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CHAPTER I 

INTRODUCTION 

Due to the rapid expansion in recent years of such diverse areas as 

navigation and orbit determination, communication and control theory, 

and operations research, the need has arisen for increased sophistica~ 

tion in dealing with problems caused by random noise in nonlinear dynam­

ical systems, The digital computer has become an invaluable tool in the 

simulation of such nonlinear stochastic systems and their associated 

optimal filtering algorithms, The filtering problem is to determine the 

optimal estimate of the state variables of continuous-time nonlinear 

dynamical systems from continuous noisy output observations. The digi­

tal computer, when used in the simulation of such systems corrupted by 

random input and measurement disturbances, introduces new discretization 

problems in obtaining an accurate, yet computationally fast, implementa­

tion of the particular filter under consideration. The proper choice of 

sampling rate, integration scheme, and number of on-line computations 

should result in an improved performance of the stochastic system under 

consideration. Since exact solutions to nonlinear filtering problems 

lead to infinite-dimensional computational algorithms, approximate 

filters become necessary in most cases. Although complicated approxi­

mate nonlinear filters are available, extensions of the basic Kalman 

filter are used most often in practice, The proper choice of the 

approximate filter for the particular system under consideration and the 

1 
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corresponding number of operations to be performed on-line become 

important when operations are to be implemented on the digital computer. 

The objective of this research was to investigate tradeoff possibi­

lities for the digital implementation of two versions of the continuous 

Kalman filter for nonlinear dynamical systems. A detailed examination 

of tradeoffs between complexity, accuracy, and computational speed was 

made. The two particular filtering algorithms considered were the 

variational Kalman filter and the extended Kalman filter. An examina­

tion of these two algorithms pointed out distinct differences ·as inte­

gration techniques, step sizes, and system nonlinearities were varied, 

The approach to the problem was to develop a general digital 

computer program to implement the variational Kalman filter and the 

extended Kalman filter with provisions for handling changes in integra­

tion techniques and step sizes, Since the structural differences 

between the two algorithms are small, the programming effort may be 

accomplished with a single general computer program. This research was 

performed to provide some insight into the problem of which filter to 

use for a given application, which step size would likely result in the 

most efficient treatment of the system being considered, and how severe 

a plant nonlinearity each method would handle effectively. 

Background 

The emphasis has shifted in the past two decades from the design of 

filters in the frequency domain, e,g. Wiener filtering, to time-domain 

design, e.g. Kalman filtering. For linear, time-varying systems with 

gaussian noise disturbances, the optimal filter in the mean-square error 

sense is the Kalman filter. There are a great number and variety of 
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derivations of Kalman filtering algorithms to be found in the literature 

which are very useful in new applications in the area of stochastic 

control systems. The early work of Kalman (1) and Kalman and Bucy (2) 

dealt with a linear unbiased minimum-error-variance algorithm for state 

estimation using an 11 orthogonal projection lemma 11 • More recent methods 

for developing the continuous linear algorithm include a direct deriva­

tion from the Wiener-Hopf integral equation (3), a direct application 

of the matrix minimum principle to minimize the variance of the estima­

tion error (4), and considerations of the continuous problem as the 

limiting case of the discrete problem as the sampling interval is re­

duced to zero (5,6). Sims and Melsa {7) considered the use of fixed­

configurations for supoptimal linear estimation. 

Certain applications, such as frequency and phase modulation, 

having inherently nonlinear observations models, and the nonlinear 

dynamic message models for many vehicle guidance and control problems 

are treated by extending the Kalman filter for approximate filtering 

in nonlinear systems. These problems may be treated by linearizing 

about a nominal trajectory, by the invariant imbedding sequential esti­

mation procedure introduced by Bellman (8), or by conditional mean 

estimation for nonlinear systems (9,10). These minimum-error-variance 

filtering algorithms represent a form of 11 linearized 11 Kalman filter for 

the nonlinear case (11), whereas maximum a posteriori estimation, 

derived from nonlinear two-point boundary-value problems, uses 11 running­

time11 invariant imbedding (12). The linearized Kalman filter (13), a 

heuristic extension of Kalman and Bucy 1 s earlier work (2), is a minimum­

variance filter based on linearization about a nominal trajectory. If 

one assumes the conditional-mean estimate is known and the message and 
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observation models are expanded about the conditional-mean estimate, 

the resulting first-order conditional-mean filter is called the extended 

Kalman filter (5,14). A limited amount of research comparing these 

filters can be found in the literature (15,16). 

Since data representing continuous random processes must often, as 

in certain Kalman filtering applications, be processed and analyzed in 

terms of discrete sample values,(17), some continuous-to-discrete con­

version ,errors are introduced. If the sampling update rate for filter­

ing is considered to be constant, then the problem remaining is that of 

choosing an appropriate sampling interval. Sampling at points too close 

together results in an unnecessarily large cost of calculations. On the 

other hand, sampling intervals too l~rge lead to aliasing problems, 

which are potential sources of error. The question becomes one of 

choosing the Nyquist frequency as a lower limit of the sampling rate. 

The choice will lead to a suitable compromise between accuracy and speed 

to yield an efficient but accurate Kalman filtering algorithm. 

Because of the rather important role played by the modern computer 

in the analysis, designi development, and control of a wide variety of 

systems, it is appropriate to consider the numerical techniques that 

have been developed for system simulation. In performing the basic 

operations involved in simulating a continuous system on a digital 

computer, certain approximations which introduce various types of errors 

are inherent. 

One of the most important areas of concern jn the simulation of 

differential equations on the digital computer is the choice of numeri­

cal integratibn techniques. The ext~nsion of the State Transition 

Method (18) to certain nonlinear systems by means of a quasi-linear 
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approach was considered by Giese (19). Also, Wait (20) introduced a 

generalization of the state-space method using piecewise linear approxi­

mations to handle nonlinear systems by using interpolations and extra­

polations of system inputs. The similarity of the general state 

transition method of ~iou (21) to the conventional fourth-order Runge­

Kutta method (RK4) was pointed out by Mastascusa (22). Benyon (23) 

investigated the proper selection of integration formulas based on com­

puting speed and accuracy for the simulation of guided missiles and 

similar systems. He compa~ed predictor, predictor-corrector, and Runge­

Kutta methods of different orders, both theoretically and experimentally, 

Rowland and Holmes (24) investigated digital integration techniques for 

nonlinear dynamical systems by introducing a variational approach and 

making certain numerical approximations which yielded improvements in 

both accur~cy and execution time, The approximations involved in their 

method were shown to be effective for mildly nonlinear systems, and an 

improvement over RK4 in both speed and accuracy in certain,cases was 

demonstrated for the variational method developed. 

Several comparisons between Runge-Kutta (25) and predictor­

corrector formulas (26) have been made, Both Hildebrand (27) and Kopal 

(28) treated Runge-Kutta (RK) methods and their derivation and use 

extensively, While the step sizes in RK methods are easy to change 

because of their self-starting feature, error estimates are not readily 

available, On the other hand, predictor-corrector methods yield error 

estimates readily, but must employ another means of starting, such as 

RK formulas, Merson (29) has devised a modified Runge Kutta method from 

which error estimates maybe made by increasing derivative evaluations. 

Rice (30) and Farrington (31) have described the limited use of mixed 
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step-length 11 split Runge-Kutta 11 and 11 split predictor-corrector 11 methods, 

respectively. Two major sources of error introduced in the digital 

solution of differential equations are truncation errors and roundoff 

errors. Blum (32) and Gill (33) devised schemes for reducing the effects 

of roundoff errors, A method developed to give an estimate of trunca­

tion error was described by Lance (34) as the Runge-Kutta-Merson (RKM) 

method, a modification of the basic fourth-order Runge-Kutta method 

having a slightly smaller truncation error, While requiring five itera­

tions per step, RKM allows one to maximize the step,while the truncation 

error is maintained within specified limits. 

It can readily be observed that much work has been done in estima­

ting the state of noise-corrupted nonlinear systems, resulting in 

several very effective algorithms for state estimation in nonlinear 

system. There have been extensive investigations of a large variety of 

numerical integration techniques designed to handle different types of 

systems. However, an investigation is needed to determine which inte­

gration technique or combination of techniques would ~e most effective 

to implement a particular filtering algorithm, 

Kalman Filtering For Nonlinear Systems 

Consider the nth-order class of nonlinear dynamical systems driven 

by white noise with noise-corrupted observations defined by 

x (t) = .f. [~(t),t] + B(t)w(t) (1,1) 

~(t) = !!. [~(t) ,t] + _y_(t) (1,2) 

where w(t) is an r-vector of zero-mean white Gaussian noise processes 

with a covariance matrix 

(L 3) 
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where oD (·) is the Dirac delta function. The observation is an m­

vector corrupted by additive, zero-mean, white Gaussian noise with a co-

variance matrix 

cov {_y_(t), .Y_(T)} = R(t) OD (t-.) (1.4) 

Both Q(t) and R(t) are symmetric, positive-definite matrices. It is 

assumed that !!(t), _y_(t) and ~(t0 ) are all uncorrelated. 

Given the set of data ~(t), the problem is to apply the variational 

and extended versions of the Kalman filter to determine an estimate of 

the state of the system. 

The variational Kalman filter is based on incremental linearization 

about a nominal trajectory. Both f[~(t) ,t] and h[~(t) ,t] are expanded 

in a Taylor series about the nominal deterministic trajectory given by 

~(t) = f[~(t) ,t] 

For the variational Kalman filter, A(t) and C(t) are given by 

A ( ) a f [~ ( t ) , t J I 
t i),.. a_x(t) 

~(t) = ~(t) 

C(t) a ah[x(t),t] I 
- a~(t) x(t) = x (t) - ~ 

The resulting linearized message and observation models are 

ox(t) = A(t) ~ + B(t)~(t) 

oz(t) = C(t) ox + y(t) 

(,. 5) 

( 1 0 6) 

(L 7) 

{LS) 

where~ and ~(t) are the deviations from the nominal trajectory and 

nominal observation, respectively. If these deviations are small, then 

the higher order terms of the Taylor series expansion may be neglected 

to yield (1.6) ~ (1.7). Therefore, the variational Kalman filtering 

algorithm may be written as 



. 
t5 x ( t ) = A ( t ) o x ( t ) + K ( t ) (g ( t ) - B ( t ) ox ( t ) ) 

K(t) = P(t) CT(t)R-1(t) 

where the error variance equation is given as 

P(t) = A(t)P(t) + P(t)AT(t) - P(t)CT(t)R-1(t)C(t)P(t) 

+ B(t)Q(t)B(t) 

The total linearized state estimate is 

x(t) = ~(t) + ox(t) 

'8 

( 1 , 9) 

(1. 10) 

(1, 11) 

(1,12) 

The extended Kalman filter may be obtained by assuming that the 

conditional-mean estimate x(t) is known and used to expand the message 

and observation models in a Taylor series. The linearized coefficient 

matrices A(t) and C(t) for the extended Kalman filter are 

A(t) ~ af_[~.(t),t] 
= a.?5.{ t) l_'!_(t) = i(t) 

C( ) ah[2$_(t),t] I 
t A a_x(t) 

~(t) = B_(t) 

(L 13) 

For the linear case, it is clear that both of these algorithms reduce to 

the linear Kalman filtering equations. It should be pointed out that 

the time-varying gain K(t) may be precomputed for the variational 

filter algorithm. This fact becomes especially important in cases where 

on-line computational time is critital. 

Approach To The Problem 

The initial effort was to develop a computer program that would 

accurately simulate the nonlinear system considered, using an accurate 

integration method for all investigations. Thereafter, a second portion 

of the program would implement each filter by using one of the severa 1 
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integration methods under investigation with a provision for adjusting 

the step size for speed and accuracy tradeoff studies. A comparison of 

the accuracies of both filters is desirable as a basis of comparison for 

accuracy versus computational speed and later for several integration 

methods. Since no comparisons have been made in the literature for 

stochastic filters when implemented by different integration methods, 

the results .of such a comparison will provide useful information in 

cases where an optimal choice of both the type of filter and the method 

of integration is desirable for time-critical computations. Some in­

sight into the effects of system nonlinearities and input noise on 

filter performance might be derived from the results in Chapters II and 

III. 

The curves of Chapters II and III will illustrate at what point it 

becomes advantageous to use the more computationally complex extended 

filter over the variational filter for a given set of operating condi­

tions. Chapter IV will provide an idea as to how computationally com­

plex an integration algorithm to use for given accuracy or computational 

speed requirements. All the abo~~ points of interest will provide 

valuable information about the variational Kalman filter or the extended 

Kalman filter when computational accuracy and speed are of importance. 

Thesis Outline 

Following this introduction to the problem, a brief description of 

the digital computer program used to implement the two filtering algor­

ithms, along with preliminary simulation results comparing accuracies, 

is presented in Chapter II. Chapter III sets forth considerations of 

accuracy versus computational speed as the integration step size is 
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adjusted to represent data rates consistent with the amount of on-line 

calculations performed, Tradeoffs between accuracy and computational 

speed are investigated with respect to several different numerical inte­

gration techniques in Chapter IV. Conclusions and recommendations for 

further research are presented in Chapter V. 



CHAPTER II 

PRELIMINARY DEVELOPMENT AND RESULTS 

The first step in the investigation of the implementation of Kalman 

filtering algorithms for nonlinear applications is the development of an 

appropriate digital computer program. Only the two continuous versions 

of the Kalman filters under examination were implemented. Because the 

methods of simulating the system, filter algorithm, and integration 

schemes are of great importance in such a study, a program descripti9n 

will be provided along with preliminary results of accuracy comparisons 

for the variational and extended Kalman filters. 

Digital Computer Program Description 

The initial part of this research effort was necessarily the 

development ofa multipurpose digital ·simulation program. To obtain the 

flexibility necessary to examine the effectiveness of both the varia­

tional and the extended Kalman filters, a flexible computer program was 

implemented by using several generalized subroutines. A comprehensive 

listing of the Fortran program is given in the appendix. 

Since· the structural differences between the two algorithms are 

small, a single program was used to implement both filters with only 

minor changes. The simulation program was capable of implementing the 

variational· filter (KALF = VAR)· or the extended filter (KALF .. EXT) for 

any nonlinear system by inserting system equations in Subroutine XEQN 

11 
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by inserting system equations in state variable form into Subroutine 

XEQN. Partial derivatives of f.[~(t),t] with respect to each state 

variable must be calculated and then defined as the elements of A(t) in 

Subroutine JAC. Subroutines RUNGK and RK4 are both fourth-order Runge­

Kutta integration subroutines and Subroutines RK2 and RK2P are both 

second-order Runge-Kutta integration subroutines. The integration of 

filter equations by the second-order Adams-Bashforth formula may be 

accomplished with Subroutines AB2 ·arid· AB2P; · ·Subroutine RNG generates 

two series of random numbers which become the input and measurement 

noises. Subroutine I:ELXH and Subroutine RSL are used to calculate the 

filter equations for o~(t) and P(t), respectively. The flow chart 

shown in Figure l depicts the basic features of the program operations 

for both filters. It illustrates that the program may generate a single 

sample function (MCR = 1) or any number of Monte Carlo runs (MCR > 1), 

where the sample mean and sample variance of ~(t) are both calculated. 

~(t), the error in the estimate, is determined from the equation 

~(t) = ~(t) - x(t) 

The sample mean and sample variance for the first state of the 

system are defined as 

~R 
XlBAR = i,_, (XE1(t))Ml 

Ml~l 
MCR 

MCR 
VARXl = ~~,l (XE1(t) - XlBAR)Ml 2 

MCR 

(2. 1) 

(2.2) 

Corresponding relationships, X2BAR and VARX2, are defined for x2(t). 

The average RMS error RMSER, which is used extensively in this chapter, 

is computed in the program from the equation 
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(2.4) 

for a total number of samples NTOT. 

The nonlinear system used in the computer program for all compari­

sons made is given by 

xl(t) = -2 X1(t) + ax~(t) 

x2(t) = -x2(t) + w(t) 
(2.5) 

This system was used by Rowland and Holmes (35) for error propagation 

studies and was found to be acceptable as a nonlinear reference system. 

Figure 2 shows a second-order nonlinear circuit described mathematically 

by 

v = - l 
o R2 c2 

V• - l 
l - - R c 

l l 

K 3 
Vo + R2 C2 vl 

(2.6) 
l 

vl + R1 C1 vs . 

where R1c1 = 1, R2c2 =~.and the source vs(t), applied for all t ~ O, 

is a zero-mean Gaussian white noise process with variance Q. Identify­

ing v0 as x1 and v1 as x2 with the given parameters yields (2.5) 

directly from (2.6) and the nonlinear circuit of Figure 2. The obser­

vation model in all cases considered was given by 

z(t) = x1(t) + v(t) (2. 7) 

where the varfance of the zero-mean white noise process v(t) was 0.1 for 

all time.· A block diagram of the system in (2.5) with its associated 

Kalman filtering algorithms is shown in Figure 3. 
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Numerical Comparisons Based on Accuracy 

For accuracy comparisons of the two algorithms, a standard fourth­

order Runge-Kutta integration method (RK4) was used. The data rate was 

held constant for accuracy comparisons, in this chapter and computa­

tional speed comparisons are described in Chapter III. Parameters 

under cohsideration were the magnitude of the system nonlinearity .(a.), 

the order of the nonlinearity (AEXP), and the variance of the input 

noise (Q). Because of a more accurate reference trajectory, i.e. the 

new estimate of the state as that estimate became available, the lin­

earity assumptions were more accurate for the extended Kalman filter· 

than for the variational filter. Due to this relinearization, large 

initial estimation errors were not allowed to propagate in time. 

Figures 4 and 5 show sample functions of sample error variance for x1, 

x1(t), x1(t)lvar and x1(t)lext vers1:Js time for the conditions of a.=0.5, 

Q = 10, and AXEP. = 3. Because of the better accuracy of the extended 

Kalman filter and the fact that no penalty is associated in this chapter 

for the additional on-line operations, Figures 6, 7, and 8 indicate an 

improved performance for the extended Kalman filter in the average RMS 

error defined by (2.4). 

It should. be noted that Figure 4 represents single sample functions 

and should be viewed as typical behavior for the state estimate of the 

system. More valid plots of estimate errors would show Monte Carlo 

averages for many sample functions. Figure 5 shows error variance 

results. obtained by using twenty-five Monte Carlo runs with a constant 

step size of 0.05 for both filters. These results point up an area to 

be considered in Chapter III, i.e. the adjusting of the step size of 



10 

8 

6 

4 

2 

t 

>< 0 0 

-2 

-4 

-6 

Parameters 

a= 0.5 

Q = 10 

AEXP = 3 

TIME (seconds) -
Figure 4. The Variable x1(t) and Estimates 

of x1(t) Versus Time 

18 



19 

35 

30 

Parameters 
Q = 10 

25 AEXP = 3 

t a.= 0.5 
.... 

x 
s.. 20 0 

LL. 

QJ 
u 

~Variational c: 
n:s .... 
s.. 
n:s 
> 
s.. 15 
0 s.. s.. 

LJJ 

QJ .... 
0.. 
E n:s 
V) 

10 

5 

~ended 

:---x ..... 
0 

0 1 3 4 5 
Time (Seconds) 

Figure 5. Plots of Sample Error Variance for x1 Versus Time 



both filters or the penalizing of the extended filter for having more 

on-line operations per step than the variational filter, whose filter 

gain and error variance may be precomputed. 

Tradeoff Possibilities 

20 

It is clear from Figures 6, 7, and 8 that for all cases considered, 

the unpenalized extended Kalman filter performed better than the varia­

tional Kalman filter, It should be noted, however, that there exists a 

penalty of increased computational time for the extended filter and that 

for smaller values of input noise and nonlinearities the variational 

filter could possibly be used for increased speed. It can also be seen 

from Figures 6, 7, and 8 that as conditions become more harsh, the 

error in the estimate of x1{t) for the variational filter becomes much 

more pronounced when compared to that of the extended filter. It is 

conjectured that there exists a certain operating point beyond which the 

extended Kalman filter shbuld be used as opposed to the variational 

Kalman filter, This point may be determined by the degree of accuracy 

required for the particular case being considered here, It is apparent 

that for some given set of parameters with the step sizes adjusted to 

give comparable performances in computational speed for both filters, 

the extended Kalman filter should be used for its greater accuracy in 

dealing with harsher nonlinear conditions, These tradeoffs will be 

considered further in the following chapter, 

Summary 

Comparisons of the two filters based entirely upon accuracy have 

been made in this chapter for a particular second-order nonlinear 
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system. The standard RK4 integration formula was used throughout with 

a nominal step size of 0.05 seconds. The error in the estimates of the 

state x1(t) was examined in the average RMS sense. It was shown that, 
I . 

for the particular system considered, the higher the input noise and the 

greater the nonlinearity, the more pronounced was the advantage of the 

extended Kalman filter in computational accuracy. The need for includ­

ing a penalty for decreased computational speed and a subsequent 
I 

accuracy versus speed study was introduced for consideration in the next 

chapter.· 



CHAPTER III 

COMPUTATIONAL SPEED AND 

FILTERING PERFORMANCE 

To make a fair comparison of the extended Kalman filter and the 

variational Kalman filter on the basis of computational speed and 

accuracy, a suitable adjustment was made in the step size at which the 

more computationally complex algorithm operated. Once this was done, it 

was possible to outline the conditions under which it was advantageous 

to utilize each of the two filtering algorithms. The important system 

characteristics which comprise tW,ese conditions are input noise, order 

of nonlinearity, and magnitude of nonlinearity. The RMS error in the 

estimate of x1(t} was again used as a measure of filtering performance 

as these parameters were varied for both filters. These comparisons 

form a basis for the consideration in Chapter IV of several single-step 

and multi-step integration methods when used to implement both filters. 

Number of Computer Operations 

When totaling the number of on-line operations for each filter, 

some relationship between a multiplication and an addition must either 

be calculated for the particular computer being used or assumed in the 

more general case. Benyon 1 s assumption (23) that a multiplication takes 

approximately twice as long as an addition was used in this chapter. 

It was also assumed that those operations that could be computed off-line 
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were precomputed and stored for subsequent use. Thos.e quantities which 

varied from interval to interval, but were held constant over a particu­

lar interval, were computed only once per interval and then stored for . ,. 
later use in the same interval. The integration of P(t) and ~x(t) by 

RK4 and the calculation of K(t) by multiplying P(t) by a precomputed 

constant made up the operations from which the total number of.weighted 

on-line operations was determined for the extended Kalman filter. This 

number was reduced substantially for the variational Kalman filter, . 
which required that only ai(t) be integrated on-line. 

It was determined that for an nth order system with r-dimensional 

input noise and m-dimensional observation observation noise, the number 

of multiplications involved in Equation (1.10) is n2m and the number of 

addi ti ans is (n-1 )nm for the above assumptions. Equation (1. 11) requires 

[n(n + 1)(3n + r)/2 + n(r2 + n) + n(n + 1)/2] multiplications and 

[n(n + 1)(3n + r-4)/2 + nr2 - nr + n3 - n2 + 9 + n(n +l)/2] additions. 

Finally, it is noted that Equation (1.9) involves [n2(m + 2) + n] multi­

plications and n(n2 + 2) additions. 

Numerical Results 

Numerical comparisons showing the number of on-line operations 

required for the variational and extended Kalman filters for a second­

order system of the form given in Figure 3 are provided in Table 1. 

These number of operations were computed by assuming that the RK4 inte­

gration formula was to be used. While the elements of the A(t) matrix 

are a function -0f the state estimates for the extended filter, the 

number of operations cannot easily be found for the general case. 
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Taking into account the zeroes in the matrices A(t), H(t), and 

~(t), for the second-order system of Equation (2.5), the weighted total 

number of operations for the extended Kalman filter is 292. This 

corresponding number is 116 for the variational Kalman filter. The 

ratio of the number of weighted operations performed on-line for the 

extended filter to the number of weighted operations performed on-line 

for the variational filter is then 2.52. Thus, for the curves of Figures 

9, 10, and 11 a step size of HF= 0.05 seconds was used for the varia­

tional filter and a step size 2.5 times that number, i.e. HF= 0.125 

seconds, was used for the extended filter. As in Chapter II, the system 

equations were integrated at the smaller step size of HH = 0.025 seconds 

to more closely approximate the realtime system. In addition, all the 

curves of this chapter are for the same sequence of random numbers, 

generated every 0.025 seconds. Moreover, each curve represents a set of 

single sample functions. The syst:em equations were integrated out to 

five seconds and the RMS error determined from an average of twenty 

values computed every 0.25 seconds. Figure 9 illustrates the effect of 

input noise on filter performance for a single sample function. It 

appears that for the system of Figure 3 and input noise Q < 8, the 

variational Kalman filter consistently out-performed the extended filter. 

For Q > 8 the added complexity of the extended filter was beneficial in 

spite of the penalty of a larger step size. Figures 10 and 11 support 

the results of Figure 9 in that the variational filter performance is 

superior to that of the extended filter for mild conditions, i.e. small 

magnitude of nonlinearity and small order of nonlinearity. Figures 10 

and 11 also identify conditions for more harsh nonlinearities, where the 

extended filter increasingly outperformed the variational filter. 



TABLE I 

A COMPARISON OF THE NUMBER OF ON-LINE OPERATIONS 
REQUIRED FOR THE TWO FILTERS 

General Case for Special Case with 
n=2,'r=l,m=1 Zero Elements Included 

for n = 2, r = 1, m = 1 

Mul t. Add Mult. Add 
I 

Integration 30 27 13 12 

Integration 14 12 10 9 

Calculation of K 4 2 2 0 

Tota ls fo.r the 
Variational· 14 12 10 9 
Kalman Fi 1 ter 

Totals for the 
Extended Kalman 48 41 25 16 
Filter 

Totals for the 
Variational 56 48 40 36 Ka·lman Fi 1 ter 
Using RK4 

Totals for the 
Extended Kalman 180 · 158 94 84 Filter Using 
RK4 
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Summary 

An indication of the added complexity of the extended Kalman filter 

over the variational filter was identified in this chapter for both a 

general second-order system and for the specific second-order system 

considered in Chapter II. A ratio of the number of on-line computer 

operations was determined to pena 11 ze the extended filter by 1 ncreas i ng 

the filter step size to yield filtering algorithms of approximately 

equal computational speed. A comparison of the two filtering algorithms 

based on both computational speed and accuracy was then made. Therefore 

a basis has been developed from which further studies involving the use 

of several well known integration methods may be made in Chapter rv~ 



CHAPTER IV 

ON-LINE KALMAN FILTERING USING DIFFERENT 

NUMERICAL INTEGRATION FORMULAS 

This chapter is concerned with the on-line simulation of the non­

linear stochastic system described in Chapter II using both the extended 

and the variational Kalman filtering algorithms described in Chapter Io 

In particular, several different integration methods are investigated 

using the step sizes for each filter as determined in Chapter II I for 

algorithms of equal computational speedso It is assumed that there are 

two computers available, a fast computer and a relatively slow computero 

Step sizes for three different integration algorithms were determined by 

considering the total number of weighted on-line operationso Compari­

sons involving simulations of the two computers were made between 

single-step methods (RK4 and RK2)o The more accurate of these methods 

was compared with a multistep method (AB2) for the slower computero 

Results were verified by ensemble-averaging 100 Monte Carlo runso 

Single-Step Integration Formulas 

Integration formulas may be classified as either single-step or 

multistep methods. One important group of single-step algorithms are 

the Runge-Kutta (RK) methodso Because they involve only first-order 

derivative evaluations, they are computationally simpler than the higher­

order Taylor formulas but produce results equivalent in accuracy to 

33 



higher-order formulas. For differential equations of the form 

dx/dt = f(x,t), RK methods require the evaluation of f(x,t) at two, - -- -~ 
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three, and four values oft on the interval ti ~ t ~ t;+l for second, 

third, and fourth order approximations, respectively. Two of the 

several available RK methods were used to implement the filtering 

equations for both the extended and variational filtering algorithms in 

this chapter. The first was a second-order Runge-Kutta formula (RK2) 

which requires two derivative evaluations and two projections as shown 

geometrically in Figure 12. The algorithm is given by 

25.i+ 1 = Xi + % (!!Jo + !!!1) 

where his the step size and 

!I!o = f.(25.;, ti ) 

!!!1 = f.(xi + .!!!cJh, ti+l) 

(4.1) 

(4.2) 

The expression for !!!i in Equation (4.2) uses a predicted value of x at 

the endpoint of the interval, i.e. 25.i + h.!!!cJ, The corrector equation 

in (4.l) utilizes the average between the initial slope (.!!!cJ) and a 

projected slope (m1) for proceeding over the entire interval. 

The second Runge-Kutta method used in this chapter approximates 

the derivative at four points over the interval [ti' t,+1], instead of 

only two., Figure 13 geometrically describes this fourth-order method 

(RK4) given by 

(4.3) 

where 
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mo = i (2S,p t ) 

m1 = f(x. !!!Qh 
t; + ~) - --, +2' 

m~h 
(4.4) 

me = f(~1 + T. h 
ti + ! ) 

!113 = .f. (ii + fil2h • ti+l) 

Numerical Results Using 

Single-Step Methods 

Because of its extensive use in a wide variety of areas and be­

cause of its high degree of accuracy, the RK4 integration method used 

exclusively in Chapters II and III was also used in the research 

described in this chapter as a basis of comparisons with other i~tegra­

tion methods. The other single step method chosen (RK2) provides a 

clear comparison between a lower-order integration method and a higher­

order method with integration step sizes properly adjusted for differ­

ences in the number of on-line computations. As noted earlier, the 

total number of wei~hted operations involved in implementing the varia­

tional filter for the system in Equation (2.5) using RK4 is 116. For 

the extended filter, this corresponding number is 292. When the filter 

equations are integrated for (2.5) by RK2, the total number of .weighted 

operations· is 58 for the variational Kalman filter and 148 for the 

extended Kalman filter as indicated in Table II. 

It was assumed that for the nonlinear system equations considered, 

the filter can be operated on-line for a filter step size HF= .05 

seconds with 120 weighted operations per step. Let this comp1,1ter be 

designated as Computer I. These conditions then allow the variational 



Fourth-
Order 
Runge-Kut ta 

Second-
Order 
Runge-Kutta 

Second-. 
Order 
Adams-
Bash forth 

TABLE II 

TOTAL NUMBER OF OPERATIONS AND CORRESPONDING STEP 
SIZES FOR THE THREE INTEGRATION METHODS 

Total Number of Step Size for Integration of 
Weighted Operations Filter Equation 

Variational Extended Variational Extended 
Kalman Kalman Kalman Kalman 
Filter Filter Fi 1 ter Fi 1 ter 

116 292 Computer I: HF=o05 seco Computer I: HF=ol25 seco 
Computer II: HF=olO seco Computer II: HF=o 25 seco 

58 148 Computer I: HF=o025 sec. Computer I: HF=o0625 seco 
Computer II: HF=o05 seco Computer II: HF=o 125 sec. 

. ' 

31 84 HF= 0025 seco 

w 
00 
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filter, using RK4 and having 116 weighted operations per step, to be 

operated at HF= ,05 seconds, The extended filter using RK4 must then 

be operated at HF= ,125 seconds as shown in Table II, The step sizes 

for both filters using RK2 was found in the same manner to be HF= .025 

seconds for the variational filter and HF= .0625 seconds for the 

extended filter. In order to compare performance at the same points in 

time, such as at every 0.125 seconds, the error was determined every 

other step for the extended filter using RK2. Because of its obvious 

signifitance in filtering applications, only the input noise variance 

was varied in this work on different integration methods. Numerical 

results for RK2 with Computer I are shown in Figure 14, Figures 9 and 

14 illustrate that the lower order integration method (RK2) was superior 

to the higher order integration method (RK4) used with either filter 

for Computer I. 

Another computer (II) operating at a slower speed implementing 

both filters using both RK2 and RK4 was introduced to give further 

insight into the favorable operating conditions of each filter­

integration method combination, Computer II can perform only 60 

weighted operations for a step size HF= .05 seconds and must there­

fore be operated at HF= .01 seconds for RK4 to perform the same number 

of operations as Computer I in the same total time. Step sizes used 

for Computer II are given in Table II, and numerical results are shown 

in Figures 15 and 16. These curves illustrate that only a slightly 

lower average RMS error was obtained when using RK2 with both filters, -

The combinations of RK2 with the variational filter and RK2 with the 

extended filter bbth-yielded convergent humerical results for higher 

input noise {Q ~ 7) than the RK4-filter combinations, which became 
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divergent for Q > 3. Comparing the results. in Figure 14 with the 

results in Figure 15 for the moderate input noise of Q = 2 shows that 

the average RMS error of 0.413 for the RK2-vari~tional filter combina~ 

tion is the lowest error of the four combinations, Other combinations 

yielded errors from 6.8% to 22.4% greater than this lowest error. 

43 

As shown in Chapter III, it is apparent that the extended filter 

performs better than the variational for much higher values of input 

noise when Computer I was used, The cross-over point beyond which the 

variational filter performed better than the extended filt~r occurred 

for much milder input noise conditions when the larger step size corre­

sponding to Computer II was used for the filter equations. 

To verify the results of these single sample functions for moderate 

input noise, Monte Carlo ensemble averages were run for all four combin­

ations for Computer II. For 100 Monte Carlo runs, the sample error 

variances for the variational and extended filters using both RK2 and 

RK4 are plotted in Figure 17. A slightly lower input noise variance 

(Q) was used because of occasional numerical instability problems over 

the 100 runs. The RK2-variational filter combination was again clearly 

superior to the other three combinations. Although the differences 

between the RK4 combi nat.ions were small er, the RK2-extended filter com­

bination generally performed better over the entire five second solution 

than either filter with the RK4 method. The performances of the RK4 

combinations were both more erratic with higher variances of error than 

either RK2 combination. Therefore, the lower-order method was consist­

ently superior .to the hi gher:..order method for the larger step size 

(Computer II}, while the differences were not so pronounced at the 

smaller\step size (Computer I). 
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Multistep Integration Formulas 

Integration formulas which require information not only at t; but 

also outside the integration interval under consideration [ti,ti+l] are 

referred to as mu1t1step methods. A disadvantage of these methods 1s 

the requirement of add1t1ona1 information to start the procedure. 

However, these methods do require considerably less computational time 

than single-itep methods. Multistep methods.include predictor, correc-. 

tor, and predictor-corrector methods. 

A si~Ple ~~lti~tep predictor meth6d called the Adams-Bashforth 

second-order method (AB2) has been chosen for comparison with the two 

single-step methrids considered earlier in this chapter. This particular 

multistep methrid utilize~ a single past slope as shown in Figure 18. A 

polynomial is forme~ and extended to time ti+l to determine .!i+l to form 

the equation 

h ( • • ) xi+ 1 = x1 + "2" 3x1 - x; _ 1 (4.5) 

Equation (4.5) is used to update .f; and x is updated by the equation 

x;+1 = f(~,+1't1+1) ' 4·6) 

Together, Equations (4.5) and (4.6) mathematically form the second­

order Adams-Bashforth {AB2) method. 

Numerical Results Using 

Multi-Step Formulas 

Once again the initial step in obtaining numerical results for 

comparison purposes was to determine the weighted number of operations 

and the associated filter integration step size. This information is 

tabulated in Table IL Because the variational filter requires 31 
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weighted operations per step when integrated by AB2, a step size of 

HF= ,025 seconds was used with Computer II, Figure 19 shows how the 

AB2 variational filter combination performed for different input noise 

var1ances (Q), Comparing Figures 15, 16, and 19 demonstrates that the 

second-order multistep method (AB2) operated with much greater accuracy 

for all values of input noise variance considered than did either RK4-

filter combination, A simil.ar comparison with the curves -0f the RK2-

filter combinations was inconclusive for a set of single sample func­

tions, even though the same set of random number was used in every case, 

This observation indicated that a Monte Carlo ensemble average was 

needed to provide more conclusive results, Such a comparison with both 

RK2-var1ational filter and RK2-extended filter combinations has been 

made in Figure 20, This more valid set of results for 100 Monte Carlo 

runs shows that the AB2-variational filter combination, at the same 

computational speed as the RK2 methods~ was clearly superior to both 

RK2 methods, 

The AB2 extended filter combination was not implemented due to 

difficulties in making comparisons at the same points in time, However, 

it 1s expected that its performance relative to the AB2-variat1onal 

filter combination would have been similar to the relative performances 

of the RK2 and RK4 combinations, 

Summary 

Both single-step and multi-step methods were examined in conjunc­

tion with both the variational Kalman filter and the extended Kalman 

filter for a variety of operating conditions, A 11 fast 11 computer 

(Computer I) and a 11 slow11 computer (Computer II) were used to simulate 
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the several integration method-filter combinations considered. It was 

determined that the lower order single-step method (RK2) was markedly 

better than the higher-order method (RK4) for Computer II with both 

filter combinations. The improved performance was only marginal at the 

smaller step size (Computer I) for a mild input noise. After adjusting 

step sizes to obtain filter-integratio~ method combinations of approxi­

mately equal computational speed, it was shown that the multi-step 

method (AB2) was clearly more accurate than either of the single-step 

methods for both filters. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A general purpose digital computer simulation program was developed 

to carry out the research in this thesis. This program allowed the 

implementation of both the variational Kalman filter and the extended 

Kalman filter for a variety of significant operating conditions and 

filter inte~ration methods. All simulatibn results are for a particular 

nonlinear stochastic system corrupted by zero-mean white Gaussian noise. 

Both filters were first compared for computational accuracy and compu­

tational speed as the input noise variance~ order of nonlinearity, and 

magnitude of nonlinearity were varied, The results indicated that the 

extended fi 1 ter is far superior to the vari atfona 1 filter in terms of a 

lower average RMS error when operating at the same step size. It was 

shown that for all values of input noise and system nonlinearities con­

sidered, the extended filter should be used where accuracy is the only 

important consideration. This conclusion is even more significant for 

the more harsh conditions of higher input noise, higher order nonlinear­

ity, and larger nonlinearity, where the extended filter with its relin­

earization each step became increasingly more accurate than the 

variational filter. It was then concluded that a decision as to which 

filter to use for a given application should be determined by consider­

ing both accuracy and computational speed requirements. For highly 

~, 
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nonlinear conditions the extended Kalman filter should be utilized, but 

for mild operating conditions the computationally simpler variational 

Kalman filter is more desirable. In making comparisons based on both 

computational speed and accuracy, the number of weighted operations for 

each filter was computed to determine the step size at which each fil­

tering algorithm should be operated. Once this had been accomplished, 

it was fo~nd that thefe existed a set of conditions beyond which the 

variational Kalman filter should be used, since the extended fi·lter had 

been penalized for its excessive number of on-line computations. For 

all but the most severely nonlinear conditions, the variational Kalman 

filter proved to have a lower average RMS error than the extended Kalman 

filter for the same sequence of random input noise and with the integra­

tion of both system equations and filter equations by the fourth-order 

Runge-Kutta method. These results provided a basis for comparison of 

several single-step and mult1step integration methods when used to inte­

grate the filter equations for both a slow computer and a fast computer. 

First!! it was necessary to again adjust the step sizes for eac:h inte­

gration method as a function of the number of operations each must per­

form every step and then to compare errors at the same points in time. 

It was determined that for a smaller step size, a lower-order fotegra.: 

tion method should be used for a lower estimation error and for a more 

stable solution. These conclusions were supported by a Monte Carlo 

ensemble average of 100 runs. The second-order multistep method was 

found to be much more accurate than either single-step method used to 

integrate each filter at the larger step size. 
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Recommendations for Further Study 

The general purpose digital computer simulation program developed 

for this research may be easily adapted to a large variety of nonlinear 

stochastic systems and integration methods for further investigation of 

their combined use, Investigation of higher-order, more complex systems 

with .smaller time constants would provide a broader area of preferred 

operation for each nonlinear filter considered in this research effort, 

More valid results might be provided by making large numbers of Monte 

Carlo ensemble averages rather than single sample functions, 

Anoth~r area which might be of importance in estimating the states 

of a nonlinear stochastic system using different integration methods is 

that of considering other nonlinear filters described in the literature, 

Additional problems such as truncation error, roundoff error, mixed step 

length, numerical instability, and special methods for the linear parts 

of a system (23) might be considered for combinations of integration 

methods and filtering algorithms of interest, 
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APPENDIX 

COMPUTER PROGRAM FOR SIMULATING NONLINEAR 

STOCHASTIC SYSTEMS USING CONTINUOUS 

KALMAN FILTERS 

The general purpose digital computer simulation program listed here 

has several different operational modes. Any one of several integration 

methods may easily be used for both the system equations and filter 

equations separately with provisions for integrating the system at a 

different step size (HH) than the step size used for the filter equation 

(HF). The system equations, defined in subroutine XEQN, may be altered 

by changing the order of the nonlinearity (AEXP) or the magnitude of the 

nonlinearity (ALPHA). There is also a provision for a single sample 

function (MCR = l), or Monte Carlo ensemble averaging over any desired 

number of runs (MCR = number of runs). The sample variance of each 

state of the system (VARX, VARX2) is computed from a ten-point average. 

Either filter may be implemented by setting KALF = VAR or KALF = EXT 

for the variational K~lman filter and the extended Kalman filter, 

respectively. 
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1 C 
2 C THIS PROGRAM SIMULATES A NJNLl\lEAR STO:HASTIC SYSTEM 
3 C US! f\G ANY ONE OF SEVERAL INTEGRATION 'HTHDDS liITH 
4 C EITHER THE VARIATIONAL KALMAN FILTER OR THE EXTENDED 
5 C K AL M AN F I L T ER , 
6 C 
1 C KALF=EXT EXT!:NDED KALMAN FILTER 
8 C KALF=VAR VARIATIONAL KAL'1AN FILTF.R 
9 C MCR=l SINGLE SAMPLE FUNCTION 

10 C MCR= DESIRED NUMBER OF MONTE CARLO RUNS 
11 C ALPHA= WEIGHTING FACTOR FJR MAGNITUDE OF ~O~LI~EARITY 
12 C AEXP= ORDER OF NONLINEARITY 
13 C NS= ORDER OF SYSTEM 
14 C 
15 INTEGER RS,VAR,EXT 
16 REAL K 
17 OlMENS ION OXP 121, OPP ( 2, 21 
18 DIMENSION XN(41 ,XNDl41,0PU+,41,Pl4,41,Xl41,DXl41,X!-<l41,0XH141,HHI 
1 9 * I 4, 2 I , w I 2 I , W 11 2 l , XH T ( 41 , VA~ D W ( 21 
?1.J DIMENSION SUMXl (201,SSWX11201,XlBARl201,VARX11201, 
2 l * SUM X 2 I 2 0 I , S SQ X2 I 2 0 I , X 2 t3 A R I 2 0 I , VAR X 2 12 0 I , X E ( 2 I 
22 COMMON Bl4,21,K(4,21,H(2,41,R(2,21,HT(4,21,Q(2,21,KUTTA,BB,HH,V,G, 
2 3 * V NI 21 , MS , RS , KAL F, NS, R I I 4, 4 I , ALP HA, A EXP , HF 
2 4 COM MON /BLOCK 2 /I X, OUM 
25 COMMON/ HLOCK3/fJPP, DXP 
26 OATA WMEANl ,_WMEAN2 ,VMEANl ,VMEAN214*0,0/ 
27 DATA VAR,EXT/3HVAP ,3HEXT/ 
28 DATA Wl/2*0,0/ 
29 DATA KC,KCl/5,5/ 
30 IX= 315 7 l 
31 DUM=O,l 
~2 AEXP=3, 
33 KALF=EXT 
34 NTOT=20 
35 HH=O, 05 
3o HF=O ,025 
37 MTUT=20 
38 MCR=lOO 
39 DO 501 Ml=l,10 
40 SUMXl(Mll=O, 
41 SUMX2( Ml I =O, 
42 SSQX21Mll=O, 
43 501 SSQXl(Mll=O, 
44 C ·SYSTEM CONSTANTS, IC'S 
45 NS=2 
46 MS=l 
47 RS=l 
48 DO 502 MC= 1,MCR 
49 RMSER=O,O 
50 DO 789 I =l ,NS 
51 DXP(Il=O,O 
52 00 789 J=l,NS 
5 3 7 8 9 DP P I I , J l = 0, J 
54 DO 5 I= l,MS 
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5 t, 
57 
58 
59 
61.J 
6 l. 
62 
63 
64 
65 
6 (; 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
7-J 
74 
,1 \) 
>-l l 
>-l2 
83 
8 '• 
:l5 
86 
o7 
88 
qg 

90 
91 
92 
'H 
94 
95 
96 
97 
98 
~9 

100 
1 01 
102 
10 3 c 
l 04 c 
l i) 5 c 
106 
107 
l O 8 

DO 4 J= l,MS 
R I ( I , J I =O .a 

4 R ( I , JI = o. 0 
DO 5 L= l,NS 
HII.Ll=O. 

5 HTRI(L,Il=O.O 
DO 2 I=l,RS 
DC 6 L=l ,NS 

6 BIL,11=0. 
W ( l I =O. 
DO 2 J=l,RS 

2 QII,Jl=O. 
DO 7 I=l,NS 
VN( Il=O.O 
XHT(ll=O.O 
XEIIl=O.O 
DD 7 J=l,NS 

7 Pll,Jl=O. 
XHT(Zl=O.l 
fl(2,ll=l.O 
ALPHA=0.5 
Q (l , 1 I =l .o 
I{ I l • ll = o. l 
S lt;V l=Sl.)RT( RI 1, 11 /HF l 
SIGWl=SQl<T(Q(l,11/HHl 
X(ll=O.O 
X C2 I =O .1 
XN( l l =O.O 
XN ( 2 l = 0. l 
XHll 1 =O .o 
XH(2l=O.u 
Htl,11=1.0 
DO 1 5 I Y = l , r-15 
OD 15 IO=! ,NS 

l 5 HT I IO, I Y I= H ( ! Y, I O I 
RI(l,ll =l.O/Rll,ll 
DO lo 10=1,NS 
DO lo IY=l,MS 
HTRI(ID,!Yl-= O.u 
DO lo IJ:1,MS 

16 HTfU(ID,lYI"' HTRIIID,IYI i- HTIID,IJl*RIIIJ,IYI 
HI M=HH 
IF( KALF .EQ.EXT) KC= 2 
LN=O 
DO 10 Ml=l,10 
DO 30 100"' 1, 2 
Mii(; .o;Q 

DO 55 KIIC=l ,KC 

***** INTEGRATE SYSTEM EQUATIONS & NOM[NAL TRAJECTORY BY RK4 ***** 
1-!H=HlM 
lF("1NG.EQ.OI KC1=2 
IFIMNC..EQ,01 MNG:l 
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109 
110 
111 
112 
113 
114 C 
115 C 
116 C 
117 
118 
119 
120 C 
121 C 
122 C 
123 
124 
12 5 
126 
127 
12 8 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
t59 
160 
161 
162 

IF(MNG.EQ.l) KC1=3 
IF(MNG.EQ.11 MNG=O 
IF(KALF.EQ.REGI KCl-=l 
00 257 KAB-= l,KC l 
LN=LN+l 

***** GENERATE INPUT ANO MEASUREMENT NOISE ***** 

CALL RNG(SIGWl,SIGVl ,WMEANl ,VMEANl,VANOW I 
VN( ll=VANOW(21 
W 11 l=VANOW( 11 

***** INTEGRATE SYSTEM EQUATIONS BY RK4 ***** 

DO 3 KUTTA=l ,4 
CALL XEQN(XN,XND,Wll 

26 CALL XEQNIX,DX,WI 
3 CALL RK4(XN,XNO,X,OXI 

25 7 CONTINUE 
DO 55 IAB2=1,2 
DO 25 IJ=l,NS 
DO 25 JI-=1,MS 
I<( I J,JI I -=O. 
DO 25 I K=l, NS 

25 K(IJ,Jil=P(IJ,IKl*HTRIIIK,JI) + K(IJ,Jl) 
If(KALF.EQ.EXTi HH-=HF 
IFIKALF.EQ.REGI HH=0.025 
IF(KALF.EQ.REGI CALL RSCIXN,DP,PI 
IF( KALF.EQ.EXTI CALL RSCIXHT,OP,PI 
CALL AB2P(P,DPI 
CALL OELXH(XH,DXH,VN,XN,X,XHT I 
CALL AB 21 XH ,DXH I 
DO 28 LI=l,NS 
Xt·1T ( LI I =X H ( LI I + X N I LI I 

28 XEILll=XILII-XHTCLII 
55 CONTINUE 

RMSER=RMSER+XE(ll*XElll 
TIM E=LN*HH 

30 CONTINUE 
SUMXl ( Ml I =SUMXl ( Ml I +X 111 -XHTI 11 
SUMX2( M 11 =SUM X21 M 11 + XI 21-XH T( 21 
S SQXl ( Ml I =S S QX l ( M 11 + (XI 11-X HT I 11 I *IX( 11-XHTI 111 
S SQ X2 ( Mll = S SQ X2 ( Mll + ( X I 21 -XHT ( 2 I I* IX ( 2 1-X HT I 2 I I 
GO TO 10 
WRITEl6,3001 TIME 

3 0 v FOR MA Tl 1 X , 1 TI ME = 1 , F 5 • 3 I I 
DO 12 IQ=l,NS 

12 WRITEl6,4001 X(IQI, Xlll([QI, XH(IQI ,XHT(IQl,XE(IQI 
400 FORMAT( 29X, 5( 2X,fl0. 711 

WR I T EI 6 , 2 00 I (( P I I, J I , J = l , '-' S I , I = l , NS I 
10 CONTINUE 

RM SER= SQRT( RM SER /MTO Tl 
WRITEl6,9691 RMSER 

96 9 f OR MAT ( 3 7 X ,F 2 0 • 6 I 
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163 200 FORMATC5X,2Fl2.7/5X,2Fl2.7/t 
164 502 CONTINUE 
16 5 C 
166 C ***** CAL:ULATE SAMPLE MEAN AND VARIANCE ***** 
167 C 
168 DO 40 Ml=l,10 
lb':l XMl=MCR 
170 XlBARCMlt=SUMXl(Mll/XMl 
171 X2BAR(MlJ=SUMX2lMll/XMl 
1 72 VAR XlC M 11 =S SQXl (MU IC XMl-1, J -(XMl/ lXMl -1 .11 *Xl BAR l Ml) *X lBAR (Ml t 
1 73 I/ AR X 2( M U=S SQ X2 I Ml I I( X'1 l- l. l -C XM 1 IC XMl-1. 11 * X2B AR I Mll * X2 BAR C Mlt 
174 TIME=lOO~*HH . 
175 WRITE(6,4ll TIME,XlBAR('1ll,VARXlCMlt 
176 40 WRITEl6,421 X2BARIM11,VARX21Mll 
177 41 FCRMAT(lOX,F6.3,215X,fl5.BII 
178 42 FORMAT( l6X,21 5X,Fl5.81J 
179 RETURN 
180 END 

1 SUBROUTINE JACCA,X~I 
2 DIMENSION XHC41 ,A14,41 
3 CO"IMON SC 4, 21, KI 4, 21 , HI 2, 41 , RC 2, 21 ,H Tl 4, 21 , QC 2, 21 , KUTT A, BB ,HH ,V ,G, 
4 *VN(2 J ,MS ,RS, KALF,NS ,RI 14, 41, ALPHA, AEXP, HF 
5 DO 10 l=l,NS 
6 DO 10 J=l,NS 
7 10 All ,JJ =O. 
8 A C 1 , 11 = - 2. 0 
9 AC2,1J= O.O 

10 A(2 ,21= -1.0 
11 Al 1,21=1. +-AEXP*ALPHA*ABSIXH(2 I l** ( AEXP-1.J 
12 RETURN 
13 END 
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l SLBROUTINE RSCCX,DP,Pl 
2 INTEGER RS 
3 DIMENSION ATC4,4l,APl4,4),PSC4,4l,DPl4,4l,PATC4,4l ,XPC4,4J ,XC41,'iP 
4 *I 2,41 1 PHT(4 ,41, PHRHPl4,4l ,8Tl2,41,Pl4,41, BQ(4,2 I, BQBT (4,4) ,PHTR I( 4 
5 *,2l,AC4,4l 
6 COM MON B (4, 2 1, K ( 4, 21, H C 2, 41, RI 2, 21, HTC 4, 21, QC 2, 21, KUTTA ,BB ,HH ,V ,:; , 
7 *VNI 2l ,MS,RS,KALF,NS,RIC4,41,ALPHA,AEXP,HF 
8 CALL JACU,Xl 
g DO 19 l=l,NS 

10 DO 19 J=l,NS 
11 19 ATII,JI = AIJtll 
12 DO 43 l=l,NS 
13 DO 43 J=l,NS 
14 43 PSU,Jl=PCl,J I 
15 DO 34 l=l,NS 
16 DO 34 J=l,"'IS 
11 APII,Jl=O. 
18 DO 34 L=l,NS 
19 34 AP(I,Jl=ACI,Ll*PS(L,JI + APCI,JI 
20 DO 35 I=l,NS 
21 00 35 J=l,NS 
22 PAT(I,Jl=O. 
23 DO 35 L=l,NS 
24 35 PAHI,JI= PSll,Ll•ATIL,JI + PATCI,JI 
2 5 DO 5 I= 1, NS 
26 DC 5 J=l,MS 
27 SHTII,JI =HCJ,11 
28 DO 10 I=l,NS 
29 DO 10 J=l ,MS 
30 PHTII,Jl=O. 
31 DO 10 L=l,NS 
32 10 PHTll,JI = PII,Ll•HTCL,Jl + PHTCl,Jl 
31 DO 15 1=1,MS 
34 00 15 J=l,NS 
35 HPll,Jl=O. 
36 00 15 L=l,NS 
3 7 15 HP I I , J I = HI I , L I *P C L , J I + HP I I , J l 
3 8 DC 20 I =l, NS 
39 DO 20 J= 1,MS 
40 PHTR IC 1,J l=O. 
41 DO 20 L=l,MS 
42 20 PHfRIII,JI = PHTCI,Ll*RIIL,Jl • PHTRICI ,JI 
43 DO 25 I=l,NS 
44 DO 25 J=l,NS 
45 PHRHP( I,JJ=O, 
46 DO 25 L=l ,MS 
47 25 PHRHPll ,JI = PriTRI fl ,U*HPIL,JI •· PHRHPCI,JI 
4 8 DO 30 1 = l , NS 
49 DO 30 J=l ,RS 
<;C BQII,Jl=O. 
5 l DO 30 l = l , R S 
52 BTIJ,11 = 811,JI 
Sl 30 BQI 1,Jl = 8([ ,Ll*QCL,JI t- BQCI,JI 
54 DO 33 I=l,NS 
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56 
57 
58 33 
59 
60 
61 36 
62 
63 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

l 
2 
3 
4 
5 
6 
7 
8 
9 10 

10 
11 

00 33 J=l,NS 
BQB Tl 1, JI =O. 
DO 33 L= l,RS 
BQBT ( l, J l = B QI l, LI *BT (L, J l + BQB T ( 1, J I 
DO 36 l = 1 , NS 
DO 36 J=l,NS 
DP(l,Jl=AP(l,Jl + PAT(l,Jl - PHRHPll,JI 
RETURN 
END 

+ ElQBT( 1,J I 

SUBROUTINE RNG( S IGXl,S IGX2, XMEANl, XMEAN2, XI 
COMMON/BLOCK2/I X,DUM 
DIMENSION X(21 
IX=l997l*IX 
I X=MOO( IX,10485761 
U=ABS( IX*l.0/ 1048576. l 
Zl =SQRT (-2 .O *ALOG (OUM 11 
XI ll=Zl*COS(6.28318*Ul*SIGX1 + XMEANl 
X(2l=Zl*SIN(6.28318*Ul*SIGX2 + XMEANZ 
llUM=U 
RETURN 
END 

Sl,6ROUTINE ABZP(P,DPl 
DIME NS IUN P ( 4 1 4), DP ( 4, 4 l, OPP ( 2, 21 ,D XP ( 21 
COM MON B (4 ,2 l ,K (4 ,2 l ,H ( 2 ,4 I , R (2, 2 1, HT ( 4, 21, QI 2, 2 l, KUTT A, BB, HH, V, G, 

*VN( 21,MS,RS,KALF,NS,Rlt4,4l ,ALPHA,AEXP,HF 
COMMON/ BLOCK3/DPP, DXP 
DC 10 l=l ,NS 
DO 10 J=l,NS 
Pll,Jl=Pll,JI + HF*(l.5*DP(l,JI - Oo5*DPP(l,JII 
OPPI I,Jl=Df>ll ,JI 
RETURN 
ENO 
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l SUIROUTINE RK4( Xl,DX1,X2,DX21 
2 DIMENSION XlC41,DXll41,X2C41,DX2(41,DXA(41,DXBl41,XAC41,XBl41 
3 COMMON BC4,21,KC4,2J,H12,41,R12,21,HTl4,21,QC2,21,KUTTA,BB,HH,V,G, 
4 *VNC 2J,MS,RS,KALF,NS,Ril4,41 ,ALPHA,AEXP,HF 
5 GO TO(l0,30,50,701, KUTTA 
6 l O D T= ll. 5*HH 
7 DO 20 l=l,NS 
8 XACIJ=Xl(ll 
9 OXAlll=DXllll 

10 Xllll=Xllll + OT*OXllll 
11 XtHll=X2(11 
12 OXBI ll=OX2( II 
13 20 X2 I I l=X2 111 + DT*OX2111 
14 Rl:TURN 
15 30 DO 40 l=l,~S 
16 OXAI IJ=DXAI II + OXll 11 + DXlll I 
1 7 Xll I I= XA ( I J + 0 T* DX l ( II 
18 DXB( l)=OXBCII + DX2(11 + DX2(I) 
l 9 4 ll X2 I I I =X BI I I + OT* OX 2 I I I 
2J RETURN 
21 50 DO 60 I=l,NS 
2 2 0 XA I I I = DX A I I I + DX l I I I + OX l C 11 
23 Xllll= XA(IJ + HH*DXllll 
24 DXBC II= DXBI II + DX2C I I + DX2C I I 
25 60 X2(II= XBl[I + HH*DX2(11 
26 RETURN 
27 70 VH= HH*0.1666667 
28 DC SJ l=l,NS 
29 Xll I l=XA( II + VH*IDXAI II + DXUII I 
30 BJ X21ll=XtH[I + VH*(DXBIII + DX21.111 
31 RE TURN 
32 END 

2 
3 
4 
5 
6 
7 
8 lJ 
9 

10 

SUBROUTINE AB21X,DXI 
OIMEf\lSir~ Xl21,DX(21,DXP(21 ,DPPl2,21 
C lH~ MON l:l I 4, 21 , K I 4, 2 I , H C 2 , 4 I , R ( 2 , 2 I , HT ( 4 ,21 , QI 2, 2) , KUTT A, BB, HH, V, G, 

*V N ( 2 I, MS, RS, K ALF, NS, k I I 4, 41, ALPHA ,A EXP, HF 
COM~ON/BLOCK3/0PP,DXP 
DO 10 I= l ,NS 
Xlll=Xlfl + HF*(l.5*DX(II - 0.5*DXPCIII 
O XP < 11 =DX I I I 
RETURN 
END 
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l SUBROUTINE DELXHIXH,CXH,VM,XN,X,XHTI 
2 INTEGER RS,REG,EXT 
3 REAL K,KH,KVM 
4 DIMENSION XH(4t ,DXH(41 ,Xl41,Al4,4),VM(2 l,KH(4,41,KVM(41,XNl41 
5 0 IMENSION XHT( 4) 
6 COMMON B(4,21,K(4,21,H(2,41,R(2,21,HTl4,21,Q(2,2l,KUTTA,B8,HH,V,Jt 
7 *VN( 21,MS,RS,KALF,NS,Rl(4,4l ,ALPHA,AEXP,HF 
8 DATA REG,EXT/3HREG, 3HEXT/ 
9 00 2 I =l, NS 

10 OD 2 J= 1,NS 
ll KH(I,Jl=O. 
12 DO 2 l=l,~S 
13 2 KHll,Jl=KCI,ll*H(L,JI + KH(I,Jl 
14 DO 3 l=l,NS 
l 5 K VM ([I= O. 
16 DO 3 J= 1,MS 
l 7 3 K VM ( l l=KV M ( I I + KI I, J I *VM ( J I 
18 [F(KALF.EQ.REGI CALL JACIA,XNl 
19 IFIKALF.EQ.EXTI CALL JACIA,XHTI 
20 004 I=l,NS 
21 DXHI ll=O. 
22 DO 4 J=l,NS 
2 3 4 D XH ( II = DX H ( I I + ( A (I , J 1-K HI I , J I I *X H ( J I + K H( I , J I * I XI J I - XN I J I I 
?4 DO 5 L=l,NS 
25 5 DXHILI= DXH(Ll + KVMIU 
26 RETURN 
27 END 

l 
2 
3 
4 
5 
6 
7 
8 
q 

10 c 
11 c 
12 
13 
14 
l 5 

10 

SUBROUTINE XEQN(XO,XMO,WNOISEl 
INTEGER RS 
D I MEN SI UN XO ( 41 , X 11'0 I 41 , w NOi SE I 2 l , BW 14 I 
COMMON 8(4, 21,K ( 4, 21,H( 2, 41,RI 2,21,HTI 4, 21 ,Q( 2, 21 ,KUTT A ,BB ,HH,V,G, 

* VN( 21 , MS, RS, KAL F, NS, RI 14 ,41 , ALP HA, A EXP, HF 
DO 10 I=l,NS 
Bw ( I I =O • 
DO 10 J=l,RS 
BwlII= BWIII+ Bll,Jl*WNOISEIJI 

SYSTEM EQUATIONS 
XMD( ll=-2.*XO( l)+BW( ll+X0(21+ALPHA*XD(21*ABS(XD(21 l**(AEXP-l.l 
XMDl21= -XD(21 + BW(21 
RETURN 
END 
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