
DETERMINATION OF PRIME IMPLICANTS FOR

DISlffliCTiff: BOOLEAN FUNCTIONS.1

BY USE OF A DIGITAL COMPUTER

By

WILL!A:r-1 JOSEPH VIPRAIO

Bachelor of Science

United State:s Military Academy

West Point, New York

1954

Submitted :to the Faculty of ·the Graduate School of
the Oklatiorna Sita te ·. Urtive:r si ty >

· in partial fulfillment 0£ . the' requirements
for the degnee of ·
MAS,TER ' OF ' sotENCE

January, 1960

Thesis

' '

OKLAHOMA
STATE UN!Vt::RSITY

LIBRARY

SEP 2 1960

DETERMINATION OF PRIME IMPLICANTS FOR ·.

DISJUNCTIVE BOOLEAN FUNCTIONS

BY USE OF A DIGITAL COMPUTER

Approved ~

~c9tza(0,-4-kr7V
Thesis Adviser

~ (/
7 r1i ~e-c-GC t 62 ~

I Dean of the Graduate School

452868
ii

fREFACE

The minimization of Boolean Functions may be broken

down into two parts; the first part b_eing the determination

of the· set of prime implicants, and the second being the

selection from the set of prime implicants of those terms

required to make up the minimal forms of the· Boolean func­

tion or expression. '.l:'his paper will deal with the first

part, namely, the determination of the set of prime impli­

cants. In this thesis, Boolean expressions and a computer

program will be developed in order to find the set of prime

implicants.

The author: wishes to express his indebtedness to Frank

E. Mc;Farlin, Project Engineer for the International Business

Machines Corporation, for his invaluable ideas and assistance

in the preparation of this paper. Many 1:jhanks are due Pro­

fes.sor Paul A. McCollum who acted as the writer I s major

advisor. Grateful acknowledgment is also due Professor

William Granet for making the facilities of the Oklahoma

State University Computing Center available, and also for the

interest and encouragement given to the writer. Thanks are

;also due to the staff of the Oklahoma State University Com­

puting Center for their generous assistance.

iiJ.

TABLE OF CONTENTS

Chapter Page

I. THE PROBLEM •· ~ . • • • • 1

.A. Statement of the Problem. .. • • • • • • • 1
B. Definition of Terms • • • • .. • • • • • 2
c. Some Minimization Techniques. • • .. • • 3

II"

III.

DESCRIPTION OF TECHIU QUE • • e • • • ~ • • • • $

A. Method of Obtaining Prime Implicants ••
B.. Validity of the Method • • • • • .. • • •

ANALYSIS OF PROGRAMMING TECHNIQUE

A.
B ..

Boolean Types Used in :programming •
General Pescription of J?rogram Logic

• •

• •
• •

IV.. IBM 650 DIGIT.AL COMPU!ER _PROGR.AM:, .. , ·• ! • ,. • •

v.

A.
B.
c.
D ..
E.

Program Description
Input Requirements •
Output Card Format ..
Flow Chart •••••
Computer Program • •

SUMMARY AND CONCLUSIONS. • •

• • • • e ~ • • • ~ ~ . . .
• • e • • a • • • • . . . ~
• e • • • q • • • •

.. . . " . • • • • •

BIBLIOGRAPBY • • • • • ~ ~ • • • • • • • ~ • a • • • •

iv

6

6
7

11

11
12

14

14
15
17
17
20

30

32

CHAPTER I

THE PROBLEM

A. Statement of the Problem

In recent years, ther.e has been an extremely rapid devel­

opment of complex switching networks such as are found in mod­

ern ele,ctronic digital computers, automatic telephone dialing

systems, and other complex systems so prevalent in this age

of aut~mation. For reasons of reliability, simplicity; and

economy, the engineer and circuit designer has fo~d it expe-
., d:~. i..4.

dient to construct these complex switching networks of two

valued or binary elements. Relays, vacuum tubes, diodes, tran­

sistors and magnetic cores are among the more common devices.

The presence or absence of an electrical signal, a high or low

voltage, a magnetic field of positive or negative polarity,

represent some of the schemes of representing binary informa­

tion. Of necessity, paralleling the development of these

switching networks, an algebra of logi:_,c designed to present a

mathematical expression for complicated switching. ope~f:ltions
1).'.i.. "'.) i .. i

has received much study. The algebra of logic~ mor~ ·commonly

known as Boolean ~lgeibra, after George Boole (1815~~864), who
. . .. ::·· .. ~, .. l ., .

fi:rst introduced i.t in 1847 in a paper dealing wit~· t.he mathe-
. ·. ·,\ .. : i:l "•

matical analysis of logic, has received the attention·or many
~> '...-·. ' .

1

2

authors who have since devoted much time to the problem of

simplification or minimization of Boolean expressions.

W. V. Quinel has shown that minimization of Boolean func­

tions may be considered in two parts, namely, the determina­

tion of a set of prime implicants, and the selection from the

set of prime implicants of those terms necessary to make up

minimal f.orms of the original Boolean expression. This paper

will deal only with the first part of the problem, the deter­

mination of the set of prime implicants for a Boolean function

through the use of the IBM 650 digital computer.

B. Definition of Terms

~lthough it is assumed that the reader has a basic under­

standing of Boolean .Algebra, a few definitions will be.given

to preclude any misunderstanding on the part of' the reader~

Since this paper will be concerned with no more than ten inde­

pendent binary variables, they will be represented by the let­

ters A, B., c., D; E, F, G, H, I, and J.

The negative (complement, inverse) of a variable A will

be written as I .

.A single variable, either complemented or uncomplemented;

will be referred to as a literal.

The symbol + re.presents alternation (disjunction, inelu­

sive. OR, logical .sum, inclusive union)~
,.) '!, ...

1w. v •. Quine, "The.Problem of' Simplifying Truth Func­
tionstf, American Mathematical Monthly, Vol .. · 59, · October 1952,
pp. 521-531. .· - · ·

The symbol• represents conjunction (logical product,

AND, intersection). The conjunction of two literals A·and

B will be shown as AB meaning A•B.

A term will mean a conjunction of literals.

An alterm will mean an alternation of literals.

A normal form (or disjunctive, or alternational form)

will mean an alternation of termsa

A conjunctive form is a conjunction of alterms.

3

A term X will be said to subsume a term Y if all the

literals, whether complemented or uncomplemented, whose con-
·-

junction is Y are included among the literals whose conjunc-

tion is X.

If a term X subsumes a term Y, then X implies Y.

The prime implicants of a Boolean expression will be de­

fined as all the terms derivable from the expression such that

no term or terms are subsumed by another· term.

A normal canonical fo:rm for a function of n variables will

mean an alternation of terms in which all n variables appear

in each terme

c .. Some Minimization Techniques

Many techniques for the minimization of Boolean func­

tions have been developed, but careful investigation will re­

veal that most methods merely provide an alternative procedure

for finding Quinews prime implicants and then selecting the

necessary prime implicants to make up the Boolean function.

An 'attempt by the author to p'.['.ogram the Quine Method on the

IBM 650 Computer for determing prime implicants proved im­

practical because of the excessive number of operations re-
I

4

quired for a Boo';Lean function of ten variables. The Harvard

Computer Group have devised a chart method for the simplifi-
,.,.

cation of Boolean functions, but it is merely a variation of

the Quine.Technique .. A special form of Venn diagra111 called

the Veitch2 diagram has been used with success in simplify­

ing Boolean functions, however, this mt3thod is not·rea<iily
,.. ,, '

adaptable for :prograIIlllling on a digital computer, and is even

impractical for hand computation if more than a few variables

are involved. Both the Quine and Harvard methods require
.. .:'.Li :~-;i_

that the Boolean expression be in the normal canonical form ' .

prior to the reduction process, while the Veitch method re­

quires only that the expression be in normal for~. Excellent

concise explanations of the above three methods together with
,, ,,, '<-•

numerical examples may be found in a book by Montgomery Phis­

ter; Jr.3

Urbano and Mueller4, and also Roth', have presented topo­

logical approaches to the minimization problem. The':Lworks of

· 2E. w. Veitch, 11 A Chart Method for Simplifyin~ Truth­
Func~ions, 11 Proce$dings .Q.t. .:th.a Association rm:. Computirig
. Machin~ry, May ·· 19 .· ~, pp. · 128-:::f33 •

3Montgomery .Phister, Jr., Logical Design .Q.t. D~g~;j~l Q.Qm-
pute;cs, · CNew York, 195'8), pp~ 68-108. :,. dv, ·

413,_. JI. Urbano and Re ;K. Mueller, A Topological!:'Ml!~hod
~ .:th§. Determination of .tlle. Minimal· Forms .Q.t.'.! Boolean ~­
.ll.Qll, AF.·GRC Teop .. Rept. No. TR-56..;.10;, US.AF Cambridge<~esearch
Center (Bedford, 195'6). ·· , ·· ·· · ·

5J. P. Roth, "Algebraic Topological Methods for the Syn­
thesis of Switching Systems r. ,ti Transactions .Qt.~ Americag
Mathematical Society, Vol~ 88, No. 2, July, 195'8, pp. 301-32°.

5

the above authors along with others may be found in the bib­

liography contained at the end of this paper ..

CHAPTER II

DESCRIPTION OF TECHNIQUE

A. Method .Q!. Obtaining Prime Implicants

_Before proceeding any further it would be advi.sable to

state that the material to be presented in this chapter has

been extracted from a pap<er by Frank E. MeFarlin entitled

"A Technique for Minimizing Boolean Functions ~hat Does not

Require a .Canonical Form11 , dated DE3cember 31, 1958 and pro­

posed for publication in the I~ TRANS~CTIONS ON ELECTRONIC

COMPUTERS. The above paper has been extracted by F. E.

?,1:cFarlin, from his forthcoming PhD. the$is, 11 Logical pesign
. . . \ .

Concepts,'' Oklahoma State University, Stillwater, Oklahoma.

This section will show a method whereby the complete set

of prime implicants for a Boolean function in disjunctive

form can be obtained without first putting the function in

normal canonical form. By repeated application of the follow­

ing Boolean identities, the complete list of prime i~plicants

will be obtained.

1 .• A + AB = A

2. AB + AB = A

3~ AB .+ Ic = AB + AC + BC

The first two identities. are those which are applied when us­

ing the QU:tne method from the normal cano.nical fC?rm, and
\. '

6

7

fulfill the requiremen~ that no term or terms are, or can be,

subsumed by another term. The third identity is to insure

that all the terms derivable from the Boolean function are

generated. The following very simpl~ example will serve to

illustrate the 1applicatioh.:·of-the method;

Given:.>;F·=1BC + ACD + AJ;3CD + ·BCD ·, ·:
. 1 . 2 3 .. . 4

...... ·· ... : . ;.) :. - ·- '··'

Since identities 1 and 2 cannot be applied, identity 3-is

used to expand the function;

Terms 1 and 2

Terms 1 and 3

· 'Terms l and l1-

_;.,r. .:. , .. ~. '~'

Terms 2 and 3
~:·'r): ·.: :·: -··- <~

Theorem does not a.pply

Give ACD

Rule applies, however, term is
zero

Give BCD

Terms 2 and 4 Give ABD

T~;~; 3 and 4 Give ABD
'--~ ., ' .. - _,-, 1:t· . : -·- .. ':· . -. '· . I

The new function now contains the four original terms plus
,.

the four generated terms •. By application of theorems 1 and
.

2 the function)red:u<ies to~.

F ,=,= Bff :+ CD ~- BD

Since further app}li;~a~ion:,of ."th:i.$ t.hree identities :does not

generate any ~e.wr'1lerJns 7 theL?bove .express,ion ther:eby; contains

all of the prim~+fmp]dcants.
:.·· . ,··

' -~ :···
B .: Yalidi ty Qi.·· the Me·thod

follows by·. consid~~n~, th~ttwo Boo.+~an equation~~

F = Isc + ABC + Tue

8

F = BC+ Tue
These two equations are equivalent, and the first may be re­

duced by application of identities 1 and 2 (the Quine method)

to yield., .F = BC + AC.. Since the Quine method requires that

the Boolean expression initially be in normal canonicl:1.1 form,

the second equation cannot be reduced by application jyf iden­

tities 1 and 2 G> The term BC does however imply the term ABC
which, upon application of identity 2, could be us~d to re­

duce the second term of the second equation to the required

prime implicant AC,, Therefore, the p:,:oblem is the detection

of such implied terms within terms, and the utilization of

such terms to obtain the desired reduction .. Assume that in

a Boolean expression, two of the terms imply terms that may

be combined to give a third term which is not reducible by

identity 1.. .Such a term must then either be a primf::' impli­

cant, or it 9an be ,combined by use of identity 2 with anoth~

er term in the original Boolean expression for eventual reduc­

tion to a prime implicant0 If the two terms of the Boolean

expression are considered to be X and Y, then a term T must

be found which will satisfy the following two conditions;

1. TX + TY = T

2,, (T - X) ~ ('.r - Y) = T

The Venn diagram shown below illustrates the concept that T-X

is by definition the conjunction of T and not :X: (shaded area) ..
-T - X = T - TX= TX

Fig .. 2-1

It follows that;
-TX=T Y=TY

-TY=T-X=TX

Taking the second condition.:

(T - X) + (T - Y = T

TX+TY=T

T(X + Y) = T

-TXY = T

T - XY = T

9

The last equation shows that if the term Tis to exist,

then the logical product of the two terms X and Y must be

zero~ This condition can only be met if, among the literals

which comprise x, there is a literal which is the complement

of a literal contained in Y; in other words, X = AB and Y = AC,

where A is a single literal and Band Care the remaining

literals of X and Y" .Now that the condition for the existence

of the term T has been found, the term T must next be deter­

mined~ Let it be assumed that it may be some function of A,

A, and some or all of the literals of Band c, either as con­

tained or complemented" Rewriting the first condition as

TAB+ TAC= T, perfect induction is next employedQ

If A or A is present in T, then one of the terms on the

left side of the equality will of necessity be zero and no

new term can be generated" One of the terms on the left of

the equality will again be zero if any complemented literal

of B or C is contained in T" T must therefore be a function

of Band C and must further be of the form or forms B, c,.BC,

10

or so~e other partial combination of the literals of Band c.
If the substitution of B or C is made for T, an inequality is

the resulta The substitution of any partial combination of

the literals of Band C also yields an inequality, therefore

T = Bp. If B contains a literal, and C contains the negative

of the same literal, then T = o. Thus the following Boolean

identity results:

AB + AC = AB + AC + BC.

CHAPTER III

ANALYSIS OF PROGRAMMING TECijNIQUE

A .. Boolean Types~ in Programming

Although in the previous chapter only three Boolean

identities were shown for the derivation of the set of prime

implicants, in programming the digital computer the follow­

ing nine Boolean types were taken into consideration:

TYPE FORM

0 A + A = A

1 A + AB :::; A

2 AB + A= A

3 AB + AB = A

4 AB + AB = A

5 BC + ABC = BC + ABC + AC = BC

6 ABC + BC = ABC+ BC + AC = BC

7 AC + 13c = AC + BC + AB
8 AC + BD

+

+

Type O is, of course, merely to eliminate duplicate terms ..

Type 2 is just the reverse order of type 1 and is eonsidered

so as to allow the computer to recognize the term to be elim­

inated .. This will be brought out further on the flow chart.

Types 3 and 4 are again only the reverse of each other,. Types

11

AC

AC

12

5,.6, and 7, are all variations of the third Boolean identity

presented in Chapter II. Since it is advantageous to elimi­

nate terms whenever possible, it is desirable to allow the

computer to know when the generated term is subsumed by the

second term on the left of the equality (type 5), subsumed

by the first term on the left of the equality (type 6), or

not subsumed by either term on the left of the equality

{type 7). Type 8 is a Boolean form not reducible by iden­

tities 1 and 2, nor of the form requir~d by identity 3 •

. B. General Description of Program Logic

Once the terms making up the Boolean expressions have

been placed as a consecutive-list in computer storage, tests

are then made to determine which of the nine Boolean types

are present. The first term is picked up and worked against

the second term, testing for the nine Boolean types in the

order previously listed. After the fir·st term has been ·com­

pared against the rest of the list, the first term is stepped

(the second term now being considered as the first term) ..

The new first term is now picked up and worked against the

remain¢J.er of the list .. As soon as the first term becomes the

last term in the list, the stepping instruction is reset and

a return is made to the top of the list picking up the first

and second terms,. This proces.s is repeated until types 2, 3,

and 4 no lo~ger occur and no new terms are generated. By

this means, each term in the list is compared against every
'

other term in the list, until the complete set of prime impli-

cants has been determined ..

13

Although the actual working of the program is slightly

more involved than the above brief explanation would lead

the reader to believe, it is felt that a better understanding

of the method used in programming can be gained from careful

scrutiny of the flow charts rather than through a word pic­

ture of the complete operation.

CHAPTER IV

IBM 650 DIGITAL COMPUTER PROGRAM

A. Program Description

The program presented in this chapter was prepared for

use with the.IBM 650 Electronic Digital Computer. The coding

form used was ,IBMv s Symbolic Optimal ~ssembly. Program, Type

II. Both the SOAP program and the assembled machine lap.guage

instructions are shown.~ The program consists of 252 instruc­

tions, and including the regions reserved f'or data, requires

852 drum storage locations in addition to 35 locations in

immediate access storage .. All three indexing registers are

also used.

Although the region reserved for the input data and for

the storage of terms generated by the program consists of 301

locations, it is strongly advised that no more than 50 terms

of a Boolean function be read into storage at one time. This

will allow sufficient room for storage of generated terms and

will also decrease the computation timee For Boolean expres­

sions of exceptional length, it de·sirable to break down the

function into blo.eks of ten to twenty terms per block and to

find .the prime implicants for each block as if they were

individual expressions; the results may .then be combined to

yield the final set of prime implicants by feeding the reduced

14

15

data t9 the computere Should this advice be disregarded, and

too large an amount of data be fed to the computer so that

the program attempts to store a generated term outside of the

reserved region, a built-in stop code will cause the computer

to halt operations without punching out any cards~ Should

this occur, the advice given above should be heeded, and the

loading started anew~

The program is designed to handle Boolean expressions in

disjunctive form, each term consisting of no more than ten

literals~

It is also recommended that prior to initially loading

the program on the drum; a core and drum clearing routine be

used to clear all storage locations~ Pre-punched clearing

routines can usually be found in any computing center, or
'

should this not be the case, ~he IBM 650 Operating Manual

contains a satisfactory clearing procedure~ Oti~e the program

has been loaded, no further clearing is necessary, and only

the data along with the required transfer cards are needed

to solve successive Boolean expressions for the set of prime

implicants.

Although the program has been extensively tested, the

author makes no guarantee and assumes no responsibd.lity agai.nst

the possibility of failure for a specific problem.

B. Input Requirements

Region A, consisting of drum storage locations 0000 to

0300 inclusive, has been reserved for the input data. The

16

Boolean terms for a specific problem should be loaded consec­

utively in this region commencing with location 0000. The

method of loading data is left to the discretion of the .read­

er. One-word load cards have proven very adequate for mo.st

cas~s·, however, the reader may pref er to load the data seven­

per-card, or in some other form for a Boolean expression of

great length. In addition to the Boolean terms, one must

also load the number of terms minus one as a problem constant

into location 9000 .. This is important as it sets the length

of the list of terms. For a Boolean expression consisting

of twenty terms, the number N-1 = 20-1 = 19, and written as

0000000019, must be loaded into core storage location 9000.

Each Boolean term is ten digits in length regardless if

the number of independent binary variables is less than ten.

An uncomplemented literal will be represented by the numeric

1, a complemented literal by the numeric 3, and the absence
•

of a literal by a O .. A few examples are shown. below:

Boolean T,~rm Numeric Representation

ABCDEFGHIJ = 1331333111

3013010000

0000001031

AC .D F =
-GI J =

The order of input for a problem, assuming that the com­

puter program is. on five-per card format and the data is to

be loaded on one-per card, is as follows:

1. Core and drum clear cards ..

2 .. Computer prog;ram (fi ve-:per card),.

3. Transfer card (L-5 to L-1) ..

17

N-1 card (one-p~r card).
' '

D~ta cards (one-pe_r card).

Transfer card (to location 035'0 = start of program).

For the successive determination of the prime implicants

for other_Boolean expressions, only steps 3, 4, 5', and 6 are

necessary~

C. Output~ Format

The program in its present form is designed to punch out

the prime i_mplicants for a disjunctive Boolean expression on

a one-per card format; the first ten digits of each card being

the various prime implicants. The solution is not converted

to alphabetic form, but remains coded in the mµneric form as

~scussed under input requirementse

The flow charts presented in Figures 4-1 and 4-2 repre­

sent the actual technique used in the application of the tes.ts
-~

for the nine Boolean types. A study of these charts ':f1.ll give

the reader. a good under·standing of the program logic. Should

the reader.desire to modify the program in any way, these

charts will aid greatly.

-

I~

~
Any Type

2-7
NO YES

~ '
Reset Beset

Gent Type
-

,L.

Exit '" Reset
Punch lst

Out - J,

~

- Step
1st

I I'

'

Eol • 4 ..
Is 2nd Term
End of List
YES NO

w

18

Set List

*
'~ See Fig. 4

Set .. 1st·
!i'or Blowup
Dashed Are

I

'f

Is 1st Term
End of List

YES NO

' ' t ~

Is 1st
z'.ero

YES: NP.
Ji

J,
\ Set

2nd
i 'llf I~

I Is 2nd
Zero

YES NO
J,

w Type O
YES NO
ii

• r ----- - ---~ 1, .,_ - - --- - t7
Elim. I

Type 1 I
I w

2nd I YES NO. I
i

I iii I
I TO u

I
Types

8
I Step L I

I T¥oe 2-7 I .
I YES NO I

I I
I

: .JI I L _________________ J

- Step
r

2nd ' -

Fig. 4-1

-2
of

a

Type O
~S NO

Is 1st) 2nd
NO YES

t

Type l
ES NO

••
EOL Elim.
~ 2nd

TO
~ Step·

Tv)e
,

\ Type 3 I
IYES NO

Elim.
2nd

·-I"\--.

Type 2
YES NO

Replace
1st by 2nd

...

"'

Type 4
Yrs NO

' 'f

Types
5,6,7
YES NC

,1, w EOL----~--"~ ,,__ _______ r

' ~ Repla~.e
l.st by New Generate "• ~,,

,L, New Term
Elim. I t

2nd ' •·-
.,, Type 6 ' - YES NC

...._ Replace i-,:

1st bv New
11

Type 5 I
YES NO

Replace •- J.. *---
2nd by New

'

Has Term
Been Gen.
Before

NO YEf

. Step
Gent

'

w

1 Add Term To
Gent List

, I

Step
List

Add Term To..,.-___ _,,'
~------.....iEnd of List -

Fig~ 4-2

EOL

19

20

E. Computer Program

The program for the IBM 650 Digital Computer, which wa·s

mentioned in the preceeding p~ges is shown below and on the

following pages. The compiled machine lan~uage instructi.ons

are shown on the left while the corresponding SOAP II instruc­

tions are shown to the right.

MACHINE LANGUAGE SOAP II

I,nst. Loe a- Op. Data Inst. Loe a- Op. Data Tag Inst.
. No. tion Code Add. Add. tion Code .Add. Add.

·t

0001 0000 00 0000 ·0000 REG .AOOOO 0300

0002 0000 00 0000 0000 REG B1700 1999

0003 0000 00 0000 0000 EQU GENT 9034

0004 0000 00 0000 0000 EQU FORM 9032

0005 0000 00 0000 0000 EQU LIST 9000

0006 0000 00 0000 0000 EQU TY.PE 9001

0007 0350 80 0000 0306 START RAA 0000 1ST

0008 0306 60 2000 0305 1ST RAU AOOOl A

0009 0305 69 9000 0312 LDD LIST

0010 0312 51 8001 0318 SXA 8001

0011 0318 40 0321 0322 NZA · Nl

0012 0322 60 9001 0331 RAU TYPE

0013 0331 44 0335 0336 NZU
I

EXIT

0014 0335' 11 8003 0345 SUP 8003

0015 0345 21 9001 0304 STU TYPE

0016 0304 80 0000 0306 RAA 0000 1ST

0017 0321 50 8001 0327 .Nl AXA 8001

21

001s· 0327 44 0381 0332 NZU N2

0019 0332 50 0001 0306 AXA OGOl 1ST

0020 0381 69 8005 0338 N2 LDD 8005

0021 0338 82 8001 03>+1+ RAB 8001

0022 0344 52 0001 0400 AXE OQOl 21W

0023 0400 60 4000 0355 2NP RAU AOOOl B

0024 0355 44 0309 0310 NZU N3 EOL

0025 0310 69 9000 0317 EOL LDD LIST

0026 0317 53 8001 0323 SXB 8001

0027 0323 42 0326 0377 NZB Yl

0028 0326 52 8001 0333 AXB 8001

0029 0333 52 0001 0400 AXB 0001 2ND

0030 0377 50 0001 0306 Yl AXA 0001 lS\I' ..

0031 0309 11 2000 0405 N3 SUP AOOOl A

0032 0405 44 0359 0360 NZU :rl4

0033 0360 211 4000 0310 STU AOOOl B EOL
' '

0034 0359 69 0362 0315 N4 LP.D VAR

0035 0315 89 8001 0371 RS.C 8001

0036 0371 65 2000 0455 RAL AOOOl A N5

0037 0455 35 0001 0311 N5 SLT 0001

0038 0311 21 9612 ~03a-0 STU 9012 C

0039 0320 11 8003 0329 SUP 8003

0040 0329 58 0001 0385 AXC 0001

0041, 0385 48 0455 0339 NZC N5

0042 0339 69 0362 0365 L.DD VAR

0043 0365 89 8001 0421 RSC 8001

0044 0421 65 4000 0505 RAL AOOOl B N6

22

0045 0505 3$ 0001 0361 N6 SLT 0001

0046 0361 21 9622 0370 STU 9022 C

0047 0370 11· 8003 0379 SUP 8003

0048 0379 58 ~_0001 0435 AXC 0001

0049 0435 48 0505 0389 NZC N6

0050 0389 69 0362 0415 LPD VAR

0051 0415 89 sooi 0471· RSC 8001

0052 0471 60
\'

0?55 2000 RAU AOOOl A

0053 0555 11 4000 0605 SUP .AOOOl B
.\ii

0054 0605 46 0308 0409 BMI Tl T2

0055 ·0308 60 9612 0367 Tl RAU 9012 C
\

0056 0367 44 0521 0372 NZU Y2

0057 0521 11 9622 0431 Sm' 9022 C

0058 0431 44 0485 0372 NZU T3 Y2

0059 0372 58 0001 0328 Y2 AXC• 0001

0060 0328 48 0308 0382 NZC Tl

0061 . 0382 21 4000 0310 STU AOOOl B EOL
. '

0062 . 0409 60 9~~2 0417 T2 RAU 9022 C

0063 0417 44 0571 0422 NZU Y3

0064 0571 11 9612 0481 SUP 9012 C

0065 ", 0481- 44 0535 0422 NZU T4 Y3
'

0066 0422 58 0001 0378 :{3 AXC 0001

0067 0378· 48 0409 0432 NZC T2

0068 0432 60 · 4000 0655 RAU AOOOl B
'

0069 0655 21 2000 0303 STIJ AOOOl A

0070 0303 11 8003 0411 SUP 8003

0071 0411 21 4000 0353 STU AOOOl B TD
•

23

0072 0485 60 9032 0343 T3 RAU FORM

0073 0343, 11 8003 0301 SUP 8003

0074 0301 21 9032 0410 STU FORM

0075 0410 69 0362 0465 LDD VAR

0076 0465 89 8001 0621 RSC 8001 3T

0077 0621 60 9622 0429 3T RAU 9022 C

0078 0429 11 9612 0337 SUP 9012 C

0079 0337 46 0340 0341 BMI T5

0080 .. 0341 44 0395 0346 NZU Y6

0081 0346 24 9632 0403 STD 9032 C

0082 0403 58 0001 0459 AXC 0001

0083 0459 48 0621 0313 NZC 3T Y7

0084 0395 11 0348 Olt53 Y6 SUP TWO
,\l·

44 00~,5 0453 0340 0358 NZU T5
"

0086 0358 21 9632 0316 '.-STU" 9032 C
' 0087 0316 60 '·9032 0325 RAU FORM

'

0088 0325 10 0428 0383 ADP ONE

0089 0383 21 9032 0342 STU" FORM

0090 0342 58 0001 0398 AXC 0001

0091 0398 48 0621 0313 NZC 3T Y7

0092 0313 60 9032 0671 Y7 RAU FORM

0093 0671 44 0375 0340 NZU T5

0094 0375 11 0428 0433 SUP ONE

0095 0433 44 0340· 0388 NZU T5

0096 0388 69 0362 0515 LDD VAR

0097 0515 89 8001 0721 RSC 8001
:

0098 0721 21 4000 0503 STU AOOOl B Y8

24

0099 0503 10 9632 0461 Y8 ATJP 9032 C
- \ ...

,j',

0100 0461 58 0001 046'7 AXC 0001

0101 0467 48 0420 0771 NZC Y9

0102 0420 35 0001 0503 SLT 0001 Y8

0103 0771 21 2000 035'\3 Y9 STU AOOOl A TO

0104 0535 60 90~2 0393 T4 RAU FOR!v1

0105 0393 11 8003 0351 SUP 8003

0106 0351 21 9032 0460 STU FORM

0107 0460 69 0362 0565 LDD VAR

0108 0565 89 8001 0821 RSC 8001 4T
,\:

0109 0~21 60 9~12 0479 4T RAU 9012 C

0110 0479 11 9622 0387 SUP 9022 C

0111 0387 46 0340 0391 BMI T5

0112 0391 44 0445 0396 NZU Zl

0,1:1-3 0396 24 9632 0553 STD '9b32 C

0114 b553 58 0001 0509 AXC 0001

0115 0509 48 0821 0313 NZC 4T Y7

0116 0445 11 0348 0603 Zl SUP TWO

0117 0603 44 0340 0408 NZU T5
0118 0408 21 9632 0366 STU 9032 C

0119 0366 60 9032 0425 RAU FORM

0120 0425 10 0428 0483 AUP ONE

0121 0483 21 9032 0392 STU FORM

0122 0392 58 0001 0448 AXC 0001

0123 0448 48 0821 0313 NZC 4T Y7

0124 0340 60 9032 0349 T5 RAU FORM

0125 0349 11 8003 0307 SUP 8003

t

25

0126 0307 21 9032 0416 STU FORM

O:t27 0416 69 0362 0615 LDD VAR

0128 0615 89 8001 0871 .RSC 8001

0129 0871 65 2000 0705 RAt AOOOl A

0130 0705 15 4000 0755 ALO AOOOl B Xl

0131 0755 35 0001 0511 Xl SLT 0001

0132 0511 44 6665 0466 NZU X2

0133 0466 21 9632 0324 STU 9032 C

0134' 0324 58 0001 0330 AXC 0001

0135 0330 48 0755 0334 NZC Xl OUT

0136 0665 11 0428 0533 X2 SUP ONE

··Ql37 0533 44 0437 0438 NZU X3

0138 0438 24 9632 0495 STD 9032 C
,.S

0139 0495 58 0001 0401 AXC 0001

0140 0401 48 0755 0334 NZC Xl OUT

0141 0437 11 0428 0583 X3 SUP ONE
, ..

0142 0583 44 0487 0488 NZU x4

0143 0488 24 9632 0545 STD 9032 C

0144 0545 58 0001 0451 AXC 0001

0145' .· 0451 48 0755 0334 NZC Xl OUT

0146 0487 11 0428 0633 x4 SUP ONE

0147 0633 44 0537 0538 NZU X5

0148 .0538 69 0441 0394 LDD TREY

0149 0394 24 9632 0501 STD 9032 C

0150 0501 58 0001 0357 AXC 0001

015'1 0357 48 0755 0334 NZC Xl OUT

0152 0537 11 0428 0683 X5 SUP ONE

26

0153 0683 44 0587 0588 NZU _x6

0154 0588 9632 0446
.,

21 STU 9032 C

0155 0446 10 9032 0805 AUP FORM

0156 0805 10 0428 0733 AUP ONE

0157 0733 21 9032 0442 STU FORM

0158 0442 11 80Q3 0551 SUP 8003

0159 0551 58 0001 0407 AXC 0001

0160 0407 48 0755 0334 NZC Xl OUT

0161 0587 10 0428 0783 X6 AUP ONE

0162 0783 21 9632 0492 STU 9032 C

0163 0492 11 8003 0601 SUP 8003

0164 0601 58 0001 0457 AXC 0001

0165 0457 48 0755 0334 NZC Xl OUT

0166 0334 60 9032 0443 OUT RAU FORM

0167 0443 44 0347 0310 NZU EOL

0168 0347 11 0428 0833 SUP ONE

0169 0833 44 0310 0638 NZU EOL

0170 0638 69 0362 0715 LDD VAR

0171 0715 89 8001 0921 RSC 8001 Rl
'

·0172 0921 60 9632 0529 Rl RAU 9032 C

0173 0529 44 0883 0384 NZU R2

0174 0883 11 9612 0493 SUP 9012 C

0175 0493 44 0397 0384 NZU R5 R2

0176 0384 58 0001 0390 R2 AXC 0001

0177 0390 48 0921 0444 NZC Rl

0178 0444 69 0362 0765 LDD VAR

0179 0765 89 8001 0971 RSC ~QOl R3

27

0180 0971 10 9632 0579 R3 AUP 9032 C

0181 0579 58 0001 0585 AXC 0001

0182 0585 48, 0688 0439 NZC R4

0183 0688 35 0001 0971 SLT 0001 R3

0184 0439 21 2000 0353 R4 STU AOOOl A TO

0185 0397 69 0362 0815 R5 LDD VAR

0186 0815 89 8001 1021 RSC 8001 R6

0187 1021 60 9632 0629 R6 RAU 9032 C

0188 0629 44 0933 0434 NZU R7

0189 0933 11 9622 0543 SUP 9022 C

0190 0543 44 0447 0434 NZU so R7

0191 0434 58 0001 0440 R7 AXC 0001

0192 0440 48 1021 0494_ NZC R6

0193 0494 69 0362 0865 LDD VAR

· ·0194 01~65 89 8001 1071 RSC 8001 RB

0195 ··1071 10 9632 0679 RB AUP 9032 C

0196 0679 58 0001 0635 AXC 0001

0197 0635 48 0738 0489 NZC R9

0198 0738 35 0001 1071 SLT 0001 RB

0199 0489 21 4000 0~53 R9 STU AOOOl B ,'!0

0200 '0447 69 0362 0915 so LDD VAR

0201 0915 89 8001 1121 RSC 8001

:aoo2
.,

- 0202 1121 16 0729 SLO 8002 ..
0203 '0729 11 8003 0637 SUP 8003 Sl

0204 0637 10 9632 0595 Sl AUP 9032 C

0205 0595 58 0001 065a. AXC 0001
..

0206 0651 48 0354 0855 NZC S2

28

0207 0354 35 0001 063'7 SLT 0001 Sl

0208 0855 21 9033 0311+ S2 STU 9033

0209 .0314 60 9634 0373 RAU GENT

0210 0373 .44 0427 0478 -li{ZJJ S5 87

0211 0478 10 0428 0983 S7 ADP ONE

0212 0983 21 9034 0542 STU GENT

0213 0542 88 8001 0498 RAC 8001

0214 0498 60 9033 0507 RATJ 9033

0215 0507 21 7699 0302 STU B0000 C S4

0216 0427 88 8001 1033 S5 RAC 8001 86

0217 1033 60 7699 0653 S6 RAU B0000 C

0218 0653 11 9033 0561 SUP 9033

0219 0561 44 0965 0310 NZU EOL

0220 0965 59 0001 0516 sxc 0001

0221 0516 48 1033 0470 NZC S6
'

0222 0470 60 9034 0478 RAU GENT S7

0223 0302 65 9000 0611 S4 RAL LIST

0224 0611 15 0428 1083 ALO ONE

0225 1083 20 9000 0491 STL LIST

0226 0491 88 80\)1 0497 RAC 8001

0227 0497 59 0300 0703 sxc 0300

0228 0703 48 0356 0557 NZC FAULT

0229 0356 58 0300 0363 AXC 0300

0230 0363 60 9033 1171 RAU 9033

0231 1171 21 6000 03~ STU AOOOl C TO

0232 0557 01 0000 0000 FAULT Jl~T 0000 0000

0233 0353 60 9001 0661 TO RAU TYPE

0234 0661

0235 1133

0236 .0336

0237 0645

0238 0753

0239

0240

0241

0242

0243

0244

0245

0246

0247
,. I

0412

0319

0475

0905

0559

0368

0510

0413

0364

d2ta8 0450
, ' I

0249 0362

0250 0428

0251 0348

0252 0441

10 0428 1133 AUP ONE

21 9001 0310 STU TYPE

60 9034 0645 EXIT RAU GENT

11 8003 0753 SUP 8003

21 9034 0412

69 9000 0319

80 8001 0475

60 2000 0905

44 0559 0510

21 905'9 0368

71 9059 0510

STU GENT

'·

40 ·. 0413 0364

51 0001 0475

01 0000 0000

Li

L2

L3

LDD

RAA

RAU

NZU

STU

PCH

NZA

SXA

HLT

21 0000 035~ TERM STU

00 0000 0010 VAR

00 0000 0001 ONE

00 0000 0002 TWO

00 0000 0003 TREY

LIST

8001

AOOOl A

9059

9059

0001

0000
'l

0000

29

EOL

Dl

12

12

13

Ll

0000

TO

10

1

2

3

.'!, ,,

CHAPTER V

SUMMARY ANP CONCLUSIONS

' .
The.result of this study has been the·development of a

. ' ' ' I

program for the IBM 650,Digital Computer which will deter-

mine the·set of Priille Implicants for disjunctive Boolean func­

tions. Every att~µipt has been made to hold the number of in­

structions to a minimum. The program was compiled using SOAP

II in order to reduce computation time. The program will

effectively handle Boolean expressions containing a maximum

of ten variables. No restriction is made upon the number of

terms comprising th~ Boolean function~ In order to handle

the Boolean expression, the program requires that the Boolean

terms be.written in a simple coded numeric form. The program

output is in the same coded form. Another program require­

ment-is that the Boolean expression be in the normal or dis­

ju,netive form; the normal canonical form is not necessary but

is, of c_ourse, acceptable.

Although the method used in programming is quite readily

adaptable to a declmal coded computer such as the IBM 650,

the method is even more suitable for·a binary computer such

·as the IBt,1 704.. The IB~ 704, in ad.di tion to being approxi-
. . ' . .

mately thirty times faster than the .IBM 650, possessE9s-cer-
. . .

tain intrinsic qua.1-i ties . or mpre powerful . operation -codes,
;

that would enable it to handle Boolean functions more

30

31

effectively. Operation codes which will perform logical AND,
' OR, and EXCLY;JSIVE OR operations are available on the IBM 704-

Computer. The IBM 704- can also handle words of greater and

variable length, has greater storage capacity, and finally,

has a masking facility which would·greatly enhance the com­

parison of Boolean terms.

Since an lB~ 704- C-0mputer was not available for use by

the author, and since there are niore :CBM 650.Computers in

use than any other computer of comparable size, type, and

speed, it was felt that a program for the IBM 650, such as

presented in this paper, was a worthwhile endeavor.

An app-lication of the Petrick Method6 to a digital com­

puter, utilizing the :results obtained from the program pre­

sented in this paper, would yield a composite program which

would find the minimal form or forms, as the case may be,

for disjunctive Boolean functions.

6s. R. Petrick, A Direct Determination ~ .. ;the Irredun­
.wmi Forms m'.. I! Boplea~ Function :El:Qm .~ .Set of Prime
Implicants, .AFCRC-TR-5 -110, USAF Cambridge Research Center
(Bedford, 1956). ·

BIBLIOGRAPHY

J Ghaza.la, M. J. "Irredundant Disjuneti ve and Cohjuncti ve Forms
of a Boolean .. Function. n l ,B:M, Jo;yrnal .Qt Re~earch and
Development., r, No. 2, (April, 1??.?), 171-17 • -

Karnough, 11• "The Map Method of. Synthesis of' Combinational
· Logi-c .Circuits." A,I,E,E. TransactiQns, LXXII, .Part 1

(:&OV(!Illber, 1953~, 59~..;599. . ..

M(JCluskey, E. J., Jr_. "MiniI?ization of Boolean Funetions_.n
!wt _·liill. System Technical Journal, xxxv . (November, 1956),
ill?~. . .

~eFarlin, Frank E •. , "A. Technique f'or Minimizing Boolean Func-
1 tions That Does N6y Require a Canonical form." (pamphle~

pr·oposed for public'ation in, the ;I; .R.E. Transactions on
Electronic Computers, Endicott, New York, December'J.958).

Petrick, s. R., A I)irect Determination .Qf. .:tlUt Irredundant
Forms_.Qi: a Boolean Function from the~ Qi: Prime Impli'."" rfflt: us~ Cambridge Research Center TR-,o-110 (April,

' .

Phister, Mo1ftgome~y, Jr., Logical Design of D~gital Computers,
~ew :York: John Wiley and Sons, Inc_., 195 • ·

. . ' . ' .

Quine1.. W. v., "The Problem of Simplifying Trutp_ .. Funetions.n
~ American Mathematical Monthly, LIX (October, 1952),
521-531~- .· .·

• "A Way to Simplify Truth Functions.n Th~ .Am~;rican
--~.M~a~thematical MonthJ..y, LXII (November, 1955) ,. 627-631.

Roth, J. P., n Algebraic Topological Methods for the Synth_esis
· · of Switching Systems I. n Transactions of ~- Am§rican

Mathematical Society, LXXXVIII, No. 2 (July, 1958), ·301-
326 ' : .

Samson, E. w., and R. Mueller, Circuit Minimization: Minima].
llll.d J;;rredundant Boolean Sums QI. Al er a ive Set Method.
USAF Cambridge :Research Center TR- -109 (June, 1955).·

Urbano, R. H., and Mu-eller 7. R •. K., A Topological Method ~-
the Determination .Qt Ja]& Minimal Forms of l! B~olean ·
~~~t:on. USAF Cambridge Research CeJJiter TR-5~-105 (March, 

32 



VITA 

William Joseph Vipraio 

Candidate for the Degree of 

Master of Science 

Title: DETERMINATION OF PRIME IMPLICANTS FOR DISJUNCTIVE 
BOOLEAN. FUNCTIONS BY USE OF A DIGITAL COMPUTER 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Chicago, Illinois, September 
12, l931, the son of William and Mary Vipraio. 

Education: Attended grade school in Chicago, Illinois; 
graduated from Bowep High School, Chicago, Illinois, 
in 1949; attended the University of Illinois, Chica­
go, Undergraduate Division, for one year, 1949 to 
1950; received the Bachelor of Science Degree from 
the United States Military Academy in June, 1954; 
completed requirements for the Master of Science 
Degree in January, 1960. Member of Sigma Tau, 
I. R. E. 

Professional Experience: Entered the United States Air 
Force in June, 1954, and after receiving pilots 
wings was an Aircraft Commander with the Atlantic 
Division of the Military Air Transport Service un­
til attendLng the Oklahoma State University!' 


