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PREFACE

A method for characterizing functions in FP, a functional
programming language, was developed to support execution time cost
analysis. A set of restrictions of each function in FP is defined which
corresponds to the possible computation sequences of the function. Then
a method Is shown to construct equatlions for the domain and the range of
each restriction. Proofs are given that the method is correct and
examples are shown. A program was written to implement the method and
results of program execution are shown in table form. The results show
that the method can be used to estimate the execution time cost of f
over the data domain, 0. A subset of FP Is considered which includes
functions for condition, construction, and composition.
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CHAPTER |
INTRODUCT ION
Statement of Problem

Formal techniques for estimﬁting program execution time by analysis
of the program text have been dehonstrated for conventional procedural
languages. Results are generally expressed as the cost of executing the
program over all possible inputs for the program. Estimates of
execution time are useful for comparing the efficiency of various
versions of a program and for input to resource allocation schemes.
Partially automated techniques for this type of cost analysis have been
demonstrated successfully for programs containing iteration but not for
the general case.

FP, a functional programming language, differs from conventional
languages in several ways: there are no variables or assignment
statements, the data environment consists of a single structured object,
and all functions are built recursively from simpler functions. Also,
each function in FP is defined by a conditional expression and thus, a
conditional branch is possible at each step in the computation.

Due to these differences it is not apparent that existing
techniques are either applicable or sufficient for estimating execution
time of FP functions. The questions considered in this thesis are
Does there exist a process similar to those described in the literature

for conventional languages which can be used to estimate the execution



time of FP;functions? If so, can the process be automated and for what
level of programming complexity will it work? Also, does a method exist
to determine the possible computation sequences of functions in FP? |If
so, can this method be used to provide a framework for estimating the

execution time cost of functions over all possible inputs?
Objectives

In this thesis a method is developed and demonstrated for
estimating the execution time cost of FP functions. The method is
similar to existing methods of cost analysis.

1) Execution time cost is expressed in terms of the number of basic

operations performed.

2) A computational model is defined for FP.
The computational model defines the execution time cost of eabh function
for each possible input. However, due to the absence of program
variables in FP existing methods give no apparent solution to the
problem of estimating the execution time cost of a functlon over all
possible inputs. To solve this problem a characterization of each
function is given. This characterization of functions provides a
framework for execution time cost analysis in FP.

Chapter 2 contains background and definitions for FP and. execution
time cost analysis and a review of the literature for this thesis. In
Chapter 3 a characterization of functions is shown for FP. A set of
restrictions is defined for each function and equations are derived
from the induced set mappings of the restrictions are constructed for
the domain and range of each restriction. Proofs are glven that the

equations are correct and examples are shown. In Chapter 4 a proof is



given that the set of restrictions of the function corresponds to the
computation sequences of the function. Also, a computational model is
defined for FP and meéhods are shown to compute the execution time cost
associated with each restriction. The symbols and notation used in this
paper are defined in the List of‘Symbols on page Vvii.

A program was written in the ‘'C’ programming language to implement
the above described methods, and a table of program results Is given for
various cases of functions in FP. The domain, range, and cost estimate
for each restriction of the functions are Iisted in Appendix H. Due to
the size of the program the source code Is not included in this thesis.
Copies of the program may be obtained by writing to the following
address.

Course Record Files: Richard W. Matzen

Department of Computing and Information Sciences

M.S. 219

Ok lahoma State Universlity

Stillwater, Oklahoma, 74078
Some of the results listed were computed by hand. These cases are duly
noted.

Since this is an initial study of execution time cost analysis for
FP, only a subset of FP is considered. The subset is defined in Chapter

3 and Appendix A.



CHAPTER 11

L ITERATURE REVIEW

FP

Backus (3) presents a case for the development of functional
programming languages as an alternative to conventional algebraic
languages. A broad class of languages is outlined which are based on
functional forms and primitive functions. These functions are used to
build function expressions which are used as arguments to other
functional forms, the result being a strictly hierarchical programming
system with no side effects. A model is presented for a class of a
functional programming systems which are called FP systems. Thls model
is later referred to as the language, FP (4).

The semantics of FP is defined as follows (3). FP consists of the
fol lowing:

1) A set O of objects. An object is either an atom, a sequence of
finite length whose elements are objects, or . (’'undefined’ or
‘bottom’). An atom may be any string of capitai letters, digits, and
special symbols and therefore may be a number, a string, or T or F
representing boolean values.

2) A set P of primitive functions.

3) A set F of functions that map objects into objects.

4) A set G of functional forms which form new functions by taking

existing functions as arguments.



5) A set D of definitions that define functions in F and assign each

a name.
A function f in F may be :

a) A primitive function.

b) A functional form with functions in F as arguments.

¢) A definition of the form f = d, where d is a function in F.

d) None of the above, in which case f:x is |.
The specific primitives and functional forms will not be listed but can
be easily obtained from the literature (3), (4), (11). The subset of F
considered in this paper is defined in Appendix A.

A program in FP has a single operation, application, In which a
function is applied to an object. All functions f in F are strict.
That is, f:}=}, for all f. Also, any sequence containing 1 Is defined
to be . There are two cases where f:x may be |. One case occurs when
the computation of f:x terminates and yields | and the second case

occurs when f:x Is nonterminating.
Execution Time Cost Analysis

There are several approaches to the problem of estimating execution
time cost (12). Cost may be estimated by measurement, either by actual
time or by counting the number of operations performed during execution
of the program with various inputs. Either process is an estimation.
Results for actual time will vary according to system performance and
count ing mechanisms generally only count certain relevant operations.

Another approach is to estimate the execution time cost by analysis
of the program text. |In this case cost must be expressed in terms of

the number of basic operations performed and variables which represent



the size of inputs which affect the number of times these operations are
performed. Since specific Input values can affect the time required for
each primitive operation the typical method of estimating is to assign a
constant cost to each primitive operation (12). The results lose some
of their accuracy but gain independence from any particular computing
system.

The general approach in existing methods for cost analysis is to
develop a computational model for executing programs in the specified
language (1), (12). The model determines a cost formula or rule for the
cost of executing each construct in the language and a method for
determining the computation sequence of a given program. The cost of a
program is the sum of the costs of executing each statement in the
computation sequence. Thus, the model gives a cost estimate for each
possible set of inputs to the program.

A difficult task in execution time cost analysis is estimating the
cost of program execution over the entire data domain (1). One approach
to this probliem involves giving cost expressions containing program
variablies which represent the size of relevant inputs (12). However,
this frequently fails to provide a single cost expression for the cost
of the function over the data domain. Then some basis must be
established for the cost estimate over the data domain. Typical
approaches are to give an expression for best, worst, or average case
cost (1).

Another problem encountered is formally proving the correctness of
execution time cost estimates. One method uses axiomatic semantics to
prove assertions about the number of times certain operations are
performed. It is limited in scope and potential for automation because

it depends on an externally developed set of assertions (12).



Type Inference Schemes

One comprehensive approach to reasoning about programs is called
type inference, where type information about some program structure is
determined by analysis of the program text (2). Type is defined for
functions In terms of the types of the domain and the range of the
function.

A technique for type inference called reduced computation has been
developed and applied to a subset of FP by Katayama (7). First a set of
types is defined. Then a method is given for determining the type of
any function In terms of the types of its domain and range. The type
computations are determined directly from the definitions of the
primitive functions and functional forms. The method is based on
relations which map the type of arguments to the type of results. For
each function f in F a relational expression, f’, can be derived which
performs the reduced computation and gives the type of f. Type
information is represented by type expressions for the structure and
primitive types of components. This is a typical approach to defining

types for type inference schemes (1).



CHAPTER |11
A CHARACTERIZATION OF FUNCTIONS iN FP
Definitlons and Preliminaries

Var ious methods for characterizing programs by analysis of the
program text are described in Chapter 2. Some of these methods are
useful for estimating the execution time cost of programs over all
possible inputs (1), (12). However, none of the methods described are
applied to the problem of execution time cost analysis for functional
languages.
ln'FP all program operations are the application of some function f
in F to some object x in O. Thus, it is reasonable to assume that a
characterization of f which describes the domain and range of f might be
useful for execution time cost analysis. The characterization must be
nontrivial since for all f in F the domain of f is O. In this chapter
a set of restrictions of f is defined which has the following properties.
1) The set of restrictions is a finite set.
2) The domains of the restrictions of the set partition, 0, the
domain of f.
3) The domain and range of each restriction can be derived.
4) The computation sequence of f:x is the same for all x Iin the
domain of each restriction in the set.

The set, F, considered in this chapter is a subset of the set of

functions defined for FP in Chapter 2.



In this section the set of restrictions is defined and properties 1 and
2 are proved. In Section 2 property 3 is proved and equations are given
for the domains and ranges of the restrictions. In the following
chapter property 4 is proved and the characterization of f given by
properties 1-4 is shown to be useful for estimating the execution time

cost of functions f in F over the data domain, O.

Definition 3.1. If f and g are functions, f:X-->Y and g:X-->Y, then f

»

and g are equivalent functions iff

for all x in X, f:x = g:X.

Definition 3.2. For the purposes of this paper the set F is defined as

fol lows.

A) A function f in F Is defined to be (3):
for all x in O,

fax = Pq(X) ==> fq5...5 Plast-1(X) ==> flast-1; flast-
where f:x Is evaluated by (9):

If P4(x) then f:x=fq:X

if "Pq1(x) & Po(x) then f:x=fgy:X

if “P1(X) &...& “P|agt—1(X) then f:x=f aqt:(X)
To simplify notation let ‘P agt ' denote '"Pq &...& “Plast-1"-
B) For all f in F defined in A) above, If

{x! P;(x)=True} {1 (x| Pj(x)=True} # ¢, for some i # j

then replace f by an equivalent function f’' which is derived from f
by replacing PJ with P’J where P'J - PJ & “P.

C) The set F is |imited to the functions defined in Appendix A.
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The definitions in Appendix A are from Backus (3) and Williams (11)
except for [], atom, and null. For these cases the definitions given
are for equivalent functions which are derived for the purposes of this
paper. The equivalent functions for nul! and atom are defined in
Definition 3.2.B. The motivation for this extended definition is to
ensure that for all f in F the following property holds:

{x! P (x)=TRUE} M} (x| Pj(x)=TRUE} = @

for i,j=1,...,flast, i # j.

The methods of this chapter are based on this property of F. The
motivation for defining the equivalent function for [] is shown later.
For all cases proof of equivalence is direct by Definition 3.1 and the
definitions in Appendix A.
The following notation is used In the remainder of this paper.

1) BOOL denotes (x| x=T ! x=F}

2) NUM denotes {x}! x is a number}

3) ATOM denotes {x! x Is an atom}

4) R denotes {eq,<,<,>,>}

A complete list of symbols and notation used in this paper is given
in the List of Symbols on page vii. In Appendix B computations of f:x
are shown for simple cases of f and x. An understanding of these
computations is necessary to understand the methods and proofs of this
chapter. For the sake of simplicity the definitions of f 6 R in
Appendix A are different from those given in the original papers (3),

(11).

Definition 3.3. For any function f, f:X ——> Y, a function g is a

restriction of f if the domain of g is contained in X, and for all x in

the domain of g, g:x = f:Xx. B
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Definition 3.4.

A) For a function f in F defined as:

f:x = Py ——> f1;...;f|ast,
let the first order restrictions of f be defined as:

Py ==> f| , i=1,...,flast.
The first order restrictions will be denoted simply by ‘f;’ and are
derived directly from the syntax of f.
B) For all f and for all f;, i=1,...,flast let d(f|) denote the
domain of f| and r(f;) denote the range of f;. Then

d(f;) = {x{ P|(x)=True } and

r(fy) = fp:d(fp.

Example 3.1.

1) Consider the functlion f defined by f:x=tl:x. The first order

restrictions of f are:

t|1:X - (x-<x1>) - <>
tlg:x = (Xm<Xq,...,Xp>, N>2) —=> <X, ... ,Xn>
tlg:x = “(X=<Xq,...,Xp>,N>1) ==> |
2) Consider any function f:x=[f1,...,fn]:x where f1,...,fn are in F.

The first order restrictions of f are:

[f1,...,fn]lq:X T(f1:x o= Lo fRix o= }) —=> <f1:x,...,fn:x>

L}
~
-4
[y
>
[ ]
-
3
>

]
o

|

J
v

[f1,...,fnlp:x =

Proposition 3.1. For all f in F the following properties hold:

1) d(f|), i=1,...,flast partition 0.
2) r(fp N r(fj) =, for all | # j, i,j=1,...,flast.
Proof: The proof that these properties hold is direct by Definitions

3.2.B and 3.4.B.
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The first order restrictions only give a trivial description of f
in the general case. However, a set of restrictions of f in F which
satisfy properties 1-4 outlined in the beginning of this chapter can be
derived from the first order restrictions. The following definition

gives the derivation of this expanded set of restrictions of f.

Definition 3.5. The computational forms of f are denoted by ch,

j=1,...,p(f), where p depends on f and are defined below for the various
cases of f in F. | .
A) For all f in F and for all x in O the computational forms of f are
defined as fol lows:
1) If f is a primitive function Iin f or f is the constant
functional form, then
f1C:x = fy:x, I=1,...,flast
where f| are the first order restrictions of f.
2) If f = G(f1,...,fn) where G Is a functional form, then the
computational forms of f are defined in terms of the first order
restrictions of f and the computational forms of f1,...,fn.
a) iIf f=(f1ef2) then the computational forms of f are:
f1C:x = (£1;%12,C):x
for i=1,...,p(f1) X p(f2), Jj=1,...,p(f1), k=1,...,p(f2).
b) if f=[f1,...,fn] then the computational forms of f are:
f1,1%:x = 0F1,C, ..., fneC1q:x
for i=1,..p(f1) X...X p(fn), j=1,..p(f1) ,..., k=1,..p(fn)
f1,2%:%x = Qq(f1C:x=}) &...& Qu(fnCixm=}) —=> }|
for all (Qq,...,Qn) where Q|=True or Q=False, i=i..n,
Q=True for at least one i, and for all I=1,...,((2p(f1)

X...X 2p(fn)), j=1,...,p(f1) ,..., k=1,...,p(fn).



c) if f=(f1-—>f2;f3) then the computational forms of f are:

fl ,1c;X = (f1J°—->f2kc;f3)1:X

for all i=1,...,(p(f1) X p(f2)), j=1,...,p(f1),

k=1,...p(f2).

f1,2%:x = (£1;C-—>12;¢3;%)5:x

for all i=1,...,(p(f1) X p(f3)), j=1,...,p(f1),

k=1,...p(f3).

f1,3%:x = (f1,C-=>f2;f3)3:x

for all i=1,...,p(f1).

3) Only what is defined above is a computational form of f.

B) For all f in F and for all ch, J=1,...,p(f) defined in A above

d(fjc) is defined as follows for the various cases of f:

1)

2)

3)

4)

5)

6)

7)

if f is a primitive function in F, then

d(fjc)

if fjc:

d(fjc)

i f chz

d(fjc)

if fJC:

d(ch)

i f ch:

d(fjc)
if fJC

d(ch)

if ch:

d(fjc)

- d(fJ) = (x| PJ(x)-True}.
x=(f1,%f2,®)4:x, then
= {x! x 6 d(f2,®) & f2,%:x 6 d(f1,°) }
x = [f1;C,...,fn€14:x, then
= {x! Py(x)=True & x 6 (d(f1;©) N...N d(fn®)) 3
x = [f1;C,..fne€12(Qq,...,Qp):X, then
= (X! Qq(f1;C:x=}) &...& Qu(fnEC:x=})
& X 6 (d(f1;®) N...N d(fne®)N}
x=(f1,6-=>f2,C;f3)1:x, then

= {x! Py(x)=True & x 6 (d(f2,%) M d(f1,%)) 3

:xm(f1)%-=>f2;f3,%)p:x, then

= (X! Po(x) & X 6 (d(f3;®) N d(f1;%) )
x=(f1,C-=>f2;f3)3:x, then

= {x! P3(x)=True & Xx 6 d(f1;%)}

13
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C) for all f in F and for all f;C, J=1,...,p(f)
r(fJC) - fJC:d(fJC),
The definition given above gives a set of forms for f in F which

are shown to be restrictions of f In the following theorem.

Theorem 3.1. For all f In F the computational forms of f are

restrictions of f.
Proof: Let f be in F and fjc, j=1,...,p(f) be the computational forms
of f. To prove that fjc is a restriction of f it must only be shown for
all x Iin O, that

X 6 d(fC) mm> fC:x = f:x.
For primitive functions f in F this only requires the observation that

X 6 d(f€) ==> Pj(x) = True.
For f=G(f1,...,fn) a proof by Induction is given.
Let S(N) be the statement "If f=G(f1,...,fn) and f Is defined by at most
N applications of definitions of the functional forms in G, then

X 6 d(f;C) =m> £C:x = fox."
Three cases of Definition 3.5.B.2 are proved. The remaining cases are
similar.
Basis: If N=1, then f1,...,fn are primitive functions in F.
case 2) Let f;C:x = (f1;%f2®)q:x and x 6 d(f ).

==> X 6 d(f2®) & (f2C:x) 6 d(f1%). Df. 3.6.B.2
Since f1 and f2 are primitive functions,
mm> (F2,C:x=f2:x) & (F1;C: (2, C:x)=f1:(F2C:x))

Thus, f;C:x = f:x if x 6 d(f}©).
case 4) Let f;C:x = [f1/%, ... fnClp:x
X 6 d(f)C) mm> Qq(f1;C:x=]) &...& Qu(fnEC:x=})

& x 6 (d(f1,) N...N d(fn)) Df. 3.5.B.3



==> Po(X)=True & x 6 (d(f1;) N...N d(fn®))
==> Po(X)=True & f1;C:x=f1:x &...& fnC:x=fn:x
Thus, f;€:x = f:x If x 6 d(f;%).

case 5) Let f;Cix = (f1C-—>12,C;73)q:x.

X 6 d(f)®) ==> Py(x)=True & x 6@(f2,®) N d(f1,¢))

==> Py(X)=True & f2,C:x=f:x
Thus, fjc:x = f:x If X 6 d(fjc).

Therefore, S(1) is true.

Df.

Inductive Step: Suppose S(N) Is true for any N>1. Then If

3.5.B

15

f=G(f1,...,fn) Is defined by N+1 applications of the definitions of the

functional forms in G, f1,...,fn are each defined by some M<N

applications of the definitions of the functional forms in G.

case 2) Let f;C:x = (f1,%f2; %) q:x and x 6 d(f;%).
==> X 6 d(f2C) & ((f2C:x) 6 d(f1;°))

Then, by the above observations about f1,...,fn,

2, Cixmf2:x & f1,€:(f2C:x)mf1:(F2,C:x).

Thus, fjc:x = f:x If X 6 d(fjc).

case 4) Let ;C:x=[f1,%,...,fnCly:x & x 6 d(f ).

wm> Qq(f1C:x=}) &...& Qu(fnC:x=})
& x 6 d(f1,%) &...& x 6 d(fny).

==> Po(x)=True & x 6 (d(f1;%) NN...N d(fn)
Then by the above observations about f1,...,fn,
f1,C:x=f1:x &...& fnC:x=fn:x.
Thus, f;C:x = f:x if x 6 d(f;©).
case 5) Let f;C:x = (f1,C-—>f2,%;f3)q:x.
X 6 d(fjC) ==> Py(x) & x 6 d(f2®)

==> P1(x) & f2,C:x=f:x

Df.

Df.

3.5.B.2

3.5.B
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Thus, f;C:x = f:x if x 6 d(f;%).
Hence, by induction S(N) Is true for all N>1.

Therefore, the computational forms of f in F are restrictions of f.

Theorem 3.2 For all f In F, the computational restrictions of f is a
finite set.
Proof: The number of computational restrictions of f, p(f), is equal
to:

mq+...+Mg|agt Where each m;, i=1,...,flast
is the number of computational restrictions induced by f;. When f is a
primitive function in F, my=1, i=1,...,n and p(f)=flast. For
f=G(f1,...,fn) a proof by Induction Is given.
Let S(N) be the statement, "If f is defined by at most N applications of
the definitions of the functional forms in G, then fjc, j=1,...,p(f)
is a finite set."
Basis: |If N=1 then f1,...,fn are primitive functions in F. The
computational restrictions induced by each f;, are in the form
G|(f1J°,...,fnk°). Then the number of restrictions induced by fi=my,
which is equal to the number of permutations of (j,...,k). Since
f1,...,fn are primitive functions, p(f1),...,p(fn) are finite and fJC,
j=1,...,p(f) is a finite union of finite sets.
Thus, S(1) is TRUE.
Inductive Step: Suppose S(N) is TRUE for any N>1. Then if f is derived
by at most N+1 applications of the definitions of the functional forms
in G, f1,...,fn must each be derived by some M<N applications of the
definitions of the functional forms in G and S(N) holds for f1,...,fn.
Then by the same argument given for N=1, p(f) is finite.

Therefore, the computational restrictions of f are a finite set.
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Definition 3.6 Any function g, g:X -—> Y, induces the following two set

mappings (10):
for all Ac X, and Be Y:
A) g(A) = { g:x | x € A} and
B) ¢g~1(B) = { x | g:x € B ).
In addition to the above notation, g(A) and g'1(B) will also be referred

to as the set mapping and inverse set mapping of g respectively.

Proposition 3.2 For all functions g, g:X ——> Y, Aj € X, and B| € Y the
following properties hold (10):
1) If g(§) % L then g(®) = ¢ 6) g~ 1(p) = §
2) gX)eY 7) g l(y) = X
3) AjcAj ==> g(A) S g(A)) 8) B cBj =gl cg )
4) g(UA) = Ujg(AD) 9) gt = ug~ti)
5) g(N A € 1 19(AD 100 g~ (N B = Nyg~1(®)
Proof: Proof that these properties hold is direct by Definition 3.6.

The properties are listed here since they are used frequently in the

proofs of this chapter.

Lemma 3.3.1. For all f in F, for all fjc, j=1,...,p(f), and for all
X,Y @ 0 the following properties hold:

1 (F;©71:0 = d(f)

2) £~y = (£)97(y N or(fn

3 ()" iy edf®)

4 YN X=0 == ;97T 0 ;S0 =9
Proof: The proofs of these properties are straightforward from

Definition 3.6 and Proposition 3.2.
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Lemma 3.3.2. If d(f1,%), i=1,...,p(f1) partition 0,.... d(fn;©,

j=1,...,p(fn) partition O then:
1) d((f1,%f2;€)4), for all (i,))
partition d((fl1ef2)4).
2) d(If1C,...,fn;%19), for all (i,...,))
partition d([f1,...,fn]lq).
3) d(Lf1;%,...,fn;%12(Qq,..Qy)), for all (i,...,J), all (Qq,...,Qp)
partition d([f1,...,fn]la).
4) d((f1;%==>f2;%;13)¢), for all (i,))
partition d((f1->f2;f3)1).
5) d((f1,;S-=>f2;f3,%)5), for all (i,k)
partition d((f1-->f2;f3)5).
6) d((f1,%-->f2;f3)3), for all I
partition d((f1-->f2;f3)3).
Proof: Proof for cases 1 and 3 are given below. The other cases are
similar and are not given here. This lemma is used for both the basis
and the inductive step of Theorem 3.3.
case 1) Let d(f1|c), i=1,...,p(f1) partition 0 and d(f2J°),
j=1,...,p(f2) partition 0. First an equation is derived for the inverse
set mapping.
By Definition 3.6.A, for all Y € O:

((f1,%f2;%) T2y = {x! (f1,%f2;%)1:x 6 Y}

{(x! f1|°(f2J°:x) ¢ Y} Df. 3.5

{x! f2,%:x 6 (y! f1,%:y 6 Y}}

(f2;%)"T:({y!f1,%:y € YD) Df. 3.6.B

(r2;%)"1:((£1,%)71:v) Df. 3.6.B



The following proof shows that ((f1|°ef2J°)1)"1:0, for all (i,j) are
disjoint. By the lnifial assumption (f2J°)‘1:0, for j=1,...,p(f2) are
disjoint. Then by Lemma 3.3.1.4, (f2,°)'1:((f1,?)'1:0) for each j and
for all i are disjoint. By Lemma 3.3.1.3,
(2,6)=1:((£1©)71:0) € d(f2)©), for each j, for all i.

Thus, (£2)%)~1:((£1,%)=1:0), for all i,] are disjoint.
Now it is shown that Uy ;(f1,%f2,))~1:0 = 0.
Suppose x € U; j((f1 %f2,¢)~1:0.

==> X € d((f1,%f2,%)4) Lemma 3.3.1.1

==> X 6 d(f2;€) and (f2)¢:x) € d(f1,%) Df. 3.6.B
Then, by contradiction x € 0, since d(f2;C)=0 ==> x & d(fzjc).

Thus, Uj j((f1,%f2;%))=1:0 co0.

Now suppose x 6 O. By the initial assumption, UJ((fzjc)'1:0) = 0.
==> x 6 (f2)¢)~1:0, for some j=1..p(f).
==> f2;%:x = x' for some x' € 0. Df. 3.6.B.
Then , also by the Initial assumption, U|(f1|°)‘1:0 = 0.
==> f1,%:x’ 6 0, for some i=1,...,p(f1).
Then, f1,€:(f2;%:x) 6 0 for some i,]j.
==> (f1,%f2,)4:x 6 0. Df. 3.5.A
==> x 6 ((f1,%f2;%)1)~1:0. Df. 3.6.B

==> X 6 U j((f1,%f2,%)"1:0
Thus, Uy j((f14%f2;¢))"1:0 = O.
Therefore,((f1|°ef21°)1)'1:0 for all (1,)) partition O=d((fl1ef2)4).
Thus, by Lemma 3.3.1.1, d((f1|°of21°)1), for all (i,...,J) partition

d((f1-->f2;f3)1).

19
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case 3) The computational restrictions induced by [f1,...,fn]y are:
Qq(f1Cix=l) &...& Qu(fnpCix=l)——> |

for all (k,m) for all (Qq,...,Q) where Q=True or Q;=False, i=1,...,n
and Q=True for at least one i. Denote this set of restrictions by ch,
j=1,..,p(f). By Definition 3.5.B, for each k,m and for each 01,...,Qn.
d(f;C) = {xi Qq(f1C:ix=}) &...& Qn(fnpC:x=}1) }
| N (x! x 6 d(f1,S),..., x 6 d(fnyS) )
Then x 6 d(f ;)

m=> X 6 {X! Qq(f1Cix=]) &...& Qu(fNpC:x=}) }
Qq=False ==> “f1, C:ixm] ==> f1,C:x # | ==> f1,C:x 6 (0-})

==> x 6 (f1,6)=1:(0-1)
The same proof holds for f2,...,fn.

==> x 6 (f1,9)"T:A; N...N (fne®)~T: Ay

where A;=! If Q=True and A|=0-! if Q=False.

Consider f,C:x and f®:x, a # b, a,b=1,...,p(f). It must be true that
at least one term In some position | differs in the expressions for
d(f,%) and d(f,®). Let these terms be Q (fi C®:x=}) and Q' |(fip®:x=})
respectively.
Q # Q| & k=l ==> A] 1 A"| = ¢

= (PO A O (FipgS~ A = 9 Lm. 3.3.1.4

==> d(f3%) N d(fp®) = ¢
If K # m, then by the initial assumption about f €,

(FiS)=1:A; N (Fig®~1:A; = ¢, regardiess of @;,0".

Thus, if a # b then some i‘th terms must be disjoint and since fac, fbc
are arbitrarily selected, d(ch), j=1,...,p(f) are disjoint.

Now it is proved that UJd(fJC) = d([f1,..,fn]o). By Definition 3.5.A

x 6 d([f1,..,fn]g) ==> fl:x=} !l...! fn:X=}
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==> fi:x=] fOor one or more i, i=1,...,n
> fiJC:x-i for one or more |, and some j=1,...,n
& “(fig:x=j), for k ¥ j Df. 3.6.A

==> X 6 {x} Qq(f1;%:x=}) &...& Qn(fn;C:x=})}

L
for some (Q4,...,Qn), some (i,...,J). and some Q=True.
Thus, d([f1,...,fnlp) € Ujd(f;%).

Now suppose X & Ujd(fjc)

==> f1;C:x=} for at least one I, some j=1,...,p(f|)
==> fi:x=] for at least one i Th. 3.1
mm> fl:Xm} 1.0 fRoxs=}

Hence, Ujd(f %) € d([f1,...,fnlg).
Thus, Ujd(f;®) = d([f1,...,fnla).

Therefore, d(f;€), J=1,...,p(f) partition d([f1,...,fnlp).

Theorem 3.3. For any f in F, the domains of the computational
restrictions of f partition 0.

Proof: By Proposition 3.1, d(f), i=1,...,flast partition 0. Thus, the
theorem can be proved by showing that the domains of the computational
restrictions induced by each f| partition d(f|). The possible cases for
fy are glven below.

case 1) For all cases where f is a primitive function, f| induces only
f;© and the proof is trivial.

case 2) Other cases must be one of the 6 cases of Lemma 3.3.2. A proof
by induction is given for these cases.

Let S(N) be the statement "!f f=G(f1,...,fn) where f is defined by at
most N appliications of the definitions of the functional forms in G,

then the domains of the computational restrictions induced by each T

partition d(fi)-"
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Basis: If N=1 then f1,...,fn are primitive functions. Then by
Definition 3.4 f|-f|°, i=1,...,flast and by Proposition 3.1, d(flc),
i=1,...,flast partition O. Then by the proofs for cases 1-6 of

Lemma 3.3.2, S(1) is true.

Inductive Step: Suppose S(N) is true for all N> 1 and f is defined by
N+1 applications of the definitions of the functional forms in G. Then
f1,...,fn must each be defined by M<N applications of the definitions of
G. Then S(N) is true for f1,...,fn and by the proofs for cases 1-6 of ,
Lemma 3.3.2, the computational restrictions of f partition O.

If S(N) is true for any N > 1, then S(N+1) is true. Therefore, by
induction the domains of the computational restrictions of f partition

0.
Methods

In this section methods are shown to construct an equation for the

domain and range of each computational restriction.

Definition 3.7. The following definitions give the domains of the set

mappings of Definition 3.6 for the computational restrictions of f in F.

A) A class of sets D1° is defined as follows. Let D be a subset of
O, D=0D'UD", where D' = D ) (Atoms U i) and D" is the set of all
sequences in D. Then D is in D4© iff the following properties hold.

1) NS D' &N g NUM ==> N=NUM ! N=0.

2) X=m<Xq, 05X, 0ee,Xn> & X' =m<x'q,...,X'p> are in D"

- x"-<x'1,...xJ,...,x'n> is in D".,
When D has this property it Is said to be in closed form and the

set of all sequences of length n in D is denoted by <Dq,...,Dpn>.
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D{,...,Dp are also sets and
<X1,++:,Xp> € D mm> x| € Dy, I=1,...,n.
When the set D contains sequences of lengths > n, D is denoted by:
Uj<Dq,...,Dg',...,Dp>
= <Dy,...,Dg,...,Dp> U <Dq,...,Dg,Dg,...,Dp> U...
3) D" = <Dy,...,Dp> Is in D4C, for n>1
==> Dj, j=1,...,n Is In D¢
4) Only what is defined above is in D4C.
5) The finite unions of Dy,...,Dn In D{¢ are denoted UD¢°.
In the proofs of Lemmas 3.4.1 3.4.5 and Theorem 3.4, UD1c is shown
to be the domain of (ch)'1, for all f and for all ¢,
J=1,...,p(f).
B) Let D€ = 0 be the class of sets defined by A) above except that
the limitations of property 2) are relaxed in the definition of
D 6 D¢ as follows:
2) NcD’' & NS NUM ==> N=NUM ! N= ! N={x} for some x in NUM.
The finite unions of Dq,...,Dy in D¢ are denoted UDC. In the proofs
of Lemmas 3.4.1 - 3.4.5, Lemmas 3.5.1 - 3.5.4, and Theorem 3.5, UD®
is shown to be the domain of fjc, for all f and all fJ°, Jj=1,...,p(f)
It is clear that D4© and D have similar properties and in
particular that D4 is contained in DS. The reason for the restriction
Imposed by property 2 of A is that for op € (+,*,sub,div}, (oplc)‘1:D is
a relation on (D,X) for each y in D and X-d(oplc)-<NUM,NUM>, and cannot
be given in closed form for the general case of D. The set mapping
f;6:D Is a function for each x in D. Since D¢ Is contained in D¢, the
proofs that follow are for the general case of D¢, and D1° is referred

to only where it is necessary to make a distinction between the two
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domains. In particular, Theorem 3.4 shows that UD® is closed under
(fjc)‘1, and it is understood that if opqC occurs in the definition of
f;€, that closure is only for UD4C.

The motivation for the above definitions is to give a class of sets
which is closed under the set mappings and inverse set mappings of this
chapter. The closed form notation is used to simplify examples and as a
graphic aid to describe the Iinverse set mappings of Theorem 3.4. An
extension of this closed form notation is given later to describe the
set mappings of Theorem 3.5. The separate definitions of D¢ and UDC are
required by various proofs that follow. By the above definition it is

clear that if D=<D4,...,Dn> and D|-¢ for some i=1,...,n then D-Q.

Lemma 3.4.1. The following sets are in UDS:

1) 0

2) Any subset of Atoms.

3) r(flc), i=1,...,flast when f Is a primitive function in F

4) d(f|°), i=1,...,flast when f is a primitive function In F

except for the following cases:
d(f{®), d(fa®) for f 6 R.

Proof: The closed forms of d(f ), r(f|®), i=1,...,flast are listed in
Appendix C. Proofs are not given for the obvious cases in 1-4. Let f be
in F and Z = 0-].
case 1)
0 = Atoms U } uj<z!>

= Atoms U | U <(Atoms UJ<ZJ>)'>
Then, clearly properties 1 and 2 of Definition 3.7 hold for 0, and by a
simple inductive proof on the number of expansions of Z=0-}, O is in D€,

This same proof shows that all nontrivial cases of 3 and 4 are in up®.
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case 4) For the exceptions in case 4, f in R, d(f|°) is listed In
Appendix C but cannot be given in closed form. A proof for one case is
given to illustrate the nature of these exceptions. Consider

d(>1%) = {x! x=<xXq,Xp>, Xq1,X5 6 NUM, Xq>Xo}
Then <1,1> and <3,2> are in d(>1%) but <1,2> is not. This contradicts
property 1 of Definition 3.7 and thus, d(>¢€) Is not In DC.
The exceptions in case 4 can be expressed In An extension of closed form
by showing the relation on d(f,c) for f in R. This is denoted by
(f1, <NUM,NUM>) for d(f{®) and (~fqy, <NUM,NUM>) for d(fyS). Cledrly
d(f4€) U d(fp®) = <NUM,NUM> for all cases of f given as the exceptlions
In case 4. This property is used later to include these functions in

useful characterizations of f in F.

Lemma 3.4.2. If D, D' are In UD® then D } D’ is in UDC.

Proof: Let D, D’ be in UDC. It is shown that properties 1-3 of
Definition 3.7 hold for D ) D’. Consider D,D’ in D®. Let D=<Dq,...,Dp>
and D'=<D’'¢,...,D'p>.
case a) By property 1 of Definition 3.7, if N = (D () NUM) and
N’ = (D' 1 NUM), then
Nu | N'=@ ==> (NUM 1 (D M} D’))=d
and
N=NUM & N’=NUM ==> (NUM f} (D [] D’))=NUM.
Thus, property 1 holds for D [} D'.
case b) Let X=<Xq,...,Xj,...,Xp> & X'=<x’q,...,X'n> € (D N1 D').
m=> X"m<X'1,...,X],...,X'n> €D & X" €D'. Df.3.7
==> X" 6 (D N D)

Thus, property 2 of Definition 3.7 holds for D ) D’.
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case ¢) To prove property 3 it must be shown that
(D ) D*)=D"=<D"y,...,D"y> for some D"y,...,D"y in DC.
DY D' =(x! x 6D and x 6 D'}
= {x! X, 6D & x; 6Dy, i=1,...,n} Df. 3.7.2
= {x{ x; 6 (D) N D, I=1,...,n)}
= <(Dqy N D'{),...,(Dp N D'p)> Df. 3.7.2
Then since Dy, D', I=1,...,n are in D¢ by property 3 of Definition 3.7,
properties 1 and 2 of Definition 3.7 hold for Dy, D', i=1,...,n. Then
by induction on the number of applications of this expansion of D } D',
property 3 holds for D {1 D'.
Thus, from a-c, D [} D’ 6 DS, D=<Dq,...,Dp> and D'=<D‘q,...,D'p>.
Now consider
D=U;<Dq,...,Dg!,...,Dp> and
D'=Uj<D’y,...,D'n),...,D" >,
Then for each n" > max(n,n’), the Intersection of sequences of length n"
in
D () D' is either empty or is in D€ by the above proof for 1.
Thus, D f) D’ & DC.
Now suppose D = U|D|, i=1,...,n and D’ = UjDj, j=1,...,n* in UDS. Then
by DeMorgan‘s Laws
DM D'=D/M (D'qU...UD'Y
= (D 1 D'y U...Uu (DN DY
= ((04 N D*y) U...U (D N D'9)) U...
U Dy N D'p) U...U Dy NN D))
Then the expression given is a finite union of intersections of sets in
D¢ which by property 5 of Definition 3.7 is in UDC.

Therefore, if D, D' are in UDS, D N\ D’ is in UDC.
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Lemma 3.4.3. If D is in UD® and f is a primitive function if F, then
(f,$)=1 : D is in uDS,
except for f €, 1=1,2, f 6 R
Proof: Appendix D lists (f;)~1:D, D €r(f,®), for all primitive
functions in F. For each f that is not an exception above, the equation
for (f;©)~1:D is given in closed form. Thus, UDC is closed under the
equations given in Appendix D. By Lemma 3.3.1.2
(910 = (£19=T:0 N rf)N
which is in D¢ by Lemma 3.3.2 and Lemma 3.3.3. Then it Is only
necessary to show that the equations given for (f|°)'1:D in Appendix D
are correct. One example case Is proved below. The other cases are
similar.
For X,Y 6 0, and D 6 UDS:

From Definition 3.6:

1) (tl2°)‘1:Y (x:tlzczx 6 Y)
From Appendix D:

2) (t1,8)"1:0 = D e U<z!> —=> Uy<Z,Dq,...,D¢!,...,Dp>

These two equations are equivalent for all D € r(f ;) by the following
proof.
(t1,5)71:D = (t1,5)"T: Uj<Dq,...,D¢!, ... ,Dp>

= U ((t1o)=T:eDq,...,D0!, ...,y Pr. 3.2.9

= U (187 gyl ymeyq, vk,

for y; € Dy, j=1,...,n) Df. 3.7.2
= U ({x] x-<x1,y1,...,yk',...,yn>,
X9 6 0-1, ¥y; € Dy, j=1,...,n]} App. A
= Uy<Z,Dq,...,Dg!,...,Dp> Df. 3.7.2

Thus, the inverse set mapping for t!2c in Appendix D is correct.
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Lemma 3.4.4. For all f1,f2 in F, for all f1|°, i=1,...,p(f1), f2jc,
j=1,...,p(f2), and for all Y& O:

((£1,%£2;%)1%)=1:y = (£2)%)=1:((£1,%)1:v)
Proof: The proof for this Lemma is given by the derivation of the
equation in the proof of Lemma 3.3.2.1. An example is given below to

illustrate a computation of this inverse set mapping.

Example 3.3. Let f| = (+0tl)q and Z = O-}.

1) ((+1%t11%)~1:0

- (11971 ((+1$"1:0) Lm. 3.4.4

= (t149)7 1 (d(+¢)) Lm. 3.3.1.1
= (11197 1:(d(+1%) N rcti1€) Lm. 3.3.1.2
- (t14%"1: ¢ App. D

=0 Pr. 3.2.6

2) ((+1%ti5%)1)=1:0)
= (t15971:(d(+1) N r(ti1,%)) Ex. 3.3.1
= <Z,NUM,NUM> App. D,E
By Lemma 3.3.1.1 for all (i,]),
((+(%t1)1)71:0 = d((+%t1%)4%).
Then by similar methods:
d((+1%t13%)¢) = ¢
d((+3%t11%)¢) = <Z>
d((+o%@t15%)¢) = <Z,Z> U <Z,Z-NUM,Z-NUM>
U <Z,Z,Z-NUM> U <Z,Z-NUM,Z>
uy<z,z,z,2'>

d((+3%t13%)¢) = ATOMS U |
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Definition 3.8. The following notation is defined for all f in F and

for all ), j=1,...,p(f):

Upf;©
denotes all f;C such that r{€ or ry®, r 6 R does not occur in the
definition of f;C.

This notation and natural extensions such as URd(fJC) will be used
extensively later in this chapter and in the following chapter. The
definition is given here because UD® is not closed under the inverse set
mappings for r1°, r2° shown in Lemma 3.4.4. Thus, the equation given in
the following lemma and the constructed equation for d(fjc) of Theorem
3.4 are not valid for these cases. A method for deriving

d(f;€), f;¢ ¢ URf;C can only be given following Theorem 3.5.

Lemma 3.4.5. For all f, for all f1|°,...,fnJ° not in Upf1yS, ..., UpfnC,
and for all D € UD®, D=<D{,...,Dp>
1D 1S,y = (11 97T0-D NN n©) 7T 0p-D)
2) ([f11%,...,fn)%15(Q1,..090)71:D = (£1;%)"T:a; N... A (fn)€)-1:A,.
where A=} if Qq=True, A=0-} if Q;=False, i=1,...,n.
Proof: A proof for case 1 is given below. Case 2 is proved in Lemma
3.3.2.2.
case 1) By Definition 3.6.2
([f1|°,...,fnJ°]1)‘1:D = {xi [f1;%,...,fn;%1q:x 6 D}
= {x}{ “f1,C:x=} &...& "fn;Cix=}
& <f1;%:x,...,fn;%:x> € D} Df. 3.5.1
= (f1;$=10-0) N...O fn®~T:0-1)
0 (x! f1|°:x-y1,...,fnJ°:x-yn, (1)

for some y=<yq,...,¥Yp> € D} Df. 3.6.2



Now let A = (£1;%)71:0y N...00 (fn;©)~T:Dy and
B = {x! f1|°:x-y1,...,fnJ°:x-yn, y € D}.
Then
x € B ==> x 6 (f1,%)~1:(yql2...
& x 6 (fnjc)'1:[yn} for some y in D
==> x 6 (f1,%)71:p; &...& x 6 (fn;%~T:p, Df. 3.7
Thus, B ¢ A.
Suppose X 6 A
==>x 6 (f1%)~1:{yq} &..& x 6 (n;®)~T:(yn), v; 6 D)
==> x 6 (f1;%)"1:{y{}, for some y=<yq,...,yp> 6 D
& x 6 (fn;®)~T:(zq) for some z=<zq,..zp> 6 D Df. 3.7
==> <Y{,...,Zp> 6 D

v

x 6 (£11971:(yq) &...& x 6 (fn;S)~1:(yp3,
for <yq4,...,Zn> In D.
==> X 6 B Df. 3.6.B
Thus, Ac B
Therefore, A = B,
By substitution of A for B in equation (1) above:
(S, ..., fn 1710 = ((f1©"Tipy NN (07D
N o«f1©-"0-p N...n tny©To-))
= (11971 0qNo-p N...N (fn©=T:0pNo-1) Pr. 3.2.9
= ((r119"1:0-D N... 0 St -1

Thus, the eguation for case 1 is derived for D & UDC.



Example 3.4. Let Z = 0-}
1) a) By Lemma 3.3.3.1, d([s1%,tlq1q)

= (([s1¢,t11%1)~1:0

(s1©~1:z N 11112

(515712 N r(senN

N t14S=T:z i ot

(1712 A 1451

U|<Z|> N <Z>
= <I>
b) By similar methods,
d([s1%,t15819) = Uj<z,z!>
d([s1%,t13%1¢) = ¢
d([sp%,t1)%19) = ¢, J=1,...,3
Thus, d([s;€,t1%19), i=1,2, j=1,...,3
partition d([f1,...,fn]q)
2) By Lemma 3.4.5.2
a) d(Isp®, t1315(T,T))

(g~ 1:0-) N (13571 0-D)

(s5%)=1:((0-1) N r(ss%))

Nt~ T00-0 N rctiz®)

(5257 1:1 N (1%

(Atoms U 1) M (Atoms U })

Atoms U |

b) For all other cases of (i,]}), (Q1,Q3)
d(Is1°,11;12(Q1,02)) = ¢

Thus, d([s;¢,t1,®1), for all (i,),k) partition 0.

Lm. 3.4.5

Lm. 3.3.1.2
App. C

App. D

31
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Lemma 3.4.6. For all f1,f2,f3 In F, and for all f1,¢, f2¢, and f3;¢
not in URf1€, Ugf2¢ , URf3C respectively, and for all Y ¢ O:

1D ((F1;%==>£2;%;£3) )7 Tey = (£1,9)7T:(T) O (2%~ T:y

2) ((F1;8==>72;13,%)) 7Ty = (119~ 1:(F} N (35~ 1:y

3) ((f1,C==>f2;13)3)~1:y = (£1,%)~1:(0-(T,F})
Proof: Proofs are straightforward from Definition 3.5.A énd Definition
3.6.2 and only case 1 Is given here. The other cases are similarly
proved.
case 1) By Definition 3.6.2 and Definition 3.5.A
((f1|°;f21°;f3)1)‘1:Y = {x! f1;C:x=(T) & 72,%:x 6 Y}

= {x} f1;C:x=(T}} N (x| x 6 f2J°:x-Y)

= (f1,%"T: 1y N (126" Df. 3.6.2

Example 3.5. Let Z=0-}, f = (atom-->id;tl)

1) a) By Lemma 3.3.1.1, d((atom{€-->id{¢;t1)q)

((atomyC—=>1d;S;t1)9)~1:0

= (atom©)=1:1 1 (1d{%)~1:0 Lm. 3.4.6.1
= Atoms [} O App. D.
= Atoms

b) By similar methods
d((atom€-->idp%;t1)q) = ¢
d((atom ®-—>id)®;t1)4) = @, i=2,3, j=1,2.
Thus, d((atom;®-—>id;®;t1)q), i=1..3, J=1,2
partition d((atom-->id;tl1)4)
2) a) d((atomy®-—>id;t11%)9)
= (atompy®)~1:F N (t14%-1:0
- U|<Zl> n <>

- <7>
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By similar methods

b) d((atompC-—>id;t15)5)) = U;<z,z!>

c) For all other cases of (I,]))
d((atom|C-=>id;tl|)p) =

3) a) d((atomg®-->id;tl)g)

(atomg®)~1: (0-(T,F}

(atomg®)~1: ((0-{T,F} N r(atomy®))

(atomg®)~1: 1

=L
Thus, d((atom;®-->id;®;t1,®)|), for all (i,j,k,I) partition 0.
In the following theorem the set of equations given in Lemmas 3.4.4
- 3.4.6 are used to construct an equation for (ch)‘1:D for any f in F,
any ;¢ not In Ugf|®, and any D in UD®. The set UD® is shown to be

closed under all equations constructed. The special case of D = 0

Illustrates the derivation of d(fjc).

Theorem 3.4. For all f in F, for all ;¢ not in Ugf|®, and for all

D 6 UD®, (f;$)~1:p Is in uDC.

Proof: It Is noted that for fjc where op 6 {+,*,sub,div} that for D in
unc,, (fjc)'1:D 6 UDC; and hence is In UD®. Also, for the special case
of D=0, by Lemma 3.3.1.1, (fjc)’1:D = d(f;®). By Proposition 3.2.4,
(ch)'1:U|D| - U|((fJ°)'1:D|) and therefore only the case of D in D€
needs additional proof.

case 1) If f Is a primitive function in F then (fJC)‘1:D is given in
Appendix D and is in UD® by Lemma 3.4.3.

case 2) If f=G(f1,...,fn) then for each f ;€ an equation for (fJC)-1:D
can be constructed by recursive expansion using the equations of Lemmas

3.4.4 - 3.4.6 and the inverse set mapping equations for primitive
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functions given in Appendix E. Since f| # f, i=1,...,n the equation has
a finite number of terms which are one of the following:
i) (2071 (£1,©7 1)
i (f1;©=1:p N...n oy ©=Tip
NEDINCATE L T R BN CF T i &
Where D’ is }, O-}, O-(T,F}, or D|-} for some D'=<Dq,...,Dn>. By Lemma
3.4.3 and Definition 3.7, the sets D', Dq,...,Dn are all in upc. A
proof by induction is given that if f=G(f1,...,fn), then (fjc)'1:D ¢ up°¢
for all )¢, J=1,...,p(f).
Let S(N) be the statement that "If f is defined by at most N
applications of the definitions of the functional forms in G, then
(f;-1:p 6 upS."
Basis: |If N=1 then f1,...,fn are primltive functions In f.
case i) By Lemma 3.4.3 (f1,)~1:D'=D" and (f2;¢)=1:(d") are in UDC.
case 1) By Lemma 3.4.3 and Lemma 3.4.2 the reduction of
(f1|c)'1:D’ N...N (fnjc)_1:D’
gives a set In UDC.
case iii) By Lemma 3.4.3 and Lemma 3.4.2.,
(f1,©=1:0 N (f2;%)=1:0
reduces to a set in UDC.
Thus, S(1) Is true.
Inductive step: Suppose S(N) is true for any N>1. Then if f is defined
by N+1 applications of the definltions of the functional forms in G,
f1,...,fn are each defined by some M<N applications of the definitions
of the functional forms In G. Then S(N) is true for f1,...,fn.
case i) Since S(N) is true for f1 and f2, then
(f1,)71:p* and (f2;$)"T:((f1,%)"1:0*))

are in UDC.
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case ii) Since S(N) is true for f1,...fn then

(f1,%~1:p",..., (fn;&~ 1.0
are in UD® and by Lemma 3.4.2

(f1,©-1:0* N...N fn)©~T:p°
is in UDC.
case i1i) Since S(N) is true for f1 and f2 then (f1|°)‘1:D’ and
(f2;©)=1:D* are in UDC. Then by Lemma 3.4.2

(f1,$~1:p* N (r2;%~1:p
is in UDC.

Then, S(N) is true for all N>1.
Therefore, by induction (f;¢)=1:D & uD®.

Theorem 3.4 shows the construction of an equation for (fJC)'1:D,
for all f, all ;¢ not in Ugf|®, and all D 6 UD®. Solving the equation
for (ch)‘1:O gives d(f;®) 6 UD®. Lemmas 3.5.1 - 3.5.4 and Theorem 3.5
show that by similar methods an equation can be constructed for fjc:D,
such that if D ¢ UD®, f;:D 6 UD®. Thus, r(f;®) 6 UD® can be derived by
solving the equation for chzd(fjc).

The differences between the two set mappings of Definition 3.6 are
illustrated by the following definitions and observations. The primary
difference between the two set mappings is that (ch)'1:D maps each y in
D to {x! fJC:x-y}, while fJC:D maps each x in D to one y in fJC:D. The
significance of this difference is that each y in fjc:D is bound to some
X in D by ch. The following definitions and examples illustrate this
property of the set mapping of Definition 3.6.A.

For each D in UD®, every x 6 D has some n > 1 component objects
each of which has a value attribute and a position attribute. The

closed form of D given in Definition 3.7 denotes these attributes for
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all x in D, but does not show the binding of fJC:D to D.

Consider f;C:x = id{®:x and D=d(id{€)=0. Then

£)€:D = {f;%:xi x 6 0} Df. 3.6
= {x! id{C:x} x 6 0} Df. 3.5
= {x{ x 6 0} (1) App. D
=0 (2)

Equation 2 glves r(fjc) but does not show the binding of each y in
r(id{€) to some x in d(id{€). Applications in this chapter and in the

next chapter require this binding information.

Definition 3.9. For x, f:x in O the following attributes are defined:

1) Let the name attribute of x in O be the name of the position of x
as follows:

a) If x 6 0 and x is not a component object of x' in O then

name(x) = X.

b) If x 6 0 and x Iis the I‘th object of a sequence, x', in 0, then

name(x) = name(parent(x)).i.
2) Let the bound value attribute of x in O be defined as:

1) If x is in O then bound value(x) = name(x).

2) For all f In F and x in O, the bound value attribute of

f:x = f|:(bound value(x)), such that P (x)=True.

In the exampies that follow, name(x) will be denoted in

parenthesis to the right of x. Bound value(f:x) is also be shown to

the right of f:x in parenthesis.

Example 3.7.
1) The notation for the name attribute of x in O is shown:
if X = <<4,...,last>,T>

then x = <<4(X.1.1),...,last(X.1.last)>(X.1),T(X.2)>(X)
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2) The notation for the bound value attribute of f:x in O is shown:
ses: <<A(X.1.1)>(X.1),T(X.2)>(X)
= s:(s: <<A(X.1.1)>(X.1),T(X.2)>(X) )
= §: <A(X.1.1)>(X.1)
= A(X.1.1)
3) The value attribute of a sequence x in O is the length of x
tl: <12(X.1), F(X.2)>(X) = <F(X.2)>({X}-1)
4) The notation described above extends paturally to sets in closed
form to show the binding of f;€:D to D.
+1%: <NUM(X.1), NUM(X.1)>(X) = NUM(X.1 + X.2)
t15%: <NUM(X.1), NUM(X.2)>(X) = <NUM(X.2)>(!Xi-1)
Another difference between the two set mappings of Definition 3.6
Is that fJC:D is defined only for D S:d(fjc). The following definition
Is given so that in Theorem 3.5 an equation can be constructed for fJC:D
which Is defined for ail D € UD®. In particular, this result is used
later to extend the characterization of f in F by showing that d(fJC)

can be derived for ch In URfjc.

Definition 3.10. Definition 3.6.A is extended as follows. For all f in

F, for all f;€, j=1,...,p(f), and for all D € UDC

f16:D = £;%:(D N d(f;%)).
If D g‘d(fjc) then Definitlion 3.6.A clearly applies. |If d(fjc) < D then
there are no contradictions of Definition 3.6.A implied by this
extension since f®:(D-d(f;€)) = 0. Equations are given for f¢:0,
D E:UDC, in the lemmas and Theorem 3.5 that follow. For the special
case of D < d(fJC) the extended definition is not necessary. It is

given to show that the equations are still correct when D _ii_d(fjc).
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Lemma 3.5.1. If f is a primitive function in F and D is in UD® then
f,¢:D is in UDC.

Proof: Either f 6 R or f & R.

case 1) If f 6 R, then f;®:D = £;%:(DANd(f;®)) by Definition 3.10. Then

by property 2 of Definition 3.7.B, D-<D1,D2> where Dy={x} or Dy=NUM and

Do={x‘} or Dg=NUM, for x,x’ In O. In any of these cases f1°:D-(T} and

f2°:D-(F) and the intersection need not be evaluated to détermine that

f;€:D is in UDC.

case 2) For f & R, by Proposition 3.2.4, f;€:U;D; = U;fC:D;.

Therefore, only D 6 D¢ needs additional proof. Assume that the

equations for f€:D, D € d(f;©) given in Appendix E are correct. The

equations are all given in closed form and by Definition 3.7 it is clear

that if D 6 D¢, D € d(f;®), then f|©:D 6 D¢. By Lemma 3.4.2,

D (Y d(f;©) is in UD® and thus the only additional proof required is to

show that the equations of Appendix E are correct. One case is proved

here. Proofs of the other cases are similar.

Consider

$1C:X = X=m<Xq,...,Xp>,n>1 —=> Xq.
If D6 D%, Dc d(sq®) then D=<Dy,...,Dp> OF DmU[<Dq,...,D!,...,Dp>.
Only the second case is proved. The case of D= <Dy,...,Dp> is similar.

By Definition 3.6.A, s1%:D = {s4%:x | x 6 D}

= (S1C:X ' x-<x1,...,xk',...,xn>, 1>1, XJ 6 DJ’ j=1,...,n+i}
Df. 3.7

= {xq1 | X1 6 D1(X.1)} Df. 3.9

= Dy (X.1) Df. 3.7

Thus, the set mapping equation in Appendix E is correct for all

D € d(s¢©).
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Lemma 3.5.2 For all f1, f2 in F, f1,¢, f2)¢ and for all D ¢ UD®
(f11%f2;%)1:D = £1,%:((f2;%: (D11d(f2;€))) N d(f1;%)
Proof: Let D & UD®, and f® denote (f1,%f2;®)q. By Definition 3.6.A
(f1,%f2;C)¢:D = ((f1,%f2;%)q:x | x 6 D () d(f®)}
=(f11%:(f2;%:x) | x € D N1 d(f®)) Df. 3.5

= {f1,%:x" | x' 6 (f2J°:x 1 x 6D N d(fc©)))

= {f1,%:x* 1 x* 6 125%: D N d(f®) Df. 3.6.A
= £1,%:(f2;¢: D ] d(f®) Df. 3.6.A
= £1,%: (£2;%: (DN NA12;%))) N df1©) Df. 3.10
= £1,%: ((f2)¢: (D Y d(f2;%))) N d(f1,)) Pr. 3.2.8

Thus, the given equation is correct.

In the example that follbws the equation for fJC:D given above is
used to derive fjcz d(ch) - r(fjc). A proof similar to the proof above
can be used to show that

(f1,%2;¢)4:D = 1,€:(f2;¢:D)
when D € d(fjc). The only difference in the proofs Is the substitution

of Definition 3.6.A for Definition 3.10 in the proof above.

Example 3.7. The example is a continuation of the computations given in
Example 3.3. For all cases of d(ch) 0, r(fjc) is derived from the
set mapping equation given in the above lemma for fJC:D.

a) By Definition 3.5.B

r((+1%t15°)1)

(+1%t15)1C: d((+1%t15%) )

+1C:(t15C:<Z(X.1),NUM(X.2) ,NUM(X.3)>(X) Nd(t1,%)) Lm. 3.5.2

+1C: (<NUM(X.2) ,NUM(X.3)>(1X1=1) N1 d(+1%)) App. E

NUM(X.2 + X.3) App. E



40

b) From exampie a above
r((+p%t14%)1) = +2%: (t14C:(<Z(X. 1)>(X) ) d(t1416)))
= +2%: (<> ) d(+2°) App. E
- +2c: <>
=1
c) r((+o°ti15%)1)
= +0%: (1% d((+2%t15%)1 N d(t15%))
= +58:(t1,%: <Z,Z> U <Z,Z-NUM,Z-NUM> U,<Z,Z,Z,2!))
= +5%:(<Z> U <Z-NUM,Z-NUM> U <Z,Z-NUM>
U <Z-NUM,Z> U<Z,Z,Z'>) 01 d(+5%))
-1
d) r((+2%t13%)9)
= +5C:(t13C%:(Atoms U } M d(t13%))) N d(+2©)

= +2C: (1 N d(+3°))

Lemma 3.5.3. For all f1,...,fn in F, for all f1|°,...,fnJ°, and for all
D 6 UDC,
[f1,%,...,fn;%14:D
= <f1;€:(DNd(f1,©)ND"),...,fn;C: (DN ©)ND")>
where D' = (f1;©)~1:c0-1) N...N (fn;~T:(0-1)
Proof: Let %= [f1,C,...,fn;®1y. By Definition 3.10
[f1,%,...,fn;C14:D = ([f1,%,...,fn;C1q:x! x € DNA(f®))}
= {<f1,%:x,...,fn;C:x>} x 6 DAD")} Df. 3.5
= <f1,€:(DAD Nd(f1,))),...,fn;C:(DAD' Nd(fn;€))> Df. 3.10
Thus, the equation is correct.
For the case of D g d([f1,%,...,fn %1y a simpler equation is used

[f1,C,...,fn;€14:D = <f1,%:D,...,fn;¢:D>,
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A proof similar to the above given proof, but based on Definition 3.6.A

rather than on Definition 3.10 proves this simpler form of the equation.

Exampie 3.8. This example Is a continuation of Example 3.4.
Computations are shown for r(fJC), for all cases where d(fJC) 0.
a) By Definition 3.6.B
r(sq,t14%19) = [s1%,t14%19: <Z(X.1)>(X)
= <5¢%:<Z>,t14%:<Z>> Lm. 3.5.3
= <Z(X.1)>,<>> App. E
b) By similar methods
r(ls4%,t15%19)

[s1S,t15%11: U <Z(X.1),Z1(X.1)>(X)

= <s1%: U<Z,zl>, t1,8: Uj<z,21>>

= <Z(X.1), U<zl i+1)>0ixi=1)>

Lemma 3.5.4. For all f1,f2,f3 in F and for all f1,%,f2,¢,£3,€, and for

all D g UD®
1) (f1,¢-=>f2%;£3)4: D = f2,%:(D N d(f2;%) N (f1,$)=1:mH
2) (f1,%-=>f2;13,C%)5: D = 3,%:(D ) d(f3®) N (f1,%)~T:(F))
Proof: Proof of case 1 is given. Case 2 is similar.
Let fiC=(f1,%——>f2,%;f3)4.

By Definition 3.10, (f1[¢-=>f2;¢;£3)4: D

((F1)C==>2%;f3)q:xt x € D N d(f®)

= (f2)%:x{ x 6 D N d(fc%)} Df.3.5
= £2;€:(D N d(f®) N d(f2;%) Df. 3.10
= £2,%:(0 N d(f2)% N (f1;©~1:(™H Lm. 3.4.6

Thus, the equation is correct.
When D € d(f®) then the above equation can be reduced to

(f1)6-->f2)C;¢3)¢:D = £2)°:D.
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This simpler equation is used in the example that follows to derive
r(fjc). The more complex form of the equation is used in Theorem 3.5
and later used to extend the characterization of f to include fjc 4]

URfC.

Example 3.9. The computatlons of Example 3.5 are continued, and r(fJC)
is derived from the equation given in the lemma above for fjc: d(fjc).
Only cases where d(fjc) % § are shown.
a) By Definition 3.5.B .
r((atomy€-->id{S;t1)¢)
= (atomy€-->id{C;t1)y: Atoms(X)
= id{C: ATOM(X) Lm. 3.5.5
= ATOM(X) App. E
b) By similar methods
r((atomy®——>id;tl4)9)
= (atomyC-—>id;t11%)g: <Z(X.1)>(X)
- tl1c: <Z(X.1)>(X)
= <>
¢) r((atomp®-—>id;t15°)5)
= t15%: Up<Z(X. 1),z (X i+1)>(X)

- U|<ZI(X.|+1)>(:X=-1)

Theorem 3.5 For all f in F, for all f;€, i=1,...,p(f), where f;C g
Ugf,©, and for all D 6 UD®,

f,¢:D 6 UDC.
Proof: The proof of this theorem is similar to Theorem 3.4. An
equation is constructed for fJC:D by recursive applications of the

equations given in Lemmas 3.5.2 - 3.5.4 and the set mappings of
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primitive functions in Appendix E. For the special case of D-d(fjc) by
Definition 3.5.3, the equation gives r(fjc). By Proposition 3.2.4,
fJC:UIDI - U|fJ°:D| and thus only the case of D ¢ UD® needs additional
proof.
case 1) If f is a primitive function in F then by Lemma 3.4.2, Lemma
3.5.1 and Definition 3.10, fJC:D 6 DC.
case 2) If f=G(f1,...,fn) then an equation for fJC:D can be constructed
by the above described method. The equation has a finite number of
terms and by the method of construction each term is one of the
following:

i) £1;€:(f2,%:(0 N d(f2%) N d(f1;©))

1) <f1;%:Nd(f1©) 0D, ..., fneC: (DN ND*)>

where D’ = (f1;%)"1:(0-1) N...MN (fn®)~1:(0-D)
i 12380 N d(f2% N (11,91 Ty
£3,%:(D N d(f38) N (1,571 (FH)
By Definition 3.7 and Lemma 3.4.1, (T}, {F}, and O~} are In upC. A
proof by induction is given that ch:D 6 UD°C.
Let S(N) be the statement that "If f is defined by N applications of the
definitions of the functional forms in G, then f;®:D & UDC."
Basis: |If N=1 then f1,...,fn are primitive functions in F.
case i) By Lemma 3.4.2 and Lemma 3.5.1
£1,6:(f2%: (D N d(f2®) N df1)©)
reduces to a set In UDC.
case ii) By Lemma 3.4.2 and Lemma 3.5.1 D’, is in UD®. Then by
Definition 3.7 and Lemma 3.5.1
<f1;¢:(0Nd(f1NH MDY, ..., i€ (DNd(fne®)ND")>

reduces to a set in UDC.
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case iil) By Lemmas 3.5.1, 3.4.3, and 3.4.2

£2):(0 N d(f2;$) N f1,$~1: (1)
reduces to a set in UDC.
Thus, S(1) is true.
Inductive step: Suppose S(N) is true for each N>1. |If f is defined by
at most N applications of the definitions of the functional forms in G,
then f1,...,fn are defined by some M<N applications of the functional
forms In G. By the inductive assumption f1J°:D’,...,fnk°:D' are in UD®
for all D' € UDC.
case i) Then by Lemma 3.4.2, D N d(f2k°) is in UD® and by the
inductive assumption

£1;%:(0 N d(f2,®))
is in UD®. Then by Lemma 3.4.2

£1;%:(D (1 d(f2®) N d(f1;%) is in UD
case ii) By Lemma 3.4.2

DN d(f1;®) N D' and D N d(fm® N D’
are In UD®. Then by the inductive assumption and Definition 3.7
<f1;C:(DNA(f1)€)ND*),...,fnC: (DNA(Fn®INMD*)> is in UDC.
case iii) By Lemma 3.4.2, D MY d(f2;®) is in UD® and by Theorem 3.4
and Lemma 3.4.2

D N1 d(f2)®) N (£1,©)71:(T)
is In UD®. Then by the inductive assumption

£2)%:(0 N1 d(r2)$) N (1,1 (TH
is in UD®. The same proof holds for

£3,5(:D N d(f3,5) N f1;©~1: (FH.
Thus, by induction f;€:D is in UD® for all f in F and for all f;€ not

in Ugf;©.
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For f;© in Ugf|C, it has been shown that (f;¢)=1:D is not in uDC.
Thus, Theorem 3.5 completes the characterization of f over 0 for all f
where any r € R is not used in the definition of f. Equations have been
given for d(f;®) and r(f;©), i=1,...,p(f) by Theorems 3.4 and 3.5
respectively. The observations and methods which follow show that this
characterization can be extended to the general case of f in F.
Consider f in F and f;C & Ugf|©.

1) First a set D' is derived such that d(fjc) cD', and D' € upc.
Construct the equation for (fjc)'1:0 by Theorem 3.4. For each term
(r{©)=1:p" or (rp®~1:0", r 6 R, that occurs In the equation for f°:D,
first reduce the term for D". Then if D" r(r|°)-®, replace the term
for (r;©)~1:p" by ¢, and if D" ) r(r;®) % § replace the term for
(rlc)’1:D" by the set, <NUM,NUM>. Reduce this modified equation for
(ch)'1:0. The result is a set D' which must be in UD® by Theorem 3.4.
2) To derive r(fjc) construct the equation for fJC:D', D' derived in
step 1), by Theorem 3.5. Each term of the equation must be one of the
cases i-lii given in Theorem 3.5. Then for any occurrence of a term in
the equation for fJC:D where the term is in one of the following forms,

c1) £2)C:(D N d(f2)®) N (F1;©)7T: (1)

c2) £3;%:(D N d(f3,8) N (1,571 (FH
derive (f1|°)'1:(T)(F) by the methods of Theorem 3.4 and Lemma 3.6.1.
Then by the proof of Theorem 3.5, the terms ¢1 and c2 reduce to a set
in UDC.

Every occurrence of rq€ or rp® in the equation for f;€:D, must
occur in a term in the form of ¢1 or c2 described above or be some
occurrence of

a) riS:(d" My d(r%n.
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where D" is in UD®. The set D" f} d(r ;) is not in UD® but
ri€:(0 N dr |
can be reduced to a set in UD®. By Definition 3.7.B.2 , D" is one of
<{x},NUM>, <NUM,{x}>, <{x},{x’'}>, or <NUM,NUM>, for x,Xx' &6 NUM. Thus,
ri€:(d" N d(r|©)) is {T) or {F} or 0 depending on i and D" and can be
reduced without reducing D" [} d(r,®), and clearly is in UDC.
Then, the result is f;®:D’ = r(f;®) by Theorem 3.5 and Definition 3.10.
3) The derivation of d(fjc) is similar to the derivation of r(fjc).
Predicates P|, i=1,...,n are defined on D', derived in 1), such that:
d(f;®) = {x! x 6 D' & P (x)=True, i=1,...,n}.
as follows.
Consider all primitive functions op € {eq,>,>,<,<,and,or,not}. In the
equation for fJC:D', replace each occurrence of op{®:D" or op,®:D" with
the right hand side of the equation below for the particuiar case of op.
a) for op € {eq,>,>,<,<}
op4€:D" = BOOL(X.1 op X.2)
op2C:D" = BOOL("(X.1 op X.2))
b) not|©:D" = BOOL(X) I=1,2
¢) and|®:D" = BOOL(X.1 and X.2) jm1,2
d) or;©:D" = BOOL(X.1 or X.2) i=1,2
The right hand side of each of the above equations is of the form
BOOL(P|) and clearly for either opy® or opp,®, BOOL(P|) is an equivalent
expression. The cases where (D" ) <BOOL,BOOL>) = ® need no additional
consideration since this implies f;¢:D'=9.
Reduce this equation for fJC:D’. For each occurrence of a term, ci
or ¢2 construct a separate equation for f1|°:D" by the same method,

replacing each op|° by the right hand side of the equations for a-d
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above. The reduction of each of these equations for f1|°:D" gives
BOOL(P|) for some predicate P|. Define each of these predicates, P,
i=1..n", encountered in the reduction of fJC:D' on D’.

Then the reduction of fJC:D’ gives a set in UD® with some
predicates, P|, i=1,...,n", given as the binding of fJC:D' to D'. For
each of these occurrences of P, also define P; on D'. Each predicate
Py, i=1,...,n, n=n"+n", constructed by either of the above steps is
either True or False for each x € D' and is True for each x such that x
(5} d(fjc). The resulting expression

{x{ x €D’ & P|(x)=TRUE, i=1,...,n}
equals d(f;%).

Example 3.10.3 which follows shows the computation of d(f|°) and
r(f;€) for ;¢ in Ugd(f|®) by this method. Other examples computed by
the program described Iin the Introduction to this paper are given in the
following chapter. The method gives correct results for all examples

considered.

Example 3.10.

1) Let f:x = (> ——> +; s1). Then the computational forms of f are:

a) (> ——> +1%; s1)q, i=1,2
b) (>1% ——> +2%; 1s)q, i=1,2
c) (2% ——> +; 51%),, I=1,2

d) (> -=> +; s5%)p, i=1,2

f|€ & URf|C are also shown
e) (Zac -2 +lc; SJc)kr I’j’k-192

f) (> -—> +; 1)3.
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2) The equations for D', d(ch)sgl)', for each ch in a-d are derived
from Theorem 3.4.

a) By Lemma 3.3.1.1

d((zlc -=> +1c; s)1)

= ((>;¢ = +1%; s))71:0, i=1,2

91T N oo Lm. 3.3.2.4
D' = <NUM,NUM> (¥ (+{)~1:0 Lm. 3.6.1
= <NUM,NUM> () <NUM,NUM> App. D
= <NUM,NUM>

b) By the above methods
d((>C —=> +5%; s)7)

- 971 N 5710, im1,2
D’ = <NUM,NUM> Y d(+5°)

=0
¢) d((>, —- > +; s:%)9)

= 7R N (519710
D' = <NUM,NUM> N} (s{€)~1:0

= <NUM,NUM> () U;<z!>
= <NUM, NUM>

d) d((>;¢ ——> +; 55%)9)

= (Z|c)-1:F N (Szc)'1:0
D' = <NUM,NUM> [} (Atoms U })

- ¢

By previously demonstrated methods
e) d((>3% -—> +,%; s;%3) = ¢, for all (i,j,k)

f) d((> —=> +; s)3) = d(>3%)
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3) fJC: D’ is shown for cases a-d. The construction of the
predicates Pq4,...,Py Is shown to the right of the computations of
r(fJC). Only non null cases of D' or d(f;®) computed in 2) are shown.
a.1) By Lemma 3.5.4.1
(>1€-—>+1%; s)1 : <NUM,NUM>
= +41C: (<NUM,NUM> 1} d(+1S) N (>1©)~1:(T})
= +1%: (<NUM(X.1),NUM(X.2)>(X) 1 <NUM, NUM>)
= +1%: <NUM(X.1),NUM(X.2)>(X) Py = (X.1 > X.2)
= NUM(X.1 + X.2)
a.2) By similar methods
(>2%-->+1%; s)1: <NUM,NUM>
= +1S: (<NUM(X. 1) ,NUM(X.2)>(X) 1 (259~ T:(TH
= +1C: (<NUM(X.1),NUM(X.2)>(X) } 0)
=0
c.1) By Lemma 3.5.4.2
(>1%-->+,51%)p: <NUM,NUM> = ¢
c.2) By similar methods
(>9%-->+;51%)5: <NUM,NUM>
= 54C: (<NUM,NUM> Nd(s1S) N (2o~ T1:{F))
= s4%: (<NUM, (X.1),NUM(X.2)>(X) [} <NUM, NUM>)
- s1°:(<NUM(X.1),NUM(X.2)>) P1 = (T(X.1 < X.2))

= NUM(X.1)

4) The domains d(f;®) are given by the sets D' derived in 2) with the
predicates Py, i=1,...,n, derived in 3), defined on the sets, D', as
fol lows.

a.1) d((>4%-=>+1%;8)1) = <NUM,NUM>, (X.1 > X.2)

c.2) d((>p%-->+;81%)5) = <NUM,NUM>, ~(X.1 > X.2)
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A set of restrictions of f in F is defined and shown to have the
following properties.
1) The set of restrictions is a finite set.
2) The domains of the restrictions in the set partition O, the domain
of f.
Equations are given for the domain and range of each restriction in the
set.

Since all programs in FP are applications of functions f in F to
objects x in 0 it is reasonable to assume that the characterization of f
in F given in this chapter may be useful for reasoning about properties
of programs in FP. In the following chapter an execution time cost
model is defined for FP, and the methods of this chapter are used to
show that the cost of f:x over O can be given as a finite set of costs.
in particular it is shown that given x,x’ in the domain of some

restriction, cost(f:x) = cost(f:x’).



CHAPTER 1V

EXECUTION TIME COST ANALYSIS FOR FP

Definitions and Preliminaries

In this chapter a method is shown for estimating the execution time
cost of functions f in F over the data domain O. It is similar to
existing methods of cost analysis in several ways.

1) A computational model is defined which gives the cost of f:x, for
each f in F and each x In O. The cost of f:x Is defined to be the
number of basic operations performed in the reduction of f:x.
2) An expression is given for the cost of f:x over the data domain,
0.
Certain properties of FP require variations from existing methods.
Given the conditional semantics of FP it is not apparent that these
methods can be used to determine all possible computation sequences for
f:x, x in 0. However, all functions f in F are total functlions,
f:0-->0, and thus a cost must be defined for f:x, for all x in 0.
Then a method must be given to derive the possible computation sequences
of f:x and to estimate the cost of f:x for each computation sequence.

The methods of the previous chapter are used to solve these
problems. |In particular, it is shown that the possible computation
sequences of f:x are eaquivalent to the computational restrictions of f.
The following definition defines an execution time cost computational

mode| for FP.

51



52

Definition 4.1. The following execution cost model is defined for FP:

A) The computation sequence for f in F is given by the definition of
f (3). The choice of a particular reduction order for [f1,...,fn]:Xx
is arbitrary and does not affect the cost of f:x defined below, since
the execution time cost of f:x is defined to be the total number of
operations performed in the reduction of f:x.
B) The symbolic constants c(f|) denote a symbollic cost associated
with f;, where f:x = P;(x) ——> f,;, i=1,...,flast. The symbolic
constant c(f) denotes a base cost associated with the reduction f:x.
The symbolic constant c(#) denotes the cost of the constant function
in FP.
C) Let f be a function In f defined by
f:x = Py(X)=——>fq1;...;Pagt (X)==>F |ast-
Then for each x in O the cost of f:x is denoted by "cost(f:x)" and is
defined to be:
1) If f is in {atom,null,eq,>,>,<,<}, then
cost(f:x) = c(f)
Thus, c(fl)-c(fj), 1,J=1,...,flast.
2) If f is a primitive function not in case 1) then for
i=1,...,flast,
Pi(x) & f; is a constant function ==> cost(f:Xx)=c(#)
P1(x) & f; Is not a constant function ==> cost(f:x)=c(f)
It is noted that for all these cases of f except for f=apndl, that
c(f|) may unambiguously be denoted by c(f). 3) If f=G(f1,...,fn)
for some f1,...,fn in F then
a) cost(y:x) = c(#), where y:x is the constant function y.

b) cost((f1ef2):x) = c(e) + cost(f2:x) + cost(f1:(f2:x))
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c) cost([f1,...,fnl:x) = c([1) + cost(f1:x) +...+ cost(fn:x)
d) Pq(x) ==> cost((f1-=>f2;f3):x) = c(-—>) + cost(f1:x)
+ cost(f2:x)
Po(x) ==> cost((f1-->f2;f3):x) = c(~—>) + cost(f1:x)
+ cost(f3:x)
P3(x) m=> cost((f1-->f2;f3):x) = c(-->) + cost(f1:x)
The following observations are made about the execution cost model
of Definition 4.1.
1) For every f Iin F if P;(x)=True and f; is not a constant function
then the actual execution time of f:x for any particular machine
implementation may vary significantly over x in O. This level of
inaccuracy in estimating the cost(f:x) cannot be avoided uniess
impiementation dependent assumptions are introduced into the model.
2) No cost is assigned to the operations required to determine the
case of P;(x). The order given for f|, i=1,...,flast in Appendix A
and by Backus (3) is clearly not optimal for minimizing the number of
these operations required. Including them Iin cost(f:x) would require
assumpt ions about the average case of x for f:x, or would require
that cost be defined as worst or best case cost. For these reasons
and for the sake of simplicity in the examples of this chapter, they
are not included in Definition 4.1.
3) For the case of f In 1) above cost(f:x) is glven as c(f) even
though f,, i=1,...,flast is a constant function. This choice is made
arbitrarily to reflect patterns of cost in cost(f:x). For all cases
of c(f) or c(#), c¢(f;) could be substituted without affecting the

methods described later Iin this chapter.
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The model of Definition 4.1 is independent of any particuliar
machine implementation, except for the cases described in 3) above. The
choices for the cost functions given are made arbitrarily for the sake
of simplicity or to maintain machine independence in the modei. Other
cost functions could be defined to reflect some particular hardware or
software implementation. For a developing language such as FP, both
machine independence and flexibility are desirable properties of an

execution time cost model.
Methods for Estimating Execution Time Cost

In this section methods are given for estimating the cost of f:x
over the data domain, O. |In particular, the results of the previous
chapter are used to show that a finite set of cost functions under

Definition 4.1 gives the cost of f:x over 0.

Theorem 4.1. For all f in F and for all f|°, i=1,...,p(f),
If x',x" are in d(f;°)
then cost(f:x’') = cost(f:x").

Proof: A proof of this theorem is given in Appendix F.

Definition 4.2. The notation of Definition 4.1 is extended as folliows.

Let

c(f|©) denote cost(f:x) for all x in d(f;®).
This extension implies no contradictions of Definition 4.1 since c(f)
and c(d(flc)) are both cost functions under the definition.

Methods are shown in Chapter 3 to derive d(f;€) and r(f|®) for all
f in F and for each f|°, i=1,...,p(f). By Theorem 3.2 p(f) is finite

and by Theorem 4.1 c(f|°) is a single cost function under Definition



4.1. Therefore, cost(f:x) for all x in 0 is given by c(f|°),
i=1,...,p(f).

Theorem 4.1 also shows that c(f|®) can be computed directly from

f1€. In the examples that follow, r(f,;) and c¢(f,;C) are computed in
parallel to illustrate this for one case of each f in G.
Example 4.1. Let f:x=(setl):x and Z=0-}. Computations are shown for

f1€:d(f|©), and for c(f|®), f,C, i=1,...,p(f) except where d(f°) = ¢.
FOFS) = £, d(f,©) c(f1%

1) r((s1%t1,%)1%)
= 51C: (11,8 Up<Z(X. 1),z (X, 141)>(X)
c(e) + cost(tly) + cost(sq)
= 51C: U<zt (X 141> (IXI-1)  c(8) + c(tl) + cost(sq)

= Z(X.2) c(e) + c(tl) + c(s)

2) r((so%t14%)¢€)

= Sp:(t14C: <Z(X.1)>(X) c(e) + cost(tlq) + cost(sy)
= So:(<>) c(e) + c(#) + cost(sy)
- c(e) + c(#) + c(#)

3) r((sofet13%)4€)
= 55C: (t13%: (Atoms U })) c(e) + cost(tligz) + cost(sy)
= s5%: (1) c(e) + c(#) + cost(sp)

= | c(e) + c(#) + c(#)



Example 4.2. Let f:x=[s,tl]:x and Z=0-].
refi€) = £1%: df© c(f ;)

1) r(s¢%,t11%1)
= <51C:<Z(X.1)>(X), t11C:<Z(X.1)>(X)>
c([1) + cost(sq) + cost(tlq)

= <Z(X.1), <>> c([]) + c(s) + c(#)

2) r(Is¢%,t15%17)
=<s4C:U;<Z(X. 1), (XL 14105 (XD, t158:U <Z(X. 1), Z (X, 1+1)>(X)>
c([1) + cost(sq) + cost(tls)
= <Z(X.1), Up<zhexai+1)>(xi-1)>

c([]) + c(s) + c(tl)

3) r(lss®,t13%15)
= <spC:(Atoms U }), ti3®(Atoms U })>
c([1) + cost(sp) + cost(tlg)

=<}, 1> c([1) + c(#) + c(#)

1
=L
Example 4.3. Let f:x = (atom——>id; tl):x and Z=0-}.

refi® = 1% def© c(f©)

1) r((atomy®——>1id{%;t1)q)
= ((atomqC:Atoms)-—>id¢C;t1): Atoms(X)
c(-->) + cost(atomq) + cost(idq)
= (T ——> idq; t1)4€: Atoms c(-->) + c(atom) + cost(idq)

= id{€: Atoms(X)

= Atoms(X) c(——>) + c(atoms) + c(id)
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2) r((atomp®-->1d;t11)5)

((atomyC:<Z(X.1)>(X))==>id; t11%)5C: <Z(X.1)>(X)

c(-—>) + cost(atomy) + cost(tlyq)

(F —=>id;t14%)5%: <Z(X.1)>(X)
c(-—>) + c(atom) + cost(tly)
= t14C: <Z(X.1)>(X)

= <> c(-->) + c(atom) + c(#)

3) r((atomp®-->id;t15%)5)

((atomo®:U;<Z,z'>)—=>id;t1):5%: Uj<z,z!>

c(-—>) + cost(atomy) + cost(tliy)
- (F —>id;t15%)5%: Uj<z(X. 1),z (X, i+1)>(X)
c(-->) + c(atom) + cost(tly)

= 158 U<Z(X.1),Z1 (X, 141)>(X)

Up<z! (X, i+1)>(1x1-1) c(-->) + c(atom) + c(tl)

4) r((atomgC-->id;tl)3)
= ((atomgC:})-->1d;t1)3%: }
c(——>) + cost(atomy)

= (] -—>id;ti)3%: |

1
c(—>) + c(atom)

-t
The examples above show the computation of cost(f:x) over O for
simplie cases of f in F. The tablies of Appendix G show d(flc), r(f|°),
and c(flc) for more complex cases of f. These values were computed by
the program described in the introduction of this paper, except for the
cases of r(f;®)=} which were computed by hand. For each f, U;d(f;%)

such that r(f|°)-i is given as a single set, and a single cost function,
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cost(f:x), is given which is the max(cost(f:x)) for all x such that
fox=].

A machine independent model for FP is defined which gives the cost
of f:x for all f Iin F and for each x in 0. The methods of Chapter 3 are
then used to show that the cost of f:x over O can be given as a finite
set of cost functions derived from this definition. Computations of the

cost of f:x over O are shown for simple cases of f in F, and computed

results are given for more complex cases of f.



CHAPTER V
SUMMARY, CONCLUSIONS, AND RECOMMENDAT IONS
summary

A set of functions, F, is defined which is a subset of functions in
FP as defined by Backus (3). The set contains functional forms for
construction, conditional, and composition and contains a subset of
the primitive functions defined by Backus (3) and Williams (11). Then
for each function f in F a set of computational restrictions of f is
defined. Definition 3.4 gives a method to derive the computational
restrictions of f in the general case and Theorem 3.4 proves that this
set of restrictions is finite. The examples of Chapter 3 and the
computed results of the program described in the introduction of this
thesis verify that the set of restrictions can be computed.

In Theorem 3.3 it is proved that the domains of the computational
restrictions of f partition O, the domajn of f. Thus, every data object
in O is in the domain of one and only one computational restriction.
Theorems 3.4 and 3.5 show that an equation can be constructed for the
domain and the range of each computational restriction of f. The
methods for constructing the equations are proven to be correct for a
significant subset of F, and for the remaining cases examples are shown.
The computed results in Appendix G give further verification of the
methods and show that the methods can be automated. Thus, a method has

been shown for computing a nontrivial characterization of functions in F.
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In Chapter 4 this characterization of functions for FP is shown to
be useful. An execution time cost mode! is defined which gives an
estimate of the execution time cost of f:x for all f in F and for each x
in 0. The model is derived directly from the definition of FP (3). It
is shown to be a machine independent model and also to have a flexible
framework which may be used to define an execution time cost mode!l for
any particular hardware or software implementation of FP.

Theorem 4.1 shows that the set of computational restrictions of
each function f in F correspond to the possible computation sequences of
f. A proof is given that a single cost function derived under the model
gives the cost of f:x for all x In the domain of some computational
restriction. Then since the set of computational restrictions is
finite, the cost of f over O is given by a finite set of cost functions.
in Chapter 3 examples are shown of the computation of the execution time
cost of f over O for simple cases of f. Then for more complex cases of
f, the domain, range and cost of each restriction of f are given in
table form in Appendix G. These results were computed by the program
described In the introduction to this thesis. All computed results are

consistent with the expected resuits given by the theory and methods.

Cconciusions

FP is a functional programming language in which all programs are
the application of a function to an object. Existing methods for
characterizing programs and existing methods of cost analysis for
conventional languages do not give any apparent solution to the probiem

of execution time cost analysis for functional languages. A machine
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independent execution cost model based on existing methods of cost
analysis is defined for FP in Definition 4.1. Then the characterization
of functions given in this thesis is combined with this cost mode! to
give a method for execution time cost analysis for FP. The examples
given in Chapter 4 and the computed results given in Appendix G verify
this method of cost analysis for a significant subset of FP.

In particular, this characterization of functions gives the finite
set of possible computation sequences for each function and the domain
and range of each computation sequence. A formal specification is given
by Definition 3.7 for the domains and ranges of these computation
sequences. The examples of Chapters 3 and 4 and the computed results in
Appendix G show that these sets can be computed for the general case of
f in F. Then by comparing the respective domains and ranges of any two
functions in F it is possible to determine if the two functions are
equivalent. The computed results of Appendix G show the domains and
ranges for several cases of functions which are equivalent (3). In all
of these cases the computed domains and ranges of equivalent functions
are equivalent. Thus, it is reasonable to assume that the
characterizatlion of functions given in this thesis might be useful for
examining other properties of programs in FP such as program

equivalence.

Recommendat ions

The characterization of functions given in this paper is proven to
be correct for a significant subset of F, the set of functions in FP.
The examples shown indicate that the equations constructed for the

domains and the ranges of the computation sequences of the functions are
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correct for the general case, but a formal proof is needed. The set F
as defined for this paper does not include programs which contain
iteration or recursion. Given the consistency of the results obtained
for the subset of FP considered and assuming the proof described above
is given, then it is clear that extending the methods of this paper to a
larger class of functions is a promising course for future work.

Execution time cost analysis is a desirablie tool in the
developmental stage of a programming language as well as a necessary
tool in a productlion level language. One valuable use for automated
techniques of cost analysis is program optimization. The proofs of
Chapter 3 and the computed results of Appendix G show that the method
can be used to determine the equivalence of two functions in F.
Combined with the cost analysis model this gives the potential for
automated optimization of programs. Thus, another promising course for
future work is the application of the methods to some particular
hardware and software implementation of FP.

The characterization of functions given In this paper clearly has
other applications distinct from cost analysis of functional languages.
For procedural languages techniques exist to formally specify the
relationship between the input and the output of programs. These
methods are used to give proof of correctness of programs, but they are
Iimited in that heuristic input about program intent is required (12).
The methods of this paper clearly meet the requirements for formally
specifying the results of a program over all possible inputs without the
above described limitations.

The possible applications of the methods described in this paper

are wide ranging. For the subset of FP considered they give a useful
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tool for future work in the development of functional languages. |If the
methods can be applied to a larger class of functions, then some of the
limitations of conventional algebraic languages may be shown to not

apply to functional languages.
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APPENDIX A
DEFINITIONS OF FUNCTIONS IN F
Primitive Functions

For all x in O
1) s:X = (X=<X{,...,Xp>,n>1) =—=> Xq; |
2) id:x = x
3) tl:x =m(Xxm<Xq>) —=> <>; (X=<Xq,...,Xp>,N>2) ==> <X9,...,Xp>; 1
4) atom:x = (x is an atom) ——> T; (X=<Xq,...,Xp>,n>1) ==> F; |
5) null:x = (xm<>) ==> T; “(Xm<> | Xxm}) —=> F; |
6) rev:X = (X=<>) ==> <>; (X=Xq,...,Xp>,N>1) ==> (<Xp,...,X{>; |
7) apndl:x = (Xm<Xq,<>>) —=> <X{>;

(Xm<X{,<X0, .00, Xp>>) ==> <X{,...,Xp>; |

8)'and:x

(X=<T,T>) ==> T;
(Xx=<T,F> | xm<F,T> | Xm<F,F>) —==> F; |
9) or:x = (X=<T,T> | X=m<T,F> | X=<F,T>) —=> T;
(x=<F,F>) —==> F; |

10) not:x = (x=T) ——> F; (Xx=F) ——> T; }
11) For op in {+,*,sub,div}

op:X = (X=<X{,Xo9>, Xq,Xp are numbers) —-> (X4 Op Xg); |
12) For r in R= {eq,>,>,<,<}

r:x = (x=<Xq,Xo>, Xq,Xp are numbers, xq r Xxg) -—-> T;

(x=<X{,Xp>, Xq,Xo are numbers, xq{ “r Xp) =-> F; |
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Functional Forms

For all x,y in O and all f1,...,fn in F

1) (flef2):x = f1:(f2:x)

2) [f1,...,fnl:x = “(fl:x=} !

fnixmj) =—> <f1:x,...,fn:x>; |

3) (f1==>f2;f3):Xx = (f1:X=T) —=> f2:x; (fl:x=F) ——> f3:x; |

4) X :y = “(y=}) -—> x; |
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APPENDIX B

COMPUTATIONS OF f:Xx

The examples below are computations of f:x for various cases of X

in O and f in F.

1) f:X = (>==>+,8):X
a) (>=—->+;8): <5,4>
= ((>:<5,4>)—=>+;8): <5,4>
= (T—=>+;8): <5,4>
= +: <5,4>
=9
b) (>=—>+;s): <5,4,3>
= ((>:<5,4,3>)-—>+;8): <5,4,3>
= (j=—>+;8): <5,4,3>
= |
2) f:x = (eqeapndl):x
a) (eqeapndl): <6,<2>>
= eq:(apndl:<6,<2>>)
= eq:(<6,2>)
- F
b) (eqeapndl): <6,2>
= eq:(apndl:<6,2>)
= eq:(})
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3) f:x = [+,t1]:x

a) [+,t1]: <2,3>

<+:<2,3>, tl:<2,3>>

<5,<3>>

b) [+,t1]: <2>

<+:<2>, tl:<2>>

4) f:x = ((>e[s,10])--> sube[s,1]; tl):x

a) ((>e[s,10])--> sube[s,1]; tl): <13, AB>

b)

((>e[s,10]:<13,AB>)—-> sube[s,1]; tl): <13,AB>

(

v

:([s,10]:<13,AB>)==> sube[s,1]; tl): <13,AB>

(

v

:(<s:<13,AB>,10:<13,AB>)-->sube[s,1];t1):<13,AB>

(

v

:(<13,10>)--> sube[s,1]; ti): <13,AB>
T —-> subels,1]; t1): <13,AB>
sube[s,1]: <13,AB>

sub:([s,1]:<13,AB>)

sub:(<s:<13,AB>, 1:<13,AB>>)
sub:(<13,1>)

12

((>es,10])--> sube[s,1]; tl): <AB,13>

((>e[s,10]:<AB,13>)——> sube[s,1]; tl1): <AB,13>
(>:([s,10]:<AB,13>)--> sube[s,1]; tI): <AB,13>
(>:(<s:<AB,13>,10:<AB,13>)-->sub[s,1];t1):<AB, 13>
((>:<AB,10>)--> sub[s,1]; tl): <AB,13>
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APPENDIX C

DOMAINS AND RANGES OF COMPUTAT |ONAL RESTRICTICNS

OF PRIMITIVE FUNCTIONS IN F

The domain and range of each canonical restriction are given for
each primitive function in F. The sets are given in the closed form of

Definition 3.7. Let Z =0-].

¢ d(f;©) ref
s1c U|<Z|> 7
s5° Atoms U | 1
id{© 0 0
tl1c <Z> <>
t|2c U|<Z,Zl> U|<ZI>
tig® Atoms U } 1
atomq¢ Atoms T
atom2° U|<ZI> F
atomy® I L
nul |1 <> T
null,® 0-{<>,1} F
null4C H i
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rv1°
FV2

rvg®

apndl €
apndl©

apnd|3c

and1°
and2°

and3°

orJc and notjc, j=1..3 are similar to and

<>
Ul<ZI>

(Atoms—-<>) U |

<Z,<>>
<Z,U]<Z'>>
Atoms U | U<Z>

U <Z,Atoms—<>> U|<Z,Z,Z|>

<T,T>

<T,F> U <F,T> U <F,F>

Atoms U | U <Z> U <Z-BOOL,Z>
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<>

U[<ZI>

<Z>

uj<z,zl>

U <Z,Z-BOOL> U <Z-BOOL ,Z-BOOL>

uyj<z,z,z'>

for op € {*, +, sub, div}

op4©

ops°

<NUM, NUM>

Atoms U | U <Z> U <Z,Z-NUM>

U <Z-NUM,Z> U <Z-NUM,Z-NUM>

uy<z,z,z'>

for r ¢ R={eq,>,>,<,<}

r1°

r1°

r3°

(r, <NUM,NUM>)
("r, <NUM,NUM>)

Atoms U | U <Z> U <Z,Z-NUM>

<Z-NUM,Z-NUM> U <Z-NUM,Z-NUM>

uj<z,z,z'>

NUM



APPENDIX D

INVERSE SET MAPPING EQUATIONS FOR
THE COMPUTATIONAL RESTRICTIONS OF

PRIMITIVE FUNCTIONS IN F

For all canonical restrctions ch, j=1..flast an equation is given
for (fJ°)°-1:D, where D is any subset of r(fjc). For the cases where

r(f;¢) is a constant, (fjc)‘1:D = d(f€), and the set d(f;®) is given in

Appendix C. In these cases r(fjc) is a singleton set. Let Z=0-] and D
6 DC.
(s¢$)"1:D = De Z —> U<,z!>

(Szc)_1:D

D = (]} -—> d(s5°)

(id4®)"1:p=Dec 0 ->D

(t|1c)_1:D =D = (<>} —> d(t|1c)
(tl2°)'1:D:DgU|<ZI> —_— UI<Z,D1,...,DkI,-..,Dn>
(t|3C)"'1:D = D = {i} —— d(tlsc)

(atomy©)=1:D = D = {T} ——> d(atom{%)

(atomgc)'1:D {F} ——> d(atomy®)

i
o
n

(atomg®)~1:D {1} --> d(atomz®)

i
o
]

(nul14%)=1:D = D = {T} —> d(nul14%)
(nul15%)=1:D = D = {F} —=> d(nuli,®)
(nul13)=1:D = D = {1} ==> d(null3®)
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(rev{©)~1:p
(revy®~1:p

(reV3°)'1:D

(apndl1°)‘1:
(apndlzc)’1:

(apndl3°)'1:

(and{)~1:D
(and,®)~1:D

(and3©)~1:p

(orJC)‘1:D and (notJC)

o

o
N

o

D

D

{<>) —-—> d(rev1°)

Uj<z!> —> u;<Dbp,...,D¢!,...,Dy>

(Atoms-<>U-}) --> d(rev3®)

c U|<Z,ZI> - <D1,U|<Dz,...,Dkl,...

C <I> —-—> <Dq,<>>

= {1} --> d(apndiz®)

(T}
{F}
{1}

--> d(and{®)
--> d(andy®)
--> d(and3®)

-1.p, j=1,..

For op 6 {*, +, sub, div},

(op1°)‘1:D

(Opgc)_1:D

D & NUM ——> <NUM,NUM>

D= (i} ==> d(op2®)

.,3 are similar.

For r €6 R, (r|c)‘1:D, i=1,2 Is not In D and Is

is give as a relation on <NUM,NUM>

(ri©&>-1:p

(ro,®)~1:p

D = {T} ——> (r, <NUM,NUM>)

D = {F} —> (~r, <NUM,NUM>

(r(z®)-1:D = D = {1} -—> d(r3®

,Dp>>;
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APPENDIX E

SET MAPPING EQUATIONS FOR THE
COMPUTAT IONAL RESTRICTIONS OF

PRIMITIVE FUNCTIONS IN F

For all ch, j=1,...r,flast an equation is given for fJC:D, where D
_ d(ch). The equations are defined for all D 6 D¢ except where noted.
Let Z = 0-}, and D & DC.

s1:D = D ¢ Uj<z!> —> Dy (X.1)

]
o
0

s56:D = D c (Atoms U }) -—> (})
id®:D=Dc 0 -->D

t14€:D = D €© <Z> ——> (<>}

t1,6:D = D c U;<z,z!>
——> U<Dp(X.2), ..., Dl (X.k+1=1),...,Dp(X. last)>(IX}I=1)
t13:D = D € Atoms U | -—> (1)

atom{®:D = D € Atoms --> (T}

atoms®:D = D € U <z!> ——> (F}
atomz®:D = D = {}} -—> (!}
nul14€:D = D = {<>} —-—> (T}

nul1,6:D = D € (0 - {<>,1}) ——> (F)

nul13:D

In
o
n

(1) —> (i}
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rev,C:

revoC:

revaC:

apndl4

apnd|,C:

apnd|4C:

and1°:
and2°:

andg®:

For r

r1°:D

D

D

D

c.

D

D

D

D € <NUM,NUM> —-> NUM((X.1) + (X.2))

D < (Atoms U {1} U <Z> U <Z,Z-NUM> U <ZI-NUM,Z>

U <Z-NUM,Z-NUM> U;<Z,Z,Z!>) —=> (1}

< (r,<NUM,NUM>) -—> (T}
< ("r,<NUM,NUM>) --> (F}
c (Atoms U | U<Z>, <Z,Z-NUM> U <Z-NUM,Z>

U <Z-NUM,Z-NUM> U;<Z,Z,2zl>) —=> (1)
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cv o, D1 (X 1)>(X)

=D = {<>) ——> {<>)
=D c U|<Z|>
——> U <Dp(X.last),... Dt (X.last=(n-k)=i+1),
=D ¢ ((Atoms - <>) U 1) —=> {1}
D =D c<Z,{<>}> —> <Dq(X.1)>
D =D& <Z,Uj<Z!>> —> U;<Dq(X.1),Dpq(X.2.1),...
Dol (X.2.k+i=1),...,Dop(X.2.n)>(1X.2!+1)
D = D € (Atoms U } U<Z> U <Z,Atoms-}> U;<Z,Z,Z!>) -=> (1}
=D = <(T},{T}> ——> (T}
= D c {<{T},{F)> U <{F},{T}> U <(F},{F}>} —> {F)
=D e (Atoms U | U <Z> U <Z,Z-BOOL> U <Z-BOOL,Z>
U <Z-BOOL,Z-BOOL> U;<Z,Z,Z!>) —=> (1}
and notJC:D, J=1,...,3 are similar
{*,+,sub,div}



APPENDIX F

THEOREM 4.1

Theorem 4.1. For all f in F and for all f|c, i=1,...,p(f),
if x',x" 6 d(f|©)
then cost(f:x')=cost(f:x")

where cost(f:x) is defined in Definition 4.1.

Proof: Let f be In F, and x',x" be in d(f;©). The various cases of f
are proved below. The notation for P;(x) is extended to show the
particular case of f as follows. For f|:x = P (Xx)-->f;, i=1..flast,
denote P(x) by
P(f,x).
case 1) If f Is a primitive function in F, then the canonical
restrictions of f are
f1C:x = fi:x = Pj(x) =—=> f;, i=1,...,flast.
Since x',x" € d(f,c) for one and only one i, then P|(f,x’)=True and
P|(f,x")=True for one and only one i. Then by Definition 4.1 either
a) cost(f:x') = cost(f:x") = c(#), or
b) cost(f:x’') = cost(f:x") = c(f).
1) Thus, cost(f:x') = cost(f:x").
case 2) If f=G(f1,...,fn) then all the canonical restrictions of f are
given by one of the cases of definition 3.5.A, for some f,
i=1,...,flast. By Theorem 3.3 d(f;®) € d(f|), for all f;C,

j=1,...,p(f). Thus, if x',x" are iIn d(fjc) for some j then x’',x" are in
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d(f|) for one and only one i, i=1,...,flast. Then by Definition 3.1.B
and Definition 3.3, P|(f,x")=True and P (f,x")=True for one and only one
i, and cost(f:x') and cost(f:x") are given by the same cost function
under Definition 4.1, For f:x=y:x, it is direct that cost(f:x') = cost
(f:x") for all x’,x" In d(f{). For the cases where f; is not a constant
function a proof by mathematical induction iIs given.

Let S(N) be the statement, "If f=G(f1,...,fn) and f is defined by
at most N applications of the expansion rules of G, then if x’',x" are in
d(f,c) for any f|°, i=1,...,p(f), cost(f:x') = cost(f:x")."

Basis: |If N=1 and f=G(f1,...,fn) then f1,...,fn are primitive functions
in f. Proof that S(1) is true is given for each case of f| in
Definition 4.1.
b) Suppose f|C:x=f1;€:(f2,C:x)and x',x" € d(f[°).
m=> X, X' 6 d(f2€) & f2,C:x, f2,C:x* 6 d(f1,°) Df. 3.5.B
m=> X' L,X" 6 {Xi Pq(f,x) & Pp(f2,x) & PJ(f1,x)} Df. 3.5.A
m==> P4(f,x’') & Pq(f,x") & cost(f2:x")=cost(f2:x")
& cost(f1:(f2:x’))=cost:(f1:(f2:x" (1) Df. 4.1
Then by Definition 4.1
cost(f:x') = c(e) + cost(f2:x’) + cost(f1:(f2:x"))
By (1) cost(f2:x’')=cost(f2:x") and cost(f1:(f2:x’'))=cost(f1:(f2:x")).
Thus, cost(f:x’') = c(e) + cost(f2:x") + cost(f1:(f2:x")).
= cost(f1:(f2:(x"))
= cost(f:x")
Thus, cost(f:x') = cost(f:x")
c) Let f:x=[f1,...,fn]:x. The proofs of both cases of f|, i=1,2 are
identical.

Let x*,x* € d([f1;¢,...,fn€14%), for some (J.,k).
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=-=> X', X" € (d(f1J°) NN difnen Df. 3.5.B
==> X',X" 6 {x| P{(f,x) & Pj(f1,x) &...& Pp(fn,x)}
Df. 3.5.A
==> P4(f,x') & Pq(f,x") & (cost(f1:x')=cost(f1:x"))..
&...(cost(fn:x")=cost(fn:x")) (2) Df. 4.1
mm> COSt(f1:X) +...+ cost(fn:x') = cost(f1:x") +...+ cost(fn:x")
Then by Definition 4.1
cost(f:x') = ¢c([]) + cost(f1:x’') +....+ cost(fn:x")
By equation (2) above
= Cc([]) + cost(f1:x") +...+ cost(fn:x")
= cost([f1,...,fn]:x"
= cost(f:x")
Thus, cost(f:x') = cost(f:x")
d) Let f:x = (f1-->f2;f3):x. The proofs for all 3 cases of f|,
i=1,...,3 are identical. They are similar to case c.
Inductive Step. Let S(N) be true for all N> 1. Then if f=G(f1,...,fn)
and f is defined by at most N+1 applications of the expansion rules of
G, f1,...,fn are defined by at most M < N applications of the expansion
rules of G. By the inductive assumption, if x',x" € d(f1|°), for some
i=1,...,p(f1), cost(f1:x’) = cost(f1:x"). The same holds for f2,...,fn.
Proof that S(N+1) is true is given below for the various cases of f.
b) Let f:x=(flef2):x and let x',x" € d((f1,%f2;¢){¢:x), for some
(i, ).
==> X',X" € d(f2) Df. 3.5.B
Then by the inductive assumption for f2,
cost(f2:x’') = cost(f2:x"). (3

Also, x',x" 6 d((f1,Cefpjec){©)



==> (f2)C:x’ € d(f1,%)) & (£2;%:x" € d(f1,°)) Df. 3.5.B
Then by the inductive assumption for f1,
cost(f1:(f2:x")) = cost(f1:(f2:x")) (4) Df. 4.1
Then by Definition 4.1
cost(f:x’) = c(®) + cost(f2:x’') + cost(f1:(f2:x"))
By equations (3) and (4) above,
= c(e) + cost(f2:x") + cost(f1:(f2:x"))
= cost((flef2):x")
= cost(f:x")
b) Thus, cost(f:x’) = cost(f:x")
c,d) Cases ¢ and d are similar to b.
2) Thus, If S(N) Is true then S(N+1) is true for all N > 1.
Therefore, S(N) is true for all N > 1.
Therefore, for all f In F If x',x" 6 d(f;©), for some i=1..p(f) then

cost(f:x’') = cost(f:x").
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APPENDIX G
COMPUTED RESULTS

The results in this table were computed by the program described in
the introduction of this paper except for the case denoted by an ‘'*’

which were computed by hand.

1) f:x = ((atomes)—->s;tl):x

a) f|c = ((atomzces1°)——>s; t|1c)2c

d(f|€) = <Uj<z!(X.1.1)>(X. 1)>(X)
r(f|°) = <>

c(f|C) = c(-=>) + c(8) + c(s) + c(atom) + c(#)

b) ;¢ = ((atomyCes €)-->s; t15°),¢
d(f1%) = Up<Uj<z)(x.1. >, 2hx 141> 00
ref) = U<zl X i+1)> X -1)

c(f|C) = c(—=>) + c(8) + c(s) + c(atom) + c(tl)

c) f1¢ = ((atom;Ces{C)-->s4C; t1)4C
d(f %) = Uj<Atom(X.1), Z!(X.1+1)>(X)
r(f;©) = Atom(X.1)
c(f|®) = c(-->) + c(8) + c(s) + c(atom) + c(s)

= c(==>) + c(®) + 2c(s) + c(atom)
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d)

%

;€

Uj(d(f;©)) = Atoms U }

d(f|®) = Atoms U }

r(f;©

((atomzCesy®)—->s; t1)3€

c(f|€) = c(=—>) + c(e) + c(#) + c(atom)

2) f:x = ((>8[s,51)=->t1; rev):x

a) flc

b)

c)

d)

d(flc)
r(f,;©

c(f|©)

f,°
dacf©
r(f;©

c(f|©)

flc
da(f©)
rcf©

c(fi©)

d(f;©)
ref©

c(f|©)

((>1%e[51¢,51%11%)—=>t1,%; rev)4C
Uj<NUM(X.1), Zhx is1)>(X), (X.1 > 5)
U<zt xo s> ixi-1)

c(==>) + c(®) + c([1) + c(s) + c(#) + c(>) + c(tl)

((>1%[51°,51€11%)-=>t14%; rev)4°

<NUM(X.1)>(X), (X.1 > 5)

<>

c(==>) + c(®) + c([1) + c(s) + c(#) + c(>) + c(#)

c(——>) + c(e) + c([1) + c(s) + 2c(#) + c(>)

((>2%[51%,51%11C)—=>t1; revy®),°
Up<NUM, (X.1), Z! (X i+1)>(X), (X.1 < 5)
U<zl (X, i+1), NUM(X.1)>(X)

c(—=>) + c(®) + c([1) + c(s) + c(#) + c(>) + c(rv)

((>2%0[s1%,5¢%)—=>t1; rev4C),°

<NUM(X.1)>(X), (X.1 < 5)

<NUM(X.1)>(X)

c(—=>) + c(e) + c([]) + c(s) + c(#) + c(>) + c(#)

c(—=>) + c(e) + c([]) + c(s) + 2(c(#) + c(>)
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t 3

e) f1¢ = ((iscﬁfsgc,§1c]2c(T,F))-—>tI; rev)s®

Ujd(f;©) = Atoms U !

d(f|®) = Atoms

FefS) = L

max(c(f|®)) = c(-->) + c(e) + c([1) + 2¢c(#) + c(>)

3) f:x = (apndle([9,idletl)):x

a) f;© = (apndl{e([94°,id{€11%1t1¢)

d(f %) = <Z(X1)>(X)

r(f;%) = <o

c(f|®) = c(e) + c(@) + c(#) + c([1) + c(id) + c(#)

+ c(apndl1)
= 2c(e) + 2c(#) + ¢([]1) + c(id) + c(apndl1)

b) £1¢ = (apndi,Ce([94%,1d1°11%t1,°)

d(f€) = U <Z(X.1), z'(X.141)>(X)

ref %) = Up<e, 21 (X.i+1)>(X)

c(fi®) = c(e) + c(e) + c(t1) + c([1) + c(id) + c(#)

+ c(apndi2)
= 2c(e) + c(tl) + c([1) + c(id) + c(#)
+ c(apndl2)

)™ £1© = (apnd13®([9,5,1d1%1,8(T,Thet13)

Ujd(f|®) = Atoms U }
d(f1®) = ¢
ref©) =4

max(c(f;€)) = 2c(e) + 3c(#) + c([1) + c(id)
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4) f:x = (apndie([9, t1]):x
a) 1,° (apndl%e[8C, t1,°14)

d(f %) = same as 3.a

r(f;) = same as 3.a

c(f1®) = c(e) + c([1) + 2c(#) + c(apndl1)

b) f|¢ = (apndiz®e[84€, t15°14%)
d(f ) = same as 3.b
r(f,©) = same as 3.b

c(fi€) = c(e) + ¢([1) + c(tl) + c(#) + c(apndl2)

o) £, = (apndiz®el8,°, t15°155(T,T))
Ujd(f;®) = same as 3.c
d(f|®) = same as 3.c
r(f;€) = same as 3.c

max(c(f[©)) = c(e) + c([1) + 3c(#)

5) f:x = (apndie[atomet|, [+etl, *etl]]):x
a) 1€ = (apndiyCe[atomy®etioC, [+1%et1,°,*1Cet15,°14C14€
d(fC) = <Z(X.1), NUM(X.2), NUM(X>2)>(X)

ref;©

<F, NUM(X.2+X.3), NUM(X.2%¥X.3)>
c(f|®) = 4c(e) + 2¢([1) + 3c(tl) + c(*) + c(+) + c(atom)

+ c(apndl)

b)" f,€
= (apndiz®el[atomsCetioC, [+5Ct 150, %50t 15C15C8(T,T)1,8(T,T)
Ujd(f;©) = Atoms U } U <Z> U <Z,Z> U <Z,Z-NUM,Z-NUM>

U <Z,Z,Z-NUM> U <Z,Z-NUM,Z> U,<Z,Z,Z,z!>

d(f|®) = <Z,Z> U <Z,Z-NUM,Z-NUM> U <Z,Z-NUM,Z>
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U <Z,Z,Z-NUM> U,<Z,2,2,2!>
ref© =}

max(c(f€)) = 4c((e) + 2c([1) + 3c(tl) + 3c(#) + c(atom)

6) f:x = [atomet!l, +etl, *etl]:x
a) f;C = [atomyCetis®, +1Cet1,C, *,Cet1,614C
d(f;¢) = same as 5.a
r(f,©) = same as 5.a

c(f,c) = c([]) + 3c(e) + 3c(tl) + c(*) + c(+) + c(atom)

b)* £;¢ = [atomyCetie2®, +5Cet1,°, *,Cetl1,C1,°(T,T,T)
U;d(f;®) = same as 5b
d(f;®) = same as 5b
r(f;®) = same as 5b

max(c(f;€)) = c([1) + 3c(e) + 3c(tl) + 2c(#) + c(atom)

7) f:x = [atom, + , *]:X
a) f;¢ = [atomp®, +¢C, *4C14€
d(f|®) = same as 5.a and 6.a
r(f|¢) = same as 5.a and 6.a

c(f|C) = c(e) + c(tl) + c([1) + c(*) + c(+) + c(atom)

*

b)™ ;€ = [atomy®, +5C, *5C1,Cet1,C(T,T,T)
U;d(f|®) = same as 5.b and 6.b
d(f|®) = same as 5.b and 6.b
r(f;®) = same as 5.b and 6.b

max(c(f;€)) = c(e) + c(tl) + c([]) + 2c(#) + c(atom)
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