘assumes the behavior WorldA‘ctor with acquaintance "Hello”.
The actor then terminates. The siﬁk() op'.e’rationviis irhplied when the life of a thread is over. The
ﬂew actor W, instantiates itself using the constructor that matches the type and number of acquain-
tances. Upon receipt of the communication (mveth;)dz'”world”, parameter="World!!”) it executes

the method world .
public class HelloActor extends Actor
_public void boot() { hello(); 2
Eubliévvoid hello()

ActorAddress W = create("WorldActor"”, new String("Hello"));
send (W,"world", new String("World!!"));

) }
public class WorldActor extends Actor
« String h; ' ‘
public WorldActor(String x) { h =x; }
X public void world(String w) { System.out.println(h + w); }

The above example demonstrates the use of the actor API to write an actor program. The output

of the example is - Hello World!! More examples are shown in Appendix C.

91

B.1.2 MobileActor Class

Class jmas.actor.MobileActor implements Serializable

Description: Implements mobile actor semantics on the local machine

Data Members: Constructors:

none

Methods:

ActorAddress getAvailableHost();
-- returns the address of an avallable machine within the CPU market
(Dynamic placement)

String getLocalHost() ;"
-- returns the address of the local machine

public int getLocalLoad()
~- returns the load on the local machine

public int EetRemoteLoad(ActorAddress loc)
—- returns the load on the .remote machine at loc

public - ActorAddress createRemote(String behv, ActorAddress loc, Object[]l acq)
-- create remote behv with acql[] on machine loc
-- return identity

public ActorAddress createRemote(String behv, ActorAddress loc, Object acq)
-- create remote behv with acq on machine loc
-- return identity

public ActorAddress.createRemote(String behv, ActorAddress loc)
~= create remote behv on machine loc
-- return identity

public ActorAddress createRemote(String behv, String loc, Object[] acq)
~- create remote behv with acq[] on machine loc
== return identity

public ActorAddress createRemote(String behv, String loc, Object acq)
-~ <create remote behv with acq on machine loc

-= return identity

public ActorAddress createRemote(String behv, String loc)

== create remote behv on machine loc

-- return identity

public void beéomeRemote(String behv, ActorAddress loc ,Object[] acq)
-~ become new behv with acq[] assume identity‘of loc

public void becomeRemote(Strlng behv, ActorAddress loc, ObJect acq)
-- become new behv with acq assume identity of loc

public void becomeRemote(String behv, ActorAddress loc)
-- Dbecome new behv assyme identity of loc

Example of Usage
Example: In the following example, the current actor assumes the behavior Hello World and receives

a communication hello. Upon receipt of the communication, it executes the hello method. The cur-

rent actor then creates a new actor W, on a remote machine, which assumes the behavior HelloWorld

92

‘with acquaintance "Hello”. The actor then terminates. The sink() operation is implied when the
life of a thread is over. The new actor W, instantiates itself using the constructor that matches
the type and number of acquaintances. Upon receipt of the communication (method="world”,

parameter="World!!”) it executes the method world.
public class HelloWorld extends MobileActor
{ String h;
public HelloWorld(String x) { h = x; }
public void hello()

{
String acq = new String("Hello"));
ActorAddress W = createRemote("HelloWorld", getAvailHost(), acq);
send(W,"world”, new String("World!!")); ‘

}

public void world(String w) { System.out.println(h + w); %}

The above example demonstrates the use of the ‘J E-aAPIto write a mobileactor program. The output
of the example is - Héllo World!! We vuse the method getAvailHost() to dyhamically determirvlevthe
remote location on which to create thev‘mobile actor. A static placement strategy could also be
used by explicitly specifying the hostname. Notice that we packaged the method world within the
behavior HelloWorld. This gets rid of the extra network transmission needed to load the Behavior
WorldActor over the network from the original location. When writing programs that involve several
behaviors, take note that access to behaviors which are not on the local machine need to be loaded
from a remote location causing additional communication overhead. More examples are shown in
Appendix C.
B.2 Elements of the jmas.util API

B.2.1 The ActorAddress Class

The ActorAddress class contains the address or identity of an actor. -When creating actors an

identity is returned in the following format.

Mailbox@location

Class jmas.util. Actor Address implements Serializable

Description: contaeins the address.of an actor
Data Members:

private String mailbox;
private String location;

Constructors:

public ActorAddress()

public ActorAddress(String mailbox, String loc)
-- creates an actor address mailboxQloc

public ActorAddress(String id) ’
-- creates an actor address'id = mailbox@location

Methods:
public String getMailbox ()
-- return the mailbox of an actor address

public String getLocation()
~- return the locatlon of an actor address

public String getIdentlty()
~= return the full actor address

public void setLocation(String 1)
-- sets the location = 1 of an actor address

publlc void setMailbox(String m). .
-- sets the mailbox = m of an actor address

public void setAddress(Strlng id)
-- sets the actor address mailbox@location = id»

public String toStrlng
-- converts actor address to a string

public boolean equals(Object)
—- comparison operator

APPENDIX C

EXAMPLE MOBILE ACTOR PROGRAMS

94

95

C.1 Hello World

The following eﬁcample illustrates the use of the boot() method to start an actor program on the
local machine (Line 9). Notice we imported two.packages: jmas.util, and jmas.actor(Lines 4,5).
Theée packages are needed in every acfor / mobilé actor progfam. Every actof program must extend
from the Actor class (local computation) or the MobileActor class (distributed computatioﬁ)(Line
7). All objects in JM‘AS must be serialized. Therefore, you must représenf all basic data types using
Java objects (Line 13). We create an actor z assuming the behavior cHelloActor, with a list of

acquaintances acqs (Line 15). We send z a communication "hello” and a parameter — integer[59]

(Line 17).

anni: cHelloWorld.java st

import java.io.*;
import java.lang.*;

1
2
3
4 import jmas.util.*;
5 import jmas.actor.*;
6
7
8
9

public class cHelloWorld extends Actor

" public void boot()
10 {] . o
11 System.out;println("Starting'[Concurrent] "y,

13 Object[] acqs = new Object[] { new Integer(10), new Double(34.5) };
15 ActorAddress x = create("cHelloActor" , acqs);

17 send(x, "hello" , new Integer(59));;
¥

Upon creation of an actor éssuming the behavior cHelloActor, its constructor is executed in ‘ordér
to pass fhe acquaintances as paramefers to fhe object(Line 12). After receivihg the communication
["hello” , Integer(59)], it executes the method hello with the integer parameter 59(Line 18). This
method in turn creates two additiohal,actors with béhaviofs: éHelloActor, and cWorldActor with

an acqua.intanc'ev z (Line 22;24). It then sends two communications:

1. ["world” Integer(25)] = to the cHelloActor (Line 26)

2. ["hello”] = to the cWorldActor (Line 28)

When the cHelloActor receives the communication "world” Integer (25), it executes the world

96

method of the class cHelloActor (Line 32). The "world” method creates an actor with a behav-

ior cWorldActor and an acquaintance x; then sends it a communication ["hello”](Line 38,39).

sz cHelloActor.java spsimssasnaes

import java.io.x*;
import java.lang.*;

1

2

3

4 import jmas.util.*;
5 import Jjmas.actor.s;
6
7
8
9

public class cHelloActor extends Actor

{
int z;

10 double w;
11
12 public cHelloActor(Integer x, Double y) // pass two acquaintances
13 { .
14 z = x.intValue(); .
15 w = y.doubleValue();
16 }
17
18 public void hello(Integer x)
19 { . '
20 System.out.println("Hello [Param] -~ " + x.intValue() +
21 "IACQS] —=- " 4z + M g M+ w);
22 ActorAddress w = create("cHelloActor”);
23
24 ActorAddress h = create("cWorldActor”, x);
25
26 send (w,"world", new Integer(25));
27)
28 send(h,"hello");
29 ' :
30 // since there are no operations. then sink
31 } ‘
31
32 public void world(Integer x)
33 { .
34 System.out.println("WORLD! -- [Parms] " + x.intValue());
35 .
36 // send a message to the replacement behv
37
38 ActorAddress h = create("cWorldActor", x);
39 send(h, "hello");
40
41 // since there are no operations then sink
42
43 }

Upon creation of an actor assuming the behavior cWorldActor, its constructor is executed in order
to pass the acquaintances as :pa.ré.meters to the ob ject{Line 13). After receiving the communication

["hello”], it executes the method ”hello()’s(Line 18).

seszsnzniszsi: cWorldActor.java saisaisessea:
1 import java.io.s;

2 import java.lang.*;

3

4 import jmas.util.x;

5 import jJmas.actor.¥;

6

7 public class cWorldActor extends Actor

// Acquaintances

public int z;

public cWorldActor(Integer x)
{

z = x.intValue();

}

public void hello()

1 ‘ , _ o
System.out.println{("WORLD!" + " [acq] " + z);

97

98

‘C.2 TravelTime

The following example illustrates how to write a mobile actor program (Line 7). We ran our program
from machine a.cs.okstate.edu. The boot actor creates a remote actor z on machine z. cs.okstate. edu;
assuming the behavior TravelTime ‘(Line 19) It sends an initial communicétion ”Timeit” along with
a parameter "the @ddress of itself” (Line 21). The current actor becomes a new actor assuming
the behavior ”TravelTime” with an acquaintance a Long integer (L'ine 22). Upon receipt of the
communication ["Timeit” and c= "the @ of itself’], actor z executes the method ”Timeit” (Line
25). The actor then sends a communication to the actor ¢ , with the commﬁnication ["TotalTime”
and an Integer d] (Line 31). The initial é:ctor who replaced its behavior receives the communication

and executes the method "TotalTime” (Line 34).

mnnnsnnninnsy TracelTimejava ssmsssssssasnines
import java.io.*;
import ' java.lang.*;

1

2

3

4 import jmas.util.=*;
5 import jmas.actor.*;
6
7
8
9

public class TravelTime extends.MobileActor

{
long start = 0;

10 i
11 public TravelTime(Long s) { start = s.longValue(); }
12
13 public void boot()
14 {
15 Long t = new Long(System.currentTimeMillis());
16 System.out.println("Starting [Concurrent2]...... ")
17 System.out.println("\n\n....PEEK ");
18 i)
19 ActorAddress x = createRemote("TravelTime","z.cs.okstate.edu");
20 : ’ i
21 send(x, "Timeit" , getAddress());
22 become ("TravelTime",t); ’
23 }
24
25 public void Timeit(ActorAddress c)
26 { . . .
27 _ Long t = new Long(System.currentTimeMillis());
28 .
29 System.out.println("\n\n....A *);
30 L
31 send(c,"TotalTime", t);
32
33
34 public void TotalTime(Long 1)
35 {
36 System.out.println("\n\n....BOD! *);
37
38 long i = 1l.longValue();
39 :
40 System.out.println("Actor A: behv[boot] --> behv[Timeit]\n");.
41 System.out.println("\tIt took: " + (i - start)/1000.0 + * msec");

43
44
45

47
48
49 }

System.out.println("Actor A: behv[Timeit] --> behv[TravelTime]\n");
long ¢ = System.currentTimeMillis();
System.out.println("\tIt took: " + (¢ - i)/1000.0 + " msec");

System.out.println("Total Exec Time took: " + (c - start)/1000.0 + " msec");

99

100

C.3 Parallel Sum

The following exampble illustrates how mobile actors can be ﬁsed to decompose a computation to
sum a set of integers in parallel. Our decomposition process dgganizes actors as a hierarchy of 2% — 1
nodes; where k is the number of levéls in the ‘hiérarchy. Each actor with the exception of the root
actor, is responsible for creating two additional actors to haﬁdle the subcomputations. We create
a remote actor z using dynamic processor placemént by issuing the function ge'tAuai»lableH ést().
The actor z assumes the behavior Sum, with the acquaintancves p: the address to return the sum,
the number of inputs to return, and the granularity of the computation (Line 37). We send z a
communication ”decompose” and a parameter - the list of intergers to sum list (Line 39). The

current actor then changes its state to itself, in order to wait for a communication to print the

result.

ssrzzzzizsznszszzzn PrintSum.java s

1 import java.io.*;

2 import java.util.s;

3 import java.lang.*;

4

5 import jmas.util.x*;

6 import Jmas.actor.*;

7

8 public class PrintSum extends MobileActor

9 {

10 Long time;

11 .

12 final int SIZE = 10000;

13 final int procs = 2;

14

15 public PrintSum() { }

16

17 public PrintSum(Long t) { time = t; }

18

19 public void boot()

20 { S

22 System.out.println("Starting [Distributed Sum]...... ");

23 g .

24 Long[] list = new Long[SIZE];

25

26 Random id = new Random(9000);

27 long v;

28 .))

29 System.out.print("The Sum of " + SIZE + " numbers is: ");

30 v g

31 for(int i = 0;i < SIZE; i++)

32 {

33 v = id.nextLong() % 200;

34 list{i] = new Long(v);

35 }

36 Object[] p = new Object[] {getAddress(), new Integer(1l),
. new Integer (SIZE/procs)}); _

37 ActorAddress x = createRemote("Sum" , getAvailableHost(), p);

38

39 send(x, “"decompose" , (Object) list);

101

41 become ("PrintSum", new Long(System.currentTimeMillis()));

42 ¥ .

43

45 public void print(Long sum)

46 {

2; System.out.println(sum.longValue());

49 float ftime = System.currentTimeMillis() - time.longValue();
50 System.out.println("\n Processing time: " + ftime/1000.0 + " sec");
51 System.out.println("\n Load time: " + getLoadTime() + " sec");
52 .

53 }

A mobile actor assuming the behavior Sum that receives the communication ” decompose”, executes
the method decompbse in the class Sum. If the list has feached a size that is equal to the granularity
bof the computation then the summation process begins and the result is returned to the calling éctor
(Lines 40-43). If the list has not reached a size equal to the gfanularity, the list is décomposed again
into two equal parts (Lines 50 and 51) and sent to two nevﬂy created actors. Actors are dynamically
placed within the system using the fuﬁction geiAvaélH ost(). After ah actér decomposes‘ the data
set, it changes its state to itsélf in ordér to wait for a communication (MultiInputAdder) to receive
the multiple inputs (Lines 49). Because actors perform operatiéns in response to one communication,
we build on the primitive data types‘ in order to implement higher levél abstractions such as multiple
input actors (Lines 65-84). In response to a communication "MultilnputAdder”, an actor adds in
the result to the partial sum. If the number of‘ communications equal the nuﬁber of actors created
by the current actor during decomposition, then the sum is returned back to the calling actor (Line
78 or 80). The calling actor could be the roo;c (Line 80), or an intérinediate actor for proéessing
the partial sum (Line 78). If the numb.er of communications does not equal the number of acfors
created by the curreﬁt actor during de_cohposition, the current actor changes its state to itéelf in

order to wait for the next input (Line 83).

sesseasiaNiaIi: Sum.java sssaldsesssaiiniy

import java.io.*;
import java.lang.*;

import jmas.util.*;
import jmas.actor.x;

public class Sum extends MobileActor

ActorAddress cust = null;
0 Integer inputs = null;
1 Integer outputs = null;

RPEROO~NOAHLWNDR
[}

102

Long sum = null;
Integer granularity;

public Sum() { }

public Sum(ActorAddress c, Integer o, Integer g)
{ :

cust = c¢;

outputs = o;

granularity = g;

public Sum(ActorAddress c, Long s, Integer in, Integer o)

{
cust = c;
inputs = in;
outputs = o;
- sum = s;
}
public void decompose(Longl] list)
{ .
long psum = 0;
if(list.length == granularity.intValue())
{
for(int i = 0;i < list.length;i++)
psum += list[i].longValue();
send(cust,"MultiInputAdder”, new Long(psum));
}
else
Long[] 11, 12; .
become ("Sum", new Object[] { cust, new Long(0),
new Integer(2), outputs});
ActorAddress pl = createRemote ("Sum”, getAvailableHost(),
. new Object [] {getAddress(), new Integer(2),granularity });
ActorAddress p2 = createRemote("Sum", getAvailableHost(), :
new Object [] {getAddress(), new Integer(2),granularity 1});
11 = new Long[list.length/2];
12 = new Long[list.length/2];
System.arraycopy(list,0,11,0,list.length/2);
System.arraycopy(list,list.length/2,12,0,1list.length/2);
send(p1,"decompose”, (Object) 11);
send(p2,"decompose", (Object) 12);
}
}
public void MultiInputAdder(Long val)
{
// send a message to the replacement behv
long psum = sum.longValue();
int in = inputs.intValue();
int out = outputs.intValue();
--in;)
psum += val.intValue();
if(in == 0)
{
if(out == 2)
send(cust,"MultiInputAdder",new Long(psum));
else
send(cust,"print",new Long(psum));
}
else
become ("Sum” ,new Object[] {cust,new Long(psum),
new Integer(in), outputs});
}

103

C.4 - Parallel Quicksort

The following example illustrates how mobile actors can be used to decompose a computation to sort
a set of integers in parallel using the QuickSort Algorithm (Line 89-149). Our decomposition process
organizes actors as a hierarchy of 2% —1 nocies; where k is the number of levels in the hierarchy. Each
actor with the exception of thé robt actor, is'responsible for creating two additional acfors to handle

the subcomputations. We create a remc‘>tve aétqr z using dynamic proéesso_r placement by issuing
the function getAvailable Host(). The actor z assumes the behavior Sort,.with the acquaintan;es:
an address to return the final sorted liSt, and the number of inputs to return -(Line 35 and 36). We
send T a commuﬁic’atibh ”decompose” and "a parameter — the list of intergers to sort list (Line 37).

The current actor then changes its state to itself, in order to wait for a communication to print the

result.

sssnssssasssisasssnniin: PrintSort.java sissssssssssssnsnsssisss

1 import java.io.*;

2 import java.util.*;

3 import java.lang.*;

4

5 import jmas.util.#*;

6 import Jmas.actor.:*;

7 ,

8 public class PrintSort extends MobileActor

9 {.

10 Long time;

11

12 final int SIZE = 10000;

13 .)

14

15 ’

16 public PrintSort() { }

17 S ‘

18 public PrintSort(Long t) { time '= t; '}

19

20 public void boot()

21 {) ‘ i . ’
22 System.out.println("Starting [Distributed Sortl...... ");
23

24 Long[] list = new Long[SIZE];

25 , ‘ ,

26 Random id = new Random(9000);

27 long v; ’

28

29 for(int i = 0;i < SIZE; i++)

30 {

31 v = id.nextLong();

32 list[i] = new Long(v);

33 }

34

35 ActorAddress x = createRemote("Sort” , getAvailableHost(),
36 new Object[] {getAddress(), new Integer(1)});
37 send(x, "decompose” , (Object) list);

38

39 become ("PrintSort"”, new Long(System.currentTimeMillis()));

104

41

42

43 public void print(Long[] flist)

44 - o

zg System.out.println("\n\nThe Sorted List size " + SIZE + ": ");
a7 ‘

23 float ftime = System.currentTimeMillis() - time.longValue();
50 for(int i = 0;i < flist:length;i++)

51 System.out.println(" , " + flist[i]); :
52 System.out.println("\n\n Processing time: " + ftime/1000.0 + " sec");
53 - System.out.println("\n Load time: " + getLoadTime() + " sec");
54 - : '

55 }

A mobile actor assuming the behavior Sort that receives the communication ”decompose”, executes
the method dvecompqseAin the class Sort. If the list has reé,ched the size 500, thenb the sorting
procesé begins an;i the result is Ire.;curne(‘i to ’;he éalling actor (Lines 40-43). If the list has not
reached the size 500, the list. is decoﬁiposbed"aga’in into ,fﬁvo equal parts (Lines 50 and 51) and sent
té two newly created actors.'bActors ar’enjdy_na‘m’ica’lly placed within the ‘sy‘st’em using the function
getAvailH ost(). Aftér an»éctor decomposes the data-éet; 1t chénges its state to itselfin orcier to wait
fpr a communication (M ulltiInputSort) to receive the multiple inputs (Lines 49). Because actors
perform operations in response to one communication, we build on thle primitive data types in order
to implement higher level abstractibﬁs such as multipie ihpﬁt actors (Linés 65-84). In response to
a cémmunication ”MultilnputSort”, an-actor merges the result of two bartial lists that have been
sorted. If the nufnber of cominunications equal the number c;f actors created by the current actor
during déco'mposition, then the sorted list is returned back to the callihg actor (Lines 81 and 83).
The calling actor could be the root (Line 83) , or an intermidiate actor for proceéf;ing the partial
sum (Liné 81.)‘. If the number’éf cbmniuni’cationsdoes not equal fhe number of actors created by
the current actor during decompo‘si”tion,' the current actor changes its state to'itself in order to §va.it
for the next input (Line 86). | |

B A R Sort.java :::::’:::t':::::-:'::::::::::

import java.io.*;
import java.lang.*;

import jmas.util.*;
import jmas.actor.*;

public class Sort extends MobileActor

{
ActorAddress cust = null;
0 Integer inputs = null;

OO NN D WN -

105

Integer outputs = null;
Long[] pl = null;

public Sort() { }
public Sort(ActorAddress c, Integer o)
cust = c;. k

outputs = o;

public Sort(ActorAddress c, Longl] 1, Integer in, Integer o)

{
cust = ¢c;
inputs = in;
outputs = o;
pl = 1;
} N
public Sort(ActorAddress c, Integer in, Integer o)
{ , : ,
cust = ¢c;

inputs = in;
outputs = o;

public void decompose(Lbng[] list)
{

if(list.length == 500)

QuickSort(list, 0, list.length - 1);
send(cust,"MultiInputSort”, (Object) list);
}

else
Long(] 11, 12;

become("Sort", new Object[] { cust, new Integer(2), outputs});
ActorAddress pl = createRemote("Sort", getAvailableHost(),

new Object [] {getAddress(), new Integer(2) });
ActorAddress p2 = createRemote("Sort", getAvailableHost(),

new Object [] {getAddress(), new Integer(2) });

new Long[list.length/2];
new Long[list.length/2];

11
12

W

System.arraycopy(list;0,11,0,1list.length/2); .
System.arraycopy(list,list.length/2,12,0,list.length/2);

send(pl,"decompose", (Object) 11);
send(p2,"decompose”, (Object) 12);
3} «
3

public . void MultiInéutSort(Long[] plist)
{

// send a message to the replacement behv
int in = inputs.intValue();
int out = outputs.intValue();

—--in;
if(in == 0)
{

Long[] list = new Longl[pl.length + plist.lengthl;
System.arraycopy(pl,0,list,0,pl.length);
System.arraycopy(plist,0;list,pl.length,plist.length);
QuickSort(list, 0, list.length - 1);

if(out == 2)

send(cust,"MultilnputSort", (Object)list);
else

send(cust,"print”, (Object)list);

118
119

128
129

134
135

142
143
144
145
146
147
148
149
150
151 }

106

else

become("Sort”,new Object[] {cust,(Object) plist,
new Integer(in), outputsl});

_

public void QuickSort(Long a[], int 100, int hiO)
1 .

int lo = lo0;
int hi = hiOQ;
Long mid;

4f (hi0 > 100)

/* Arbitrarily establlshlng partition element as the m1dp01nt of
* the array.

*/
mid = al (100 + hi0) / 2];

// loop through the array until 1nd1¢es cross
zhlle(lo <= hi) .

/* find the first element that is greater than or equal to
* the partition element starting from the left Index:

*/
whlle(l(lo < hi0) && (‘allo]. longValue() < mid. longValue()))
++lo; -

/* find an‘élemént_thAt is smaller than or equal to
* the partition element starting from the right Index.

*/ |
while((hi > 100-) && (alhi].longValue() > mid.longValue()))
—-hi; ' :

// if the indexes have not crossed, swap
if(lo <= hi)

swap(a, lo, h1)
++10;
- ==hi;
}
}

/* If the right index has not reached the left side of array
* must now sort the left partition.
*/
if(100 < hi)
QuickSort(a, lo0, hi -);

/* If the left index has not reached the right side of array
* must now sort the right partition.

1f(lo < hi0)
QuickSort(.a, lo, hiO);

¥
}

private void swap(Long a[], int i, int j)
{ : '
Long T;

T = alil;
ali] = a[jl;
aljl = T;

107

C.5 Round Robin Migration through Market

The following example illustrates how mobile actors can be used to migrate thrbugh a network
using an itinerary list. The itinerary list is stored in the array itin (Lines 10-30). When executing
the following program the current actor migrates to the ¢th machine in the itinerary list using

createRemote() and static placement. This continues until the avll,machines in the list have been

WO NOUTPWNE

visited.
ssestsizissizonsenssi: roundrobin.java

import java.io.¥;

import java.util.*;

import jmas.util.*;

import jmas.actor.*;

public class roundrobin extends'HobileActor

{

Integer machine = null; :)

10 String[] itin = new String[] {"a.cs. okstate edu,
11 "eswsOl.wslab.okstate.edu",
12 s - Mesws02.wslab.okstate.edu",
13 "esws03.wslab.okstate.edu”,
14 "esws04.wslab.okstate.edu"”,
15 "esws05.wslab.okstate.edu",
16) "esws06.wslab.okstate.edu”,
17 "esws07.wslab.okstate.edu",
18 : i "esws08.wslab.okstate.edu",
19 "esws09.wslab.okstate.edu",
20 "esws10.wslab.okstate.edu”, .
21 "eswsl12.wslab.okstate.edu",
22 "eswsl3.wslab.okstate.edu",
.23 "eswsl4.wslab.okstate.edu",
24 "esws15.wslab.okstate.edu",
25 "eslabsvr.wslab.okstate. edu"
26 "esws09.wslab.okstate.edu",
27 "*a.cs.okstate.edu",
28 “z.cs.okstate.edu",
29 "esws06.wslab.okstate.edu”,
30 "esws13.wslab.okstate.edu"”, };
31
32 public roundrobin() { machine = new Integer(0); }
33 :
34 public roundrobin(Integer i) .
35 - , '
36 machine ='1i;
37
38 .
39 public void beot()
40 : S .
41 if (machine.intValue() < itin.length)
42 { .
43 System.out. prlntln("Hello I'm at’ machlne " + itin[machine. intValue (1)
44 int num = machine.intValue() + 1;
45 ActorAddress addr = createRemote("roundrobln",1t1n[nunﬂ, new Integer(num));
46 send (addr,"boot");
37 }
48

108

C.6 Traveling Salesman Problem

The following example illustrates how mobile actors are used to compute a solution to the Traveling
Salesman Problem in parallel. Our solution is based on a brute force exhaustive search method.
Given a problem size for N cities and p m#chineé, we decompose all (N — 1)! tours such that each
machine performs a exhaustive search on (N — 1)!/p tours. Machines are organized using a master-
slave design. Given n machines the mastgr distfibutes the subcomputations to the n — 1 slaves and
waits for the best possible tour,computé‘d from eabh sié,ve. In addition, the master also computes
the best possible tqﬁr from a given set of tours. The program below decémp0$es the a prdblem size
for N citieé across 2x N processes. The decomposition p;otess is done on Lines (55-71: TSP.java).
Remote actor creation is perfoi'r‘nedv‘using the fﬂnctig’n créateRemote(); actor placement is dynamic
(Lines 5.8 and 68 TSP.javq). After progfam decbmpo‘sitio_n, the current actor changeé its state to

| itself in order to wait for the result (Line 74 TSP. java).b [jpon .receipt of a commuﬁication "result”,
thé method result in the class ”TSP” is exec;uted. Results are collected as multiple inputs and use
a strategy similar to the Parallel Sort /Sum‘ algorithms: (Section C.4 aﬁd C.5).

ssnmssasnsnssansaasesin: TSP java susssssmnsasssssann

import javé;io.*;
import java.util.*;

1

2

3 .

4 import . jmas.util.*;
g import Jmas.actor.*;
7
8
9

public class TSP extends MobileActor

{ : ‘
final int N = 13; :

10 . final int n = N-1;
11 . final int procs =.2#%mn;"
12
13 Long time;
14 int in; :
15 Permutation best = new Permutation(N-1);
16 double bd; b :
17 double load;
18 .
19 © public TSP().{ } o
20 o : C -
21 public TSP(Long t, Integer r, String bst, Double b, Double 1)
22 { ‘ '
23 time = t;
24 in = r.intValue();
25 best.set(bst);
26 bd = b.doubleValue();
27 load =1.doubleValue();
28 }
29 |
30 public TSP(Long t)
31 {
32 time = t;

33 ‘in = procs;

109

bd = Double.MAX_VALUE;
load = 0.0;

public void boot()

{

}

TSP_Problem prob = new TSP_Problem();
Double[][] distancevector = prob. randomProb(N);
ActorAddress addr = hnew ActorAddress();
Object[] param; ‘

int tours = fact(N);

if (procs <= tours)

{

'Permutatlon p ='new Permutation(n);
Permutation fin = new Permutation(n);

fin.reset();
for(int i .= 0; i < n;i+s)

param = new Object[] {distancevector, fin.toString()};
addr = createRemote("TSPSolver",getAvallableHost(), param) ;
int y = n/2; '
if(n/2 == i).

y++'

fin.reset(i,y);
-param .= new ObJect[] {fin. toStrlng() getAddress()};
send(addr,"lmprove", param);

param = new Object[] {distancevector, fin. toString()};
addr = createRemote ("TSPSolver",getAvailableHost (), param)

fin.reset(i+1);
param = new ObJect[] {fin.toString(), getAddress(};

send(addr,"lmprove", param) ;

}

time = new Long(System. currentTlmeMlllls())
become ("TSP", time);

else
System.out.println("<nprocs> <= <N-1>!");

public int fact(int n) - // only include n-1! tours

{

int v = 1;
for(int i=1;i<n; 1++)
v o= i;

return v;

public void result(Strlng perm, Double bestDlstance, Double 1d)

{

//check the best dlst then become
double bestd = bestDlstance doubleValue();

%f(bestd < bd)

best.set(pefm);
bd = bestd;

load += ld.doubleValue();

if(--in > 0)
become (*TSP”, new Object[] { time, new Integer(ln)
best.toString(), new Double(bd), new Double(load) });
else

long f = System.currentTimeMillis();
System.out.println("The Optimal solution is <" +
(N-1) + "> " + best.toString());

110

108 System.out.println("The Distance is " + bd);
109 System.out.println("Elapse Time: " +
(float) ({(f - time.longValue())/1000.0) + " secs™);
110 System.out.println("/Load Time: * +
111 (load + getLoadTime()) + ™ secs");
112 }
113
114 }

Each subcomputation is an actor T'SPSolver (TSPSolver.java). Upon receipt of a communication
improve”, the actor executes an exhaustive search process on a subset of the total possible tours
(Lines 128-142). No two actors perform a search on the same subset. After computing the best

possible tours, this value is returned to the master (Line\ 141 TSPSolver.java).

1 // Solver.java

2 import java.util.Vector; .
3 import jmas.util.*;

4 import jmas.actor.*;

5

6 /*x
7 * Traveling Salesman Problem: a brute-force "exhaustive search"”. .’
8 =* Solutions are to be represented as Permutations that indicate

9 * the order in which to visit all but one of the cities in the

10 =* original list. The last city is kept fixed.

11 =/

12

iz public class TSPSolver extends MobileActor{

15 public TSPSolver(Double[][] d, String begin)

16 {

17 : distances = d;

18 size = distances.length;

19 startSolver (begin);

20 }

21

22 /%%

23 * Create two permutations to encode "tours"” of the cities. . That
24 * is, each will indicate an order in which the cities are to be
25 * visited. One is used to hold the best tour found so far, and
26 * the other is used as a "temporary" permutation for trying out
27 * new tours. The permutations are one shorter than the list of
28 * cities, since .we can keep one city fixed to simplify the search.
29 */ ’ ‘

30 public void startSolver(String s) {

31 tmp = new Permutation(size-1);

32 best = new Permutation(size-1); .

33 resetTour(s); " . o

34 }

35

36 S** 3 7 .

37 * Return the distance associated with the best tour so far.

38 . : >S9 . »

39 public double distance() {

40 return bestDistance;

41 }

42

43 /x*

44 * Return the number of tours (or “configurations") tested so far.
45 */

46 public long configs() {

47 return count;

48 }

49

50 /%

51 * Go back to the initial random tour by resetting the permutations

118
119
120
121
122
123
124
125
126
127
128

* back to the identity. Also reset thingsrlike the distance.

*/
public void resetTour(String x) {
count = 0;
done = false;
best.set(x);
tmp.set(x); ‘
bestDistance = calcDistance(best);

~N Y

* ¥ ¥ X * *
~

*

is found, save it along with its length and return true.
0therv1se, return false.

public boolean exhaustivelmprove(Permutation e) {
double newDist;
boolean retval = false;

-while(retval == false && done == false) {
newDist = calcDistance(tmp);
if (newDist < bestDistance) {
retval = true;
bestDistance = newDist;
best.set (tmp) ;
X

++count;

if (tmp.next () == false || tmp.equals(e)) {

done = true;
break;

, }

}

return retval;

}
/**

* Return true if the current tour is known to be optimal (e.g. a11

* possible tours have been checked)

*/
public String optimality() {
if (done)
return "QOptimal”;
return "In Progress";
} :
/**

Try out a number of new tours (i.e. the number specified by
“steps"). This is done in such' a way that we will eventually
try every possible tour with no duplication: 1If a better tour.

* Return the permutatlon encod1n§ the best tour discovered so far.

* This permutation applies to al
* fixed.
*/
public Permutation currentTour() {
N return best;

// The private Methods:
/*

* Calculates the total distance for any partlcular permutation.
* uses table lookup to get the distances between two points.

*/
private double cachlstance(Permutatlon p {
-int pl, p2;
double accum = 0;
pl = p2 = size -~ 1;
for(int i = 0; i < size - 1; ++i) {
P2 = p.index(i);
accum += distances[pi1] [p2].doubleValue();
pl = p2;
accum += distances[size - 1] [p2].doubleValue();.
) return accum;

public void improve(String end, ActorAddress cust) {

but the last city, which is

This

111

112

129 boolean improved = true; :

130 Permutation e = new Permutation(size-1);

131 e.set(end);

132 ' .

133 while(improved)

134 {)

135 improved = exhaustiveImprove(e);

136

137

igg Double ltime = new Double(getLoadTime());

140 Object[].param = new Object[] { best.toString(),
‘new Double(distance()), ltime};

141 send (cust,"result",param) ;

142 }

143 '

144 // The private data:

145 :

146 /* . : : ‘

147 . * All distances between all points are pre-calculated and stored in

148 * this array. Math.sqrt() only gets called N"2/2 times total for any

149 * particular problem.

150 */

151 private Double distances[J[];

152) . S

153 private Permutation tmp;

154 private Permutation best;

155 private int size; .

156 : private int count;

157 private boolean done,

158 private double bestDlstance,

159 }

160

ssresnssnnnsnisiisissi: TSPProblem.java siiissssssnesssssaases:

// TSP_Problem. java

import java.util.Vector;
import java.util.Random;
import java.io.*;

[xx :

* This class generates problem instances for the Travellng Salesman

* Problem. Each call to "randomProb" will return a

10 * Vector of 2D points in the unit square. [0,1]x[0,1] which are

11 * guaranteed to be separated by some small distance (i.e. the points
12 * will not be too clumped up):

CONION LW

13 =/

14 ‘

15 class TSP_Problem implements Serializabled{

16 private double SepDist = 0.04; // Minimum separation of points.

17 private Random rmg;

18 - private Vector points;

19 - private int seed = 75825;

20 private int size;

21)

22 public TSP_Problem() { ‘

23 points = new Vector(); // This will hold new problem instances.
24 rng = new Random(seed); // This is a random number generator.
25 } :

26

27 // Pick n random points in [0,1]x[0,1] that are separated by

28 // a small distance (so that we don’t get clumps of points).

29 public Double{][] randomProb(int n) {

30 size = n;

31 Point2D Q = new Point2D(); // This is a temporary variable.
32 points.removeAllElements(); // Blow away the old vector.

33 for(int npts = 0; npts < n;) {

34 boolean too_close = false;

35 Q.set(rng. nextFloat(), rng.nextFloat());

36 for(int j = 0; j < npts; j++) {

37) Point2D P = (Point2D)points.elementAt(j);

38 if (P.dist(Q) < SepDist) {

39 too_close = true;

40 break;

113

41 ' : }

42 } :

43 if(1too_close) {

44 // Create a new 2D point containing the
45 // coordinates of Q, and add it to the growing
46 // vector of points. This, in effect, adds a
47 // pointer to Q, so it’s important to create a
48 // new Point2D object to hold the coordinates.
49 points.addElement (new Point2D(Q));

50 : npts++;)

51 }

52 } '

53 return initDistances();

54 }

56

56 /* ,

57 * Initialize the distance table.

58 */ : S .

59 private Double[][] initDistances() {

60 Double[]J[] distances = new Double[size][size];

61 Point2D px; :

62 Point2D py;

63

64 for(int y = 0; y < size; ++y) {

65 py = (Point2D)points.elementAt(y);

66 : // Store the distances twice (square matrix) only
67 // calculate them-once.

68 for(int x =.y; x < size; ++x) { .

69 px = (Point2D)points.elementAt(x);

70 .distances[y] [x] = new Double(px.dist(py));
71 distances[x] [y] = new Double(px.dist(py));
72 } } - , :

73

74 return distances;

75 }

76

77 }

ssnnsnznnssnsnznnaszasis: Permutation.java siamsesssnszessenzasess:

1 // Permutation. java

2 .

3 import java.io.*;

é import java.util.*;

6 /*x ’)

7 * This class encapsulates integer permutations of ‘any size. Each

8 #* permutation is of the form (0,1,2,...,n-1), where n is the "size" of

9 # permutation. The method "next" steps the permutation through all

10 . * distinct configurations, hitting each one exactly once. This is a
11 * convenient method for generating all possible permutations of n
12 * integers. '

13 =/

14 ’ . v

15 public class Permutation implements. Serializable{

16 private int p[l;

17 private int n;

ig private StringBuffer buff;

1 .

20 /% ‘

21 , * This creates a permutation of n integers, 0, 1, ... , n-1.
22 */ '

23 public Permutation(int size) {

24 n = size;

25 p = new int[n];

26 buff = new StringBuffer();

27 reset();

28 3

29

30 /**

31 * Returns the number of elements in the permutation. A value of n
32 * means that the permutation consists of the integers
33 * (0,1,...,n-1).

34 ' */

35 public int size() {

36 return n;

109
110

112

3

}

[xx

114

* Returns the integer in the last position of the current

* permutation.
*/
public int lastIndex() {
return pln - 1];
}

VLD

* Returns the 1nteger in the i’th position of the: current

* permutation.

*/ :

public int 1ndex(1nt 1) {
return plil;

}

/*x)
* Creates the "flrst" permutatlon vhich is (0,1,
*/ '
public void reset() {
for(int i = 0; i < n; i++)
plil = i;

3

[hx
* Creates the’ flrst "x" permutatlon which is (x,1,
*/

public void reset(int x) {

int j = 1;
pl0] = x;
for(int i'= 0; j < n; i++, j++)
if(i == x)
pljl = ++1i;
else
pljl = i;
}
}
public void reset(int x, int y) {
int j =
plo]l =
if(y == x)
y++;
plil = y;
for(int i = 0; j < n; i++, j++)
if(i ==x || i ==y)
{)
i++; . ’
if(i==x |l i==y)
pljl = ++i;
else
plil =
else E
pl3j]l = i;
> ‘
/[xx

* set the current permutat1on based on the string
*/ :
public void set(String s) {

.,n-1).

.,n-1).

StringTokenizer tok = new StringTokenizer(s," ");

int size = tok.countTokens() - 2;
if(size == n)

tok. nextToken()
for(int t=03;t < n;t++)

plt] = Integer parseInt(tok. nextToken())

113
114
115
116
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143 .

144
145
146
147
148
149
150
151
152
153
154
155
156
157

- 158"

159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
189
190
191

}
else
reset();
} :
/**
* Copy another permutation into this one, even if it is a
* different size. If the size if different, reallocate space for
* the integer array.
*/
public void set(Permutation Q) {
if(n != Q.size()) {
n = Q.size();
p = new int{n];

for(int i = 0; i < n; i++) - ’ :
plil = Q.index(i); // Copy the permutation Q.

}
public int[] getArray() {
return p; ’
}
public boolean equals(Permﬁtétion t)
T ‘ § -l
boolean eq = true;
if(n == t.size())
int[] tmp = t.getArray();
for(int i = 0;i < n &% eq;i++)
if (p[i] '= tmp[il)
-eq = false;
} ‘ ‘
else
eq = false;
return. eq;
}
public boolean next ()
{ .
int- i = n - 1;
boolean atend = false;
while (pl[i-1] >= p[il)
1 -
i=i-1;
if(i <= 0)
{
atend = ‘true;
break;
¥
.if(atend) . .
return false;
int j = n;
vhile (p[j-1] <= pli-11)
j=3-1 ‘ :
swap(i-1, j-1); // swap values at positions (i-1) and (j—l)
irt; j=m; |
while (i < j)
{ .
swap(i-1, j-1);
i++;
N
}
} return true;
VAL

* This method creates a representation of the permutation as a
* string. This is useful for demos and for debugging, but is not

115

116

192 * normally needed.

193 */

194 public String string() {

195 buff.setLength(0); // Build up the string by appending.
196 buff. append("("), :

197 for(int i = 0; i < n; i++) {

198 buff. append(p[l])

199 buff.append(’ *);

200 } . S

201 buff.append(")");

202 return-buff.toString();

203 }

205 /*x

206 * This method creates a representatlon of the permutation as a string.
207 * This is useful for demos and for debugging, but is not normally
208 * needed (It is also useful for "saving" a tour, since it encodes
209 * all the relevant information in a printable string.)

210 */

211 public: String toString() { i

212 buff.setLength(0); // Build up the string by appending.
213 buff. append(")

214 for(int i =.0; i < n; i++) {

215 buff append (p[il);

216 ~ buff.append(’ ’);

217 }

218 buff.append(")");

219 return buff. toStrlng()

220 }

221

222 private void swap(int i, int j) {

223 int t = p[i]; ’

224 plil = pljl;

225 plil = ¢;

226 }

227 }

228

serszssnsssnnsnisisniii Point2D . java samsrsnssssenssssieneses:

1 import java.io.*; '

2 import java.math.*;

4 public class Point2D implements Serializable{

public float x, y;
public Point2D() {

x = 0;
y:O;
}
public Point2D(float a, float b) {
x = a;
y = b
¥ ' o .
public void set(float a, float b) {
: x =a; -
y=05;
} .
public Point D(Point2D‘p) {
x = p.x
y =P Y:
}
public void set(Point2D p) {
X = p.x;
y =Py
}

public double dist(Point2D p) {
float dx = x = p. x,,
float dy = y ~ p.y
return Math. sqrt(dx*dx + dy+dy);

117

C.7 Mersenne Prime

The following example illustrates how mobile‘actors are used to search for mersenne primes in
parallel. We limit our search to the range 2499 — 1 thru 25990 — 1; where N = 1000. The two
known mersenne primes within this range'are" 94253 — 1'and 2%423 — 1. The primality test is based
“on Lucas-Lehmer Test [Doc;98].‘ All multipliéatiqn is déne usi‘ng‘ a fast ’FFT algorithm. Given p |
mzichines, we decompose the problem such that each machine perfo,fms a test on a range of size
- N/p. Machinés are‘organized using a master4élave design. Given p machines the master distributes
the subcomputation.s‘ tothe p— 1 slaves and Waifs for the result of the primality test from each slave.
In addition, th‘e master also performs avpr’imalift}.' test. The decomposition process is done on Lines
(38-45 PrimeTest.java). Remote 'actor.cfea.tion is performed using the function createRRemote();
actor placement is dynamicb (Line 42 Pn'meTe’st._javd)._ ‘After program decomposition, the current -
actor changes its state to itself in drder .‘to Wz;it for the result (Line 47 PrimeTest.java). ‘Upon
receipt of a communicatior}"’result”, the method result in the class "TSP” is executed. Results are

collected as multiple inputs and use a strategy similar to the Parallel Sort/ Sum algorithms (Section

C.4 and C.5).
Coenmmsnnnnznsiss PrimeTest java ssssnsmsnesasnsssesises:
1 import java.io.*;
2 import java.util.*; .
3
4 import jmas.util.*;
‘5 import jmas.actor.*;
6
7 public class PrimeTest extends MobileActor
8L ’) .
9 final int fromprime = 4000;
10 final int toprime = 5000;
11 final int dif = toprime - fromprime;
13 Long time;
14 int in; o
15 Integer procs = null;
16
17 public PrimeTest() { }
18 . ‘ . -
19 public PrimeTest(Long t, Integer r, Integer c)
20 { '
21 time = t;
22 in = r.intValue();
23 procs = c;
24
25 ,
26 public void boot()
27 { :
28 init(new Integer(2));
29 }

118

31 public void init(Integer p)
32 { -
33 ActorAddress addr;
34 Object[] param; -
35 int procs = p.intValue();
gg int numiter = dif/procs;
38 System.out.println("Mersenne Prime <" + procs + " procs>..... ")
39 for(int i = 0,j = fromprime;i < procs;i++, j+= numiter)
40 { : ‘ ’
41 param = new Object{] {new Integer(j), new Integer((j+numiter)-1)};
2% addr = createRemote("mersenne”,getAvailableHost(),” param);
44 send(addr,"isPrime", getAddress()); v
45 })
46 time = new Long(System.currentTimeMillis());
- 47 become ("PrimeTest"”, new Object[] {time, p, p});
48 } i '
49) . .
50 public void result(String-status)
51 {
52 if (status. equals(“SINK"))
53 --in;
54 else .
55 - System.out.println(status);
56
57 if(in > 0) '
58 . become("PrimeTest", new UbJect[] { time, new Integer(ln) procs });
59 else
60 { :
61 long £ = System. currentTlmeMlllls()
62 System.out.println("Elapse Time:." +
(float) ({f - time. longValue())/1000 0) + " secs\n\n");
63 :
64 if(procs.intValue() != 15)
65
66 ActorAddress ¢ = create("PrimeTest");
67 - -if(procs.intValue() == 14
68 " send(c,"init", new Integer(procs intValue()+1));
69 else
70 send(c,"init", new Inteéger{(procs.intValue()+2));
71 } '
72 }
73 }
74 }

Each subcomputation is an actor mersenne (mersenne.java). Upon receipt of a comxﬁunication
”isPrime”, the actor performs a primality test on the given range of numbers. the total possiblé
tours (Lines 575-614). No two actors search the same range of numbers. If a prime is»found the
result is Areturvned to the master actor (Line 605 ‘mer'senne.java) and the search process continues.
After performing the test a termination message ”SINK” is sent to the master vmachine (Line 612

mersenne.java).

HH S H RS mersenne_]ava HEHHHIHEHHH
/* mersenne.java - Discrete Weighted Transform, irrational base method for
Lucas-Lehmer Mersenne test.
References:
Crandall R E and Fagin B 1994; "Discrete Weighted Transforms

and Large-Integer Arlthmetlc " Math. Comp. 62, 205, 305-324
Crandall R E 1955 "Topics in Advanced Scientific Computatlon "

WO~ U WN -

*/

import

import

import
import
import

public

{
final
final
final
final

java.
java.
Java.

jmas
jmas

clas

stat
stat
stat
stat

119

TELUS/Springer—Verlag

io.%;

lan ,
util.*;
.utll *;
.actor.*;

s mersenne extends MobileActor

ic double TWOPI = (double) (2+3.1415926535897932384626433) ;

ic double SQRTHALF = (double) (0.707106781186547524400844362104);
ic double SQRT2 = (double) (1.414213562373095048801688724209);

ic int BITS = 16;

double[] cn, sn, two_to _phi, two_to_minusphi, scrambled;
double high,low, h1gh1nv lowinv;

int b, ¢, start, stop;

permute;

int[]

1{

start =
stop =

. public mersenne(Integer st, Integer sp)

st.intValue();
p-intValue();

public double rint(double x){ - réturn((double)(long)(x+0.5));}

{

public void print(doublel[] x, int N)

int printed = 0;

while(N-- > 0) { '

if ((x[N]1==0) && (prlnted = 0)). continue;
System.out. prlnt((long)(x[N]) + "y,
printed=1;

b

System.out.println("");

public void init_sciamble_reai(int n)

{

}

A

int
int

for
for

int
doub

Cn

for

}

i,j,k,halfn = n>>1;
tmp;

(i=0; i<n; ++i) permutel[i] = i;
(i=0,3j=0;i<n~1;i++) {
if(i<j) {
tmp = permute[i];
permute[i]l = permute[j];
permute[j] = tmp;

k = halfn;

vhlle(k<—J) {
ﬂ)) =1;

}

jo=

public void init_fft(int n)

j; B L .
le e = (double) (TWOPI/n);
new double[n];
new. double[n];
(3=0; j<n; j++) iy
cnlj] = Math.cos(e*j);
sn[j] = Math. 51n(e*J)

permute = new int[nl;

scr
ini

ambled = new double[n];
t_scramble_real(n);

120

}

public void fft_real_to_hermitian(double[] z, int n)
/* Output is {Re(z"[0]),...,Re(2"[n/2),Im(z" [n/2-1]),...,Im(z"[1]).
This is a decimation- 1n-t1me, spllt radix algorlthm
*/
{ int n4;
double[] x = new double[n+1]
double ccl, ssl, cc3, ss3;
int i1, i2, i3, i4, iS5, 16, 17, is8,
a, a3, dil;
double t1, t2, t3, t4, t5, t6;
double e;)
int nn = n>>1, nminus = n-1, is, id;
int n2, n8, i, j;

System.arraycopy(z,0,x,1,n);

x[0] = 0.0;
is = 1;
id = 4;
do{
for(i2=is;i2<=n;i2+=id) {
il = i2+1;
e = x[i2]; v
x[i2] = e + x[il];
x[i1] = e - x[i1];
(1d<<1) 1;
1d <<— 2;
} whlle(15<n)
n2 = 2;
nn >>= 1;
while(nn > 0) {
n2 <<= 1;
n4 = n2>>2;
ng = n2>>3;
is =.0;
id = n2<<1;
do - :
for(i=is;i<n;i+=id) {
i1 = i+1;
i2 = il + n4;
i3 = i2 + n4;
i4 = i3 + n4;
tl = x[14]+x[13]
x[i4] -= x[i3];
x[i3] = x[i1] - t1;
x[i1] += t1;
if (n4==1) continue;
il += n8;
i2 +='n8;
i3 += n8
i4 +=
t1 = (x[13]+x[14])*SQRTHALF;
t2 = (x[i3]-x[i4])*SQRTHALF;
x[i4] = x[i2] - ¢1;
x[i3] = -x[i2] - t1;
"x[i2] = x[i1] - ¢2;
3 x[i1) +=t2; -
is = (id<<1) - n2;
id <<= 2;
} while(is<n);
.dil = n/n2;
a = dil;

for (j=2; J<-n8 i+ {
(a+(a<<1))&(nminus);

cci = cnlal;

ss1 = snlal;

cc3 = cnla3];

ss3 = sn[a3];

a = (a+dil)&(nminus);
is = 0;

id = n2<<1;

do

for(i=is;i<n;i+=id) {
i1 ="1+5;

121

165 : . i2 = il + n4;

166 i3 = i2 + n4;

167 i4 = i3 + n4;

168 i6 = i+ nd4 - j +2;
169 i6 = ib5 + n4;

170 i7 = i6 + n4;

171 =~ i8 = i7 + n4;

172 . t1 =:x[13]*cc1 + x[i7]#*ss1;
173 . © 22 = x[17]*ccl - x[i3]*ssi;
174 . t3 = x[i4) *cc3 + x[i8]*ss3;
175 : t4 = x[i8]*cc3 - x[14]*ss3;
176 - t5 = t1 + t3; .

177) 16 = 2 + t4;

178 : t3 . ='t1 - t3;

179 t4 = t2 - t4;

180 t2 = x[i6] + t6;

181 , x[13] = t6 - x[i6];
182 ‘ x[18] = t2;

183 =-x[i2] - t3;

184 x[17] -'—x[12] - t3;
185 ‘ x[i4] =

186) t1 = x[11] "+ t5;

187 ' x[i6] = x[11] - t5
188 ‘ x[i1] = t1;

189 : : tl = x[15] +. t4;

190 x[i5] -= ;

191 “x[i2] =

192 : } .

193 o = (id<<1) =~ n2;

194 - 1d <<— 2;

195 } Hh11e(1s<n)

196 .

197 nn >>= 1;

198 }

199 System.arraycopy(x,1,z,0,n);

200 1}

201

202 pub11c void fftinv_hermitian_to_real(double[] z, int n)

203 /#* Input is {Re(z~[0]),...,Re(z2"[n/2),Im(z"[n/2-11),...,Im(2"[1]).
204 This is a dec1mat10n—1n—frequency, split-radix algorithm.
205 *x/ .))
206 {

207 int n4;

208 double ccl, ssl, cc3, ss3;

209 double t1, t2, t3, t4, t5;

210 double[] x = new double[n+1];

211 int n8, i1, i2, i3, i4, i5, i6, i7, i8, a, a3, dil;
212 double e;

213 int nan = n>>1, nminus = n-1, is, id;

214 int n2, 1i, j;

215 :

216 System. arraycopy(z 0,x,1,n);

217 x[0] = 0.0;

218

219 n2 = n<<1;

220 ‘ - nn >>= 1;

221 while(nn > 0) {

222 is = 0;

1223 id = n2

224 n2 >>= 1 .

225 n4 = n2>>2;

226 n8 = nd>>1;

227 : ‘do {

228 for(i=is;i<n;i+=id) {

229 : 11 = i+1;

230 i2'= il + n4;

231 i3 = i2 + n4;

232 i4 = i3 + n4;

233 t1 = x[i1] - x[i3];

234 x[i1] += x[i3];

235 ' x[i2] += x[i2];

236 . x[i3] = t1 - x[14] - x[i4];
237 x[i4] = t1 + x{i4] + x[i4];
238 if (n4== continue;

239 il += n8

240 i2 += n8;

241 . i3 += n8

242 . 14 +=

243 =xhﬂﬂhﬂ

244
245
246
247
248

- 249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

. 295

296
297
298
299
300
301
302
303
304
305
306
307
308

309 -

310
311
312
313
314
315
316
317
318
319
320
321
322

public

2 = x[i4]+x[i3];
x[i1] += x[i2];
x[i14]-x[i3];

x[i2] =
x[i3] = -SQRT2#(t2+t1);
x[i4] = SQRT2*(t1-t2);
= (id<<1) - n2;
1d <<- 2;
¥ whlle(ls(nmlnus)
d11 = n/n2;
= dil;

for(J"2 j<=n8; j++) {
a3 = (a+(a<<1))&(nminus);
ccl = cnlal;
ssl = snfal;
ce3 = enl[a3];
ss3 = sn[a3];
a = (a+dil)&(nminus);
is ;
id
do {
for(l =ig;i<n; j+=id) - {
i+j;
11+n4;
i2+n4;
i3+n4; - -
i+ng-j+2;
i5+n4;
i6+n4;
i7+n4;
t1 = x[i1] - x[i6];
x[11] += x[i6];
t2 = x[15]'--x[i2];
x[i5] += x[i2];
t3 = x[i8] + x[i3];
x[i6] = x[i8] - x[i3];
t4 = x[i4] + x[i7];
x[i2] = x[i4] - x[i7];
t5 = t1 - t4;
tl += t4;
t4 = t2 ~ t3;.
t2 += t3;
tb*ccl + t4*ssi;

né((i'

-
[o2]
W RN l! Il

ti*cc3 - t2*ss3;
t2*cc3 + tl*ss3;

o]

—

)

o

—
wonnon

= (id<<1) - n2;
id <<=2; '
N } while(is<nminus);
>=1;

mrfwwag

oAwn

Or‘Hll] A
1]

1;
4
r(i2=is;i2<=n; 12+—1d){
11 i2+1;

= x[i2];
x[12] e + x[i1];
x[i1] = e - x[il1];

(1d<<1) -1;
1d <<' 2;
} while(is<n);
e = 1/(double)n,
System.arraycopy(x,1,z,0,n);
for(i=0;i<n;i++) z[1] *= @;

void square_hermitian(double[] b, int n)

int k, half = n>>1;
double ¢, d;

b[0] *= b[0];
b[half] #= bl[half];
for(k=1;k<half;k++) {

= blk]l; d = bln-k];

-t4*ccl + tb*ssi;

122

323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340 .

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392

393
394

bln-k] = 2.0*c*d;
blk] = (c+d)*(c-d);

public void squareg(double[] x,int size)

fft_real_to_hermitian(x, size);
~ square_hermitian(x, size);
fftinv_hermitian_to.real(x, size);

public void init_lucas(int ‘q,int N)

{

int j,qn,a;

double

log2 - =

‘Math.log(2.0);

'two_to_phi = new douBle[N];
two_to_minusphi = new double[N];

low = rint(Math.exp(Math. floor((double)q/N)*log2))

high =
lowinv
highinv

=q&
¢ = N-b;

low+low;
= 1.0/low;
= 1.0/high;

’

two_to_phi[0].
two_to m1nusph1[0] = 1.0;

qn=q&
for(j=

(N-1);

1; j<N;

(N-1);

= 1.0;

++3) {

=N - ((j*qn)&(N-1));
two_to_phil[j] = Math.exp(a*log2/N);

3

} .

public double addsignal(double[] x,’int N, inf error_log)
i ‘

two_to_minusphi[j]. = 1.0/two_to_phi[j]l;

int k,j,bj,bk,sign_flip,NminusOne = N-1;

double ZZ,W;

int
doubl
h

xptr =
e hi
iinv

" lll

0, xxptr = 0;
high, lo = low,
highinv, loinv = lowinv;

double err, maxerr = 0.0;

bk =

0;

for(k=0; k<N; ++k) {

if ((zz—x[xptr])<0) {
) = Math.floor(0.5 - zz);
sign_flip ?

’else

{

= Math. floor(zz+0 5)
51gn flip =

if(error_log != 0) {

' if(err

x[xp
J—
bj =

if(sign_£1lip == 1) err = Math.abs(zz + x[xﬁtr])y

else err = Math.abs(zz - x[xptr]);

tr]
bk,

> maxerr) maxerr = err;

xXptr = xptr++;

do {

1£(3=

if (j==

=N) j=0;

0){xxptr = 0; bj =

= Math.flooxr(zz*hiinv);
if(sign_flip == 1) x[xxptr] -= (zz-w+hi);
else x[xxptr] += (zz-w*hi);
else if (j==NminusOne) { w = Math.floor(zz*loinv);
if(sign_flip == 1) x[xxptr] -= (2z-w*lo);
else x[xxptr] += (zz-w*lo);

}

3

123

395
396

397
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
1428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

459

460
461
462
463
464

465
466

else if (bj >= ¢) { w = Math.floor(zz*hiinv);
if(sign._flip == 1) x[xxptr] -= (zz-w*hi);
else x[xxptr] += (zz—w*hi)' }
else { v = Math.floor(zz*loinv);
1f(51gn flip == 1) x[xxptr] -= (zz-w*lo);
else x[xxptr] += (zz-w*lo); }
2Z = W; :
++3;
++xxptr;
bj += b; if(bj>=N) bj -= N;
} while(zz!=0.0);
?k += b; if(bk>=N) bk -= N;

return(maxerr);

public void patch(double[] x,int N)
{ .
int j,bj,NminusOne = N-1;

long carry;

double hi = h1gh lo = low, h1gh11m1nv, low11m1nv, XX;

int Ex = 0;
doub h1gh11m lowlim, 11m, inv, base;
carry = 0;

highlim = hi*0.5;
lowlim = lo*0.5;
highliminv =1. O/hlghllm,
lowliminv = '1.0/lowlim;

xx = x[px] + carry;
if (xx >= highlim) carry —((long)(xx*hlghllmlnv+1))>>1
else if (xx(—hlghllm) carry = -(((1ong)(1 xx*hlghllmlnv))>>1)
else carry =
x[px++] = (double)(xx ~ carry*hi);

bj = b;
for(j=1; j<NminusOne; ++j) {
Xx = x[px] + carry;
if ((bj & NminusOne) >= c) { s
_if (xx >= highlim) carry -((long)(xx*hlghllmlnv+1))>>1
else if (xx<-h18h11m) carry = -(((long) (1-xx*highliminv))>>1);
else carry

x[px] = (double) (xx - carry*hi);

"} else {
if (xx >= lowlim) carry =((long)(xx*lowliminv+1))>>1;
else if (xx<-lowlim) carry = -(((long) (1-xx*lowliminv))>>1);

else carry = 0;
x[px] = (double) (xx - carry#*lo);

++px;
bj += b;

xx = x[px] + carry; ‘ '
if (xx >= lowlim) carry = ((long) (xx*lowliminv+1))>>1;
else if (xx<-lowlim) carry = -(((long) (1-xx*lowliminv))>>1);
else carry = Q;
x[px] = (double) (xx - carry*lo)
if (carry 1= 0) {
%J = 0,
px = 0;
while(carry != 0) {
xx = x[px] + carry;
if (j==0) { lim = highlim; inv = highliminv; base = hi;} .
else if (j==NminusOne) {lim = lowlim; inv = lowliminv; base = lo;}
else if ((bj & NminusOne) >= c¢) {lim = highlim; inv = highliminv;
base = hi; }
else {lim = lowlim; inv = lowliminv; base = lo;}
if (xx>=1im) carry = ((long) (xx*inv+1))>>1; .
else if (xx<~lim) carry = -(((long)(1-xx*inv))>>1);
else carry = 0;

124

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
503
504
505
506
507
508

- 509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
- 529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

x[px++] = (double) (xx - carry*base);
bj += b;
if (++j == N) {

J 3
bj = 0;
px = 0;
}
}
}

}

public void check_balanced(double[] x,int N)

1 .

int j,bj = O,NminusOnhe = N-1;
double limit, hilim,lolim;
int ptrx = 0;

hilim = high*0.5;
lolim ‘= low*0.5;
for(j=0; j<N; ++J) {
if (j== limit = hilim; .
else if (j==NminusOne) limit = lolim;
-else if ((bj & NminusOne) >= ¢) limit = hilim;
else limit = lolim; - :
if (' ((x[ptrx]<=limit) && (x[ptrx])——llmlt)))
System.exit(1);
++ptrx;
bj+=b;
}
}

public double lucas square(double[] x,int N, int error_log)

{
int j, perm = 0, ptrx = 0, ptry = 0, ptrmphi = 0
double -err;

for(j=0; j<N; ++j, perm++)
scrambled [ptry++] = x[permute[perm]] * two to_phl[permute[pernﬂ]

squareg(scrambled,N) ;

perm = O;
ptrx = 0;
ptrmphi = 0;

for(j=0; j<N; ++j)

x[ptrx++] = scrambled[permute[perm++]] +* two_to_mihusphi[ptrmphi++];

err = addsignal(x,N, error_log);
patch(x,N);
if (error_log !=‘0) check_balanced (x,N);

return(err);

public int iszero(double[] x,int N)

{ :
int j;

for(j=0; j<N; ++j) if (rlnt(x[J]) != 0) return O;
return 1;

public void balancedtosﬁdrep(double[] x,int N)
int sudden_death = 0, j = 0, NminusOne = N-1, bj =

while(true) {
if (xfj) < 0) {
--x[(j+1) & NminusOne];
if (j==0) x[jl+=high; .
-else if (j==NminusOne) x[j]+=low;
else if ((bj & NminusOne) >=c) x[j]l+=high;
else x[jl+=1low;

}
else if (sudden_death == 1) break;

125

126

544 bj+=b;

545 if (++j==N) {

546 sudden_death = 1;

547 j=0;

548 bj = 0;

549 }

550 }

551 %}

553 : :
554 - public void printbits(double[] x, int g, int N, int totalbits)
565 {

586 ‘char[] bits = new char[totalbits];
557 int j, k, i, word;

558

559 j = 0;

560 i=90;

561 do {

562 = (int)(Math. cell((double)q*(J+1)/N) - Math. ce1l((double)q*J/N))
563 1f (k>tota1b1ts) k = totalbits;

564 - totalbits -= k;

565 word = (int)x[3++]

566 while(k-- > 0) {

567 bits[i++] = (char) (’ 0’ + (word & 1));
568 word>>=1;

569 }

570 g vhlle(totalblts > 0);

571 while(i-- > 0) System. out pr1nt(b1ts[1])
572 System.out. prlntln("")

573 }

574 ‘ _

576 public void- isPrime(ActorAddress .cust)
576 { - '

577 int q, n, j,i,k;

578 double[] x;

579 double w, err;

580 int last,errflag=0;

581

582 for(q = start; q < stop;q++)

583 - { :

584 last = g-1;

585 n = 256;

586 : '

587 x = new double[n];

588 init_fft(n);

589 init 1ucas(q n);

590

591 for(j=0; J<n j++) x[j1=0;

592 x[0] = 4.0;

593

594 for(j=1;j<1ast;j++) {

595 err = lucas_square(x,n,errflag);
596 if (errflag > 0)

597 System.out.println(j + " maxerr: " + err);
598 x[0]-=2.0;

599 System.out.println("iter: " + j);
600 S ‘ g

602 ’

603 System.out.println(q + * ");

604 if (iszero(x,n) == 1)

605 send(cust,"result“,nev Strlng(q + "IS PRIME"));
606 else {

607 balancedtostdrep(x n);

608 printbits(x,q,n,64);

609 System.out.println("");

610 o D

611 }

© 612 send(cust,"result”,nev String("SINK"));
613 sink(); :

614 }

615 }

Thesis:

Legand L. Burge III -
Candidate for the Degree of

Doctor of Philosophy

- JMAS: A JAVA-BASED MOBILE ACTOR SYSTEM FOR
HETEROGENEOUS DISTRIBUTED PARALLEL COMPUTING

Major Field: Computer Science

Biographical Data:

Personal Data: Born in Stillwater, Oklahoma on February 5, 1972,

the son of Dr. Legand L. Burge Jr. and Gwenetta V. Burge

Education: Graduated from John Marshall High School, Oklahoma City,

Oklahoma, 1989; received Bachelor of Science in Computer
Science/Mathematics from Langston University, Langston, Oklahoma
in 1992. Receive the Master of Science in Computer Science from
Oklahoma State University in July 1995. Completed the
requirements for the Doctor of Philosophy in Computer Science

at Oklahoma State University in December 1998.

Experience: Research Assistant, Oklahoma State University, Department

Oklahoma State University 1992 to 1998. Adjunct Instructor,

Langston University, Department of Computer and Information Science
1993 to 1998. Software Engineer, Teubner and Associates, Stillwater,
Oklahoma 1995. Computer Analyst, National Security Agency,

Ft. George G. Meade, Maryland, 1991 to 1995.

