
A CHARACTERIZATION OF FUNCTIONS FOR

EXECUTION TIME COST ANALYSIS

IN FP

By

RICHARD WALTER MATZEN ,,
Bachelor of Science

University of Central Arkansas

Conway, Arkansas

1984

Submitted to the faculty of the Graduate College
of the Oklahoma State University

In partial fulfl I lment of the reQulrements
for the Degree of
MASTER OF SCIENCE

July, 1987

·------
_ ..

'.;,t

· ..

',·~ ~ ?:.,;.'i

, ...
- ·~

A CHARACTERIZATION OF FUNCTIONS FOR

EXECUTION TIME COST ANALYSIS

IN FP

Thesis Approved:

A z ~- ·4
Thesis Adviser

i~Jt(& >-:/µk_

Dean of the Graduate College

ii
12826·16

PREFACE

A method for characterizing functions In FP, a functional

programming language, was developed to support execution time cost

analysis. A set of restrictions of each function In FP Is defined which

corresponds to the possible computation sequences of the function. Then

a method Is shown to construct equations for the domain and the range of

each restriction. Proofs are given that the method Is correct and

examples are shown. A program was written to Implement the method and

results of program execution are shown In table form. The results show

that the method can be used to estimate the execution time cost of f

over the data domain, o. A subset of FP Is considered which includes

functions for condition, construction, and composition.

I wish to express my gratitude to al I of the people who have

assisted me In this work. In particular, I would I Ike to thank my major

advisor, Dr. G. E. Hedrick, for his guidance and support in completing

my course of study, and for his observations and advice which were

helpful In developing this paper.

I am especially indebted to Dr. K. M. George. Through his

expertise In the field of study, FP, and generous contributions of his

time he has contributed slgnlflcantly to the rigor of this paper.

would also I Ike to thank Dr. D. D. Fisher for his helpful advice on

machine models and cost analysis.

ii I

I could not have completed this course of study without the help of

my family. I would I Ike to thank my father and my mother for their

assistance and for their encouragement. Last, but certainly not least,

am grateful to my wife, Jan, and my two sons, Mika and Ben. Their moral

support, their patience, and their faith In me have kept me going.

iv

TABLE OF CONTENTS

Chapter Page

I . I NTROOUCT I ON. 1

Statement of Prob I em.. 1
Objectives .. 2

II. LITERATURE REVIEW .. 4

FP.. 4
Execution Time Cost Analysis............................ 5
Type Inference Schemes.................................. 7

I I I. A CHARACTERIZATION OF FUNCTIONS IN FP........................ 8

Definitions and Prel lmlnarles........................... 8
Methods.... 22

IV. EXECUTION TIME COST ANALYSIS FOR FP 51

Definitions and Prellmlnarles 51
Methods for Estimating Execution Time Cost 54

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 59

Summary.·.. 59
Cone I us Ions. 60
Recommenda t Ions. 61

SELECTED BIBLIOGRAPHY. 64

APPENDIXES... 65

APPENDIX A - DEFINITIONS OF FUNCTIONS INF 65

APPENDIX B - COMPUTATIONS OF f:x 67

APPENDIX C - DOMAINS AND RANGES OF COMPUTATIONAL RESTRICTIONS OF
PRIMITIVE FUNCTIONS INF 69

APPENDIX D - INVERSE SET MAPPING EQUATIONS FOR THE COMPUTATIONAL
RESTRICTIONS OF PRIMITIVE FUNCTIONS INF 71

APPENDIX E - SET MAPPING EQUATIONS FOR THE COMPUTATIONAL
RESTRICTIONS OF PRIMITIVE FUNCTIONS INF 73

v

APPENDIX F . i ' 75

APPENDIX G IX•"'. :, t :;, •;t -i"s. 79

vi

LIST OF SYMBOLS

- Logical or

& - Logical and

--> - Log lea I Imp I lcat Ion

u -.Union of sets

n - Intersection of sets

-- - Strong eQual lty

• - The empty set

s - Set containment

~ - Not In the set

F - Set of functions In FP (Def. 3.2, page 9)

f. f1. fn - Functions in F

G - Set of functional forms in F (page 4)

0 - Set of objects In FP (page 4)

I
~

- Bottom or "undefined" in FP (page 5)

• - Functional form for composition (App. A, page 66)

[] - Functional form for construction (App. A, page 66)

--> - Functional form for condition (App. A, page 66)

x Constant function, x, where x is an object In o

(App. A, page 66)

- The l'th first order restriction off

where f ls any function in F (Def. 3.4, page 11)

flast - The number of first order restrictions of f

(Def. 3.2, page 9)

vii

d(f1C)

r(f1C)

p(f)

UDC

UD1c

<D1, .. Dn>

x

x. i

cost(f:x)

C(f)

- The domain of f1 (Def. 3.4, page 11)

- The range of f1 (Def. 3.4, page 11)

- The l'th computational restriction off

where f Is any function In F (Def. 3.5, page 12)

- The domain of f 1C (Def. 3.5, page 13)

- The range of f1c (Def. 3.5, page 13)

- The number of computational restrictions of f

(Def. 3.5, page 12)

- The domain of the Inverse set mappings for the

computational restrictions of functions In FP

(Def. 3.7, page 22)

- The domain of the Inverse set mappings for the

computational restrictions of functions In FP

(Def. 3.7. page 22)

- The finite unions of sets In Dc (Def. 3.7, page 23)

- The finite unions of sets In D1c (Def. 3.7, page 23)

- The closed form of sets In Dc (Def. 3.7, page 23)

- The name of the object x In O (Def. 3.9, page 36)

- The name of the I 'th chi Id of X (Def 3.9, page 36)

- The execution cost for a function f In F with an

object x (Def. 4.1, page 52)

- A symbol le constant for the execution cost of any

function f In F (Def. 4.1, page 52)

vi 11

CHAPTER I

INTRODUCTION

Statement of Problem

Formal techniques for estimating program execution time by analysis

of the program text have been demonstrated for conventional procedural

languages. Results are general IY expressed as the cost of executing the

program over al I possible Inputs for the program. Estimates of

execution time are useful for comparing the efficiency of various

versions of a program and for Input to resource al location schemes.

Partially automated techniques for this type of cost analysis have been

demonstrated successfully for programs containing Iteration but not for

the general case.

FP, a functional programming language, differs from conventional

languages in several ways: there are no variables or assignment

statements, the data environment consists of a single structured object,

and al I functions are bui It recursively from simpler functions. Also,

each function in FP is defined by a conditional expression and thus, a

conditional branch is possible at each step in the computation.

Due to these differences it is not apparent that existing

techniques are either applicable or sufficient for estimating execution

time of FP functions. The questions considered in this thesis are :

Does there exist a process siml Jar to those described in the I iterature

for conventional languages which can be used to estimate the execution

2

time of FP- functions? If so, can the process be automated and for what

level of programming complexlty wl I I It work? Also, does a method exist

to determine the possible computation sequences of functions In FP? If

so, can this method be used to provide a framework for estimating the

execution time cost of functions over al I possible Inputs?

Objectives

In this thesis a method is developed. and demonstrated for

estimating the execution time cost of FP functions. The method Is

siml lar to existing methods of cost analysis.

1) Execution time cost Is expressed In terms of the number of basic

operations performed.

2) A computational model Is defined for FP.

The computational model defines the execution time cost of each function

for each possible input. However, due to the absence of program

varlables in FP existing methods give no apparent solution to the

problem of estimating the execution time cost of a function over al I

possible inputs. To solve this problem a characterization of each

function is given. This characterization of functions provides a

framework for execution time cost analysis in FP.

Chapter 2 contains background and definitions for FP and execution

time cost analysis and a review of the I lterature for this thesis. In

Chapter 3 a characterization of functions is shown for FP. A set of

restrictions Is defined for each function and equations are derived

from the induced set mappings of the restrictions are constructed for

the domain and range of each restriction. Proofs are given that the

equations are correct and examples are shown. In Chapter 4 a proof is

3

given that the set of restrictions of the function corresponds to the

computation sequences of the function. Also, a computational model Is

defined for FP and methods are shown to compute the execution time cost

associated with each restriction. The symbols and notation used In this

paper are defined In the List of Symbols on page vi I.

A program was written In the 'C' programming language to Implement

the above described methods, and a table of program results Is given for

various cases of functions In FP. The domain, range, and cost estimate

for each restriction of the functions are I lsted in Appendix H. Due to

the size of the program the source code Is not Included In this thesis.

Coples of the program may be obtained by writing to the fol lowing

address.

Course Record Flies: Richard W. Matzen

Department of Computing and Information Sciences

M.S. 219

Oklahoma State University

Stl I lwater, Oklahoma, 74078

Some of the results I lsted were computed by hand. These cases are duly

noted.

Since this is an initial study of execution time cost analysis for

FP, only a subset of FP Is considered. The subset Is defined in Chapter

3 and Appendix A.

CHAPTER I I

LITERATURE REVIEW

FP

Backus (3) presents a case for the development of functional

programming languages as an alternative to conventional algebraic

languages. A broad class of languages Is out I ined which are based on

functional forms and primitive functions. These functions are used to

bul Id function expressions which are used as arguments to other

functional forms, the result being a strictly hierarchical programming

system with no side effects. A model Is presented for a class of a

functional programming systems which are cal led FP systems. This model

Is later referred to as the language, FP (4).

The semantics of FP Is defined as fol lows (3). FP consists of the

fol lowing:

1) A set O of objects. An object Is either an atom, a sequence of

finite length whose elements are objects, or .L ('undefined' or

'bottom'). An atom may be any string of capital letters, digits, and

special symbols and therefore may be a number, a string, or Tor F

representing boolean values.

2) A set P of primitive functions.

3) A set F of functions that map objects into objects.

4) A set G of functional forms which form new functions by taking

existing functions as arguments.

4

5

5) A set D of definitions that define functions in F and assign each

a name.

A function f In F may be :

a) A primitive function.

b) A function.al form with functions In Fas arguments.

c) A definition of the form f - d, where d Is a function in F.

d) None of the above, In which case f :x Is I
J..

The specific primitives and functional forms wi I I not be I isted but can

be easl ly obtained from the I iterature (3), (4), (11). The subset of F

considered in this paper Is defined In Appendix A.

A program In FP has a single operation, appl icatlon, In which a

function Is appl led to an object. Al I functions f in Fare strict.

That Is, f:l·l· for al I f. Also, any sequence containing l Is defined

to be l· There are two cases where f:x may be l· One case occurs when

the computation of f:x terminates and yields land the second case

occurs when f:x Is nonterminating.

Execution Time Cost Analysis

There are several approaches to the problem of estimating execution

time cost (12). Cost may be estimated by measurement, either by actual

time or by counting the number of operations performed during execution

of the program with various Inputs. Either process is an estimation.

Results for actual time wl I I vary according to system performance and

counting mechanisms generally only count certain relevant operations.

Another approach is to estimate the execution time cost by analysis

of the program text. In this case cost must be expressed In terms of

the number of basic operations performed and variables which represent

6

the size of Inputs which affect the number of times these operations are

performed. Since specific Input values can affect the time required for

each primitive operation the typical method of estimating is to assign a

constant cost to each primitive operation (12). The results lose some

of their accuracy but gain Independence from any particular computing

system.

The general approach In existing methods for cost analysis is to

develop a computational model for executing programs in the specified

language (1), (12). The model determines a cost formula or rule for the

cost of executlng each construct In the language and a method for

determining the computation sequence of a given program. The cost of a

program is the sum of the costs of executing each statement in the

computation sequence. Thus, the model gives a cost estimate for each

possible set of inputs to the program.

A difficult task In execution time cost analysis Is estimating the

cost of program execution over the entire data domain (1). One approach

to this problem Involves giving cost expressions containing program

variables which represent the size of relevant inputs (12). However,

this frequently fai Is to provide a single cost expression for the cost

of the function over the data domain. Then some basis must be

established for the cost estimate over the data domain. Typical

approaches are to give an expression for best, worst, or average case

cost (1).

Another problem encountered ls formal IY proving the correctness of

execution time cost estimates. One method uses axiomatic semantics to

prove assertions about the number of times certain operations are

performed. It Is I 1mrted In scope and potential for automation because

it depends on an externally developed set of assertions (12).

Type Inference Schemes

One comprehensive approach to reasoning about programs is cal led

type Inference, where type Information about some program structure Is

determined by analysis of the program text (2). Type Is defined for

functions In terms of the types of the domain and the range of the

function.

7

A technlQue for type Inference cal led reduced computation has been

developed and applied to a subset of FP by Katayama (7). First a set of

types Is defined. Then a method Is given for determining the type of

any function In terms of the types of Its domain and range. The type

computations are determined directly from the definitions of the

primitive functions and functional forms. The method Is based on

relations which map the type of arguments to the type of results. For

each function f In Fa relational expression, f', can be derived which

performs the reduced computation and gives the type of f. Type

Information Is represented by type expressions for the structure and

primitive types of components. This Is a typical approach to defining

types for type Inference schemes (1).

CHAPTER I I I

A CHARACTERIZATION OF FUNCTIONS IN FP

Definitions and Pre I lmlnarles

Various methods for characterizing programs by analysis of the

program text are described In Chapter 2. Some of these methods are

useful for estimating the execution time cost of programs over al I

possible Inputs (1), (12). However, none of the methods described are

appl led to the problem of execution time cost analysis for functional

languages.

In FP al I program operations are the appl lcation of some function f

In F to some object x In o. Thus, It is reasonable to assume that a

characterization of f which describes the domain and range of f might be

useful for execution time cost analysis. The characterization must be

nontrivial since for al I f In F the domain of f Is o. In this chapter

a set of restrictions off is defined which has the fol lowing properties.

1) The set of restrictions Is a finite set.

2) The domains of the restrictions of the set partition, o, the

domain off.

3) The domain and range of each restriction can be derived.

4) The computation sequence of f:x is the same for al I x In the

domain of each restriction In the set.

The set, F, considered In this chapter is a subset of the set of

functions defined for FP In Chapter 2.

8

9

In this section the set of restrictions Is defined and properties 1 and

2 are proved. In Section 2 property 3 Is proved and equations are given

for the domains and ranges of the restr let Ions. In the fol lowing

chapter property 4 is proved and the characterization of f given by

properties 1-4 ls shown to be useful for estimating the execution time

cost of functions f in F over the data domain, o.

Definition 3.1. If f and g are functions, f:X-->Y and g:X-->Y, then f

and g are equivalent functions lff

for al I x In X, f:x • g:x.

Definition 3.2. For the purposes of this paper the set F Is defined as

fol lows.

A) A function f In F Is defined to be (3):

for all _x In o,

f:x • P1Cx) --> f1; ... ; P1ast-1Cx) --> f1ast-1; f1ast·

where f:x Is evaluated by (9):

If P1(X) then f:X•f1:X

If -p1cx> & P2Cx) then f:x-f 2 :x

if -p 1cx) & ... & -plast-1Cx) then f:x•fiast=<x>

To slmpl lfy notation let 'P1ast' denote ·-p1 & ... & -plast-1'·

B) For al I f In F def lned in A) above, If

{ x l P I (x) •True} n { x I P j (x) •True} .;. t , for some I .;. J

then replace f by an equivalent function f' which is derived from f

by replacing Pj with P' J where P' J • PJ & -p 1.

C) The set F Is I lmlted to the functions defined In Appendix A.

10

The definitions in Appendix A are from Backus (3) and WI I I lams (11)

except for [],atom, and nul I. For these cases the definitions given

are for eQuivalent functions which are derived for the purposes of this

paper. The eQuivalent functions for nul I and atom are defined in

Definition 3.2.B. The motivation for this extended definition Is to

ensure that for al I f in F the fol lowing property holds:

(Xl P1(X)•TRUE} f1 (Xl Pj(X)•TRUE} • $

for l,J-1, ... ,flast, i P. j.

The methods of this chapter are based on this property of F. The

motivation for defining the eQulvalent function for [] Is shown later.

For al I cases proof of eQulvalence Is direct by Definition 3.1 and the

definitions In Appendix A.

The fol lowing notation Is used In the remainder of this paper.

1) BOOL denotes (Xl x-T X•F}

2) NUM denotes (xl x Is a number}

3) ATOM denotes (xi x Is an atom}

4) R denotes (eQ,~,<,~,>}

A complete I ist of symbols and notation used In this paper is given

In the List of Symbols on page vi I. In Appendix B computations of f:x

are shown for simple cases of f and x. An understanding of these

computations is necessary to understand the methods and proofs of this

chapter. For the sake of simpl lefty the definitions of f s R in

Appendix A are different from those given in the original papers (3),

(11).

Definition 3.3. For any function f, f:X --> Y, a function g Is a

restriction off if the domain of g Is contained in X, and for al I x in

the domain of g, g:x - f:x.

Definition 3.4.

A) For a function f In F defined as:

f:x = P1 --> f1; ... ;f1ast•

let the first order restrictions off be defined as:

Pi--> f 1 , 1-1, ... ,flast.

The first order restrictions wi I I be denoted simply by 'fi' and are

derived dlrectly from the syntax of f.

B) For all f and for all f1, 1-1, ... ,flast let dCf 1) denote the

domain of f1 and r(f1) denote the range of f 1. Then

d(f1) • {x: P1(X)•True} and

rCf 1) - f 1:dCf 1).

Example 3.1.

1) Consider the function f defined by f:x•tl:x. The first order

restrictions of fare:

tl1:X • (X•<X1>) --> <>

tl2:X - (X•<X1·····Xn>, n~2) --> <X2·····Xn>

tl 3 :x = -cx-<x1 , ... ,Xn>,n~1) --> l

11

2) Consider any function f:x•[f1, ... ,fn]:x where f1, ... ,fn are In F.

The first order restrictions of f are:

[f1, ... ,fnJ 1 :x = -cf1:x - l ! ••• ! fn:x • l) --> <f1:x, ... ,fn:x>

[f1, ... ,fn]2:X - (f1:X•l ! ••. ! fn:X•l) --> l

Proposition 3.1. For al I f In F the fol lowing properties hold:

1) dCf 1), 1•1, ... ,flast partition o.

2) rCf1) n rCfJ) •~.for all i .,i. J, 1,J•1, ... ,flast.

Proof: The proof that these properties hold is direct by Definitions

3.2.B and 3.4.B.

12

The first order restrictions only give a trivial description off

In the general case. However, a set of restrictions of f In F which

satisfy properties 1-4 out I lned In the beginning of this chapter can be

derived from the first order restrictions. The fol lowing definition

gives the derivation of this expanded set of restrictions of f.

Definition 3.5. The computatlonal·forms off are denoted by fJC•

i•1, ... ,p(f), where p depends on f and are defined below for the various

cases of f In F.
•

A) For al I f in F and for al I x In O the computational forms of f are

defined as fol lows:

1) If f Is a primitive function In for f Is the constant

functional form, then

f I c: x • f I : x, I •1 , ... , f I ast

where f 1 are the first order restrictions off.

2) If f - G(f1, ... ,fn) where G Is a functional form, then the

computational forms of fare defined In terms of the first order

restrictions off and the computational forms of f1, ... ,fn.

a) If f•(f1ef2) then the computational forms of f are:

f1C:x = (f1JC•f2kc)1:X

for i•1, ... ,p(f1) X p(f2), J•1, ... ,p(f1), 1<•1, ... ,p(f2).

b) if f•[f1, ... ,fn] then the computational forms off are:

f1,1C:x = [f1Jc, ... ,fnkCJ1:x

for i•1, .. p(f1) X ... X p(fn), J•1, .. p(f1) , ... , 1<•1, .. p(fn)

f 1 , 2c:x = c1(f1Jc:X•l) & ... & CnCfnkC:x•l> --> l

for al I cc1 , ... ,Cn> where C1•True or C1•False, 1-1 .. n,

c1-True for at least one I, and for all l•1, ... ,((2p(f1)

X ... X 2p(fn)), J•1, ... ,p(f1) , ... , 1<•1, ... ,p(fn).

c) If f•(f1-->f2;f3) then the computational forms off are:

f I , 1 c: x :. (f 1 j c __ > f 2k c; f 3) 1 : x

for al I i•1, ... ,(p(f1) X p(f2)), J-1 , ... ,p(f1),

k•1, ... p(f2).

f 1 , 2c:x :. (f1 1c-->f2;f3kc) 2 :x

for all i•1, ... ,(p(f1) X p(f3)), J•1, ... ,p(f1),

k-1, ... p(f3).

f 1 , 3c:x:. (f1 1c-->f2;f3) 3 :x

for al I 1•1, ... ,p(f1).

3) Only what is defined above is a computational form of f.

8) For al I f in F and for al I fJC• J•1, ... ,p(f) defined in A above

d(fJC) is defined as fol lows for the various cases of f:

1) if f Is a primitive function in F, then

d(fJC) • d(fJ) •ex: Pj(X)•True).

2) if fJC:x•(f1 1Caf2kc) 1 :x, then

d(fJC) •ex: X 6 d(f2kC) & f2kC:x 6 d(f1 IC))

3) if fJC:x - [f1 1c, ... ,fnkc] 1 :x, then

d(fJC) •ex: P1(X)•True & X 6 (d(f1ic) f) ... n d(fnkC)))

4) if fJC:x - [f1 1c, .. fnkcJ 2ca1 , ... ,Qn):x, then

d(fJC) •ex: C1(f1 IC:X•l) & ... & Cn(fnkC:X•l)

& X 6 (d(f1 IC) n ... n d(fnkC)))

5) if f;C:X•(f1 ,c-->f2kC;f3)1:X, then

d(fJC) •ex: P1(X)•True & X 6 (d(f2kc) () d(f11C)))

6) If f;C:x•(f1 1c-->f2;f3kc) 2 :x, then

d(f JC) • ex: P2(X) & X 6 (d(f3kC) () d(f1 IC)))

7) if f;C:x•(f1ic-->f2;f3) 3 :x, then

d(fJC) •ex: P3(X)•True & X 6 d(f1 IC))

13

C) for al I f In F and for al I f Jc, J•1, ... ,p{f)

rCfJC) - fJC:d(fJc>.

The definition given above gives a set of forms for f In F which

are shown to be restrictions of f In the fol lowing theorem.

Theorem 3.1. For al I f In F the computational forms off are

restrictions of f.

14

Proof: Let f be In F and fJc, J•1, ... ,p(f) be the computational forms

off. To prove that fJc is a restriction off It must only be shown for

all x In 0, that

x 6 d(fJC> ••> fJC:x - f:x.

For primitive functions f In F this only requires the observation that

x 6 d(fJC) ••> Pj(X) - True.

For f•G(f1, ... ,fn) a proof by Induction Is given.

Let S(N) be the statement "If f•GCf1, ... ,fn) and f Is defined by at most

N appl !cations of definitions of the functional forms In G, then

x 6 d(fJC) ••> fJC:x • f:x."

Three cases of Definition 3.5.B.2 are proved. The remaining cases are

siml lar.

Basis: If N•1, then f1, ... ,fn are primitive functions In F.

case 2) Let fJC:x - (f1 1Cef2kc) 1 :x and x 6 d(fJc).

••> x 6 d(f2kc) & (f2kC:x) 6 d(f1 1c).

Since f1 and f2 are primitive functions,

••> (f2kC:x-f2:X) & (f11C:(f2kC:x)-f1:(f2kC:x))

Thus, fJC:x - f:X If x 6 d(fJC).

case 4) Let f JC:x • [f1 le, ... ,fnkc]2:x

x 6 d(fJC) ••> C1(f11C:x-1> & ... & QnCfnkC:x-1>

& x s c d cf 1 1 c > n ... n d cf nk c))

Of. 3.6.B.2

Of. 3.5.B.3

••> P2(X)•True & x 6 (d(f1 IC) n ... 0 d(fnkc))

••> P2Cx)•True & f1 1c:x•f1:x & ... & fnkC:x•fn:x

Thus, fJC:x - f:X if x 6 d(fJC).

case 5) Let fJC:x - (f1 1c-->f2kc;f3) 1 :x.

x 6 d(f JC) ••> P1 (X)•True & X 6 (dCf2kc) n d(f1 IC))

••> P1(X)•True & f2kC:x•f:X

Thus, fJC:x - f:X If x 6 d(fJC).

Therefore, S(1) Is true.

Of. 3.5.B

Inductive Step: Suppose S(N) Is true for any N>1. Then If

15

f•G(f1, ... ,fn) Is defined by N+1 appl !cations of the definitions of the

functional forms In G, f1, ... ,fn are each defined by some M<N

appl !cations of the definitions of the funcHonal forms In G.

case 2) Let fJC:x - (f1 1Cef2kc) 1 :x and x 6 dCfJc).

--> x 6 d(f2kc) & ((f2kC:x) 6 d(f1 IC))

Then, by the above observations about f1, ... ,fn,

f2kC:x•f2:x & f11C:(f2kC:X)•f1:(f2kC:x).

Thus, fJC:x - f:X If x 6 d(fJC).

case 4) Let fJC:x•[f1 1c, ... ,fnkc] 1 :x & x 6 dCfJc).

--> Q1(f11C:X•l) & ... & QnCfnkC:x-1)

& X 6 d(f11C) & ... & X 6 d(fnk)•

••> P2(X)•True & x 6 (d(f1 IC) n ... n d(fnkC))

Then by the above observations about f1, ... ,fn1

f1 IC:X•f1 :X & ••• & fnkc:x•fn:x.

Thus, fJC:X • f:X if x GdCfJC).

case 5) Let fJC:x - (f11C-->f2kC;f3)1:X.

X 6 d(fJC) ••> P1(X) & X 6 d(f2kC)

••> P1Cx) & f2kc:x•f:x

Of. 3.5.B.2

Of. 3.5.B

Thus, fJC:x - f:X If x 6 d(fJC).

Hence, by Induction S(N) Is true for al I N>1.

Therefore, the computational forms of f In Fare restrictions of f.

Theorem 3.2 For al I f In F, the computational restrictions of f Is a

finite set.

Proof: The number of computational restrictions of f, p(f), Is equal

to:

m,+ ... +mflast where each m1, 1-1, ... ,flast

16

Is the number of computational restrictions Induced by f 1. When f is a

primitive function In F, m1-1, 1•1, ... ,n and p(f)•flast. For

f•G(f1, ... ,fn) a proof by Induction Is given.

Let S(N) be the statement, "If f Is defined by at most N appl !cations of

the definitions of the functional forms In G, then fJC• J-1, ... ,p(f)

Is a finite set."

Basis: If N-1 then f1, ... ,fn are primitive functions In F. The

computational restrictions induced by each f 1, are In the form

G1Cf1Jc, ... ,fnkc). Then the number of restrictions Induced by f 1-m 1,

which ls equal to the number of permutations of (J, ... ,k). Since

f1, ... ,fn are primitive functions, p(f1), ... ,p(fn) are finite and fJC•

J•1, ... ,p(f) Is a finite union of finite sets.

Thus, S(1) Is TRUE.

Inductive Step: Suppose S(N) Is TRUE for any N~1. Then if f Is derived

by at most N+1 appl lcatlons of the definitions of the functional forms

in G, f1, ... ,fn must each be derived by some M!N appl !cations of the

definitions of the functional forms In G and S(N) holds for f1, ... ,fn.

Then by the same argument given for N-1, p(f) Is finite.

Therefore, the computational restrictions of f are a finite set.

17

Definition 3.6 Any function g, g:X --> Y, Induces the fol lowing two set

mappings (10):

for all A!:X, and 8cY:

A) g(A) - { g:x x S A } and

8) g-1(8) • { x g:x S 8 }.

In addition to the above notation, g(A) and g-1(8) wi I I also be referred

to as the set mapping and Inverse set mapping of g respectively.

Proposition 3.2 For al I functions g, g:X --> Y, Ai~ X, and 81 c Y the

fol lowing properties hold (10):

1) If gc;> ~ l then gC~) -~ 6) g-1c~> -'
2) g(X) S y 7) g-1(Y) - x
3) A1 <!: AJ --> gCA1) <; gCAJ) 8) 8 I c; 8 J ••> g-1c0 1> ~ g-1c0J>

4) gCU1A1) • U1gCA1> 9) g-1cu101> - u,g-1c01>

5) gen 1A1) c: n 1gcA 1> 10) g-1cn,0,> - n1g-1C8)

Proof: Proof that these properties hold is direct by Definition 3.6.

The properties are I lsted here since they are used freQuently in the

proofs of this chapter.

Lemma 3.3.1. For all f In F, for all fJC• J•1, ... ,p(f), and for all

X,Y ~o the fol lowing properties hold:

1) (f JC)-1 :0 • d(f JC)

2) CfJC)-1 :Y - CfJC)-1 :CY n rCfJC))

3) Cf Jc)-1 :Y ~ d(f Jc>

4 > v n x - ~ --> c cf Jc >-1 = v) n cc f Jc >-1 = x > - ~

Proof: The proofs of these properties are straightforward from

Definition 3.6 and Proposition 3.2.

Lemma 3.3.2. If d(f1 1c), 1•1, ... ,p(f1) partition o, d(fnJc),

j•1, ... ,p(fn) partition O then:

1) d((f1 1Cef2Jc) 1), for all (l,J)

partition d((f1ef2>1>·

2) d([f1 1c, ... ,fnJC] 1), for all (l, ... ,J)

partition d([f1, ... ,fnJ1>·

18

3) dC[f1 1c, ... ,fnJcl2CQ1, .. Qn)), for all Cl, ... ,J), all CQ1 , ... ,Qn)

partition d([f1, ... ,fnJ2>·

4) d((f1 1c-->f2Jc;f3) 1), for all (l,J)

partition d((f1->f2;f3)1).

5) d((f1 1C-->f2;f3kc>2>, for al I <I ,k)

partition d((f1-->f2;f3)2>·

6) d((f1 1c-->f2;f3)3), for all

partition d((f1-->f2;f3)3).

Proof: Proof for cases 1 and 3 are given below. The other cases are

slml lar and are not given here. This lemma Is used for both the basis

and the Inductive step of Theorem 3.3.

case 1) Let d(f1 1c), 1•1, ... ,p(f1) partition O and d(f2Jc),

j•1, ... ,p(f2) partition O. First an eQuatlon is derived for the Inverse

set mapping.

By Definition 3.6.A, for al I Y c O:

((f11Cef2JC)1)-1:Y - {Xl (f11Cef2JC)1:X 6 Y}

- {Xl f11Ccf2JC:x) 6 Y}

• {x: f2JC:x 6 {Yl f1 1C:y 6 Y}}

• (f2JC)-1:({y:f11C:y 6 Y})

• (f2Jc)-1:((f11C)-1:Y)

Of. 3.5

Of. 3.6.B

Of. 3.6.B

The fol lowing proof shows that ((f1 1cef2Jc) 1)-1:o, for alt (i ,J) are

disjoint. By the initial assumption (f2Jc)-1:o, for J-1 , ... ,p(f2) are

disjoint. Then by Lemma 3.3.1.4, (f2Jc)-1:((f1 1c)-1:0) for each J and

for al I i are disjoint. By Lemma 3.3.1.3,

(f2Jc)-1:((f1 1c)-1:0) ~ d(f2Jc), for each j, for all i.

Thus, (f2Jc)-1:((f1 1c)-1 :0), for al I i ,j are disjoint.

Now it Is shown that u1,JCf1 1Cef2Jc) 1)-1:o - o.

Suppose x s u1,JCCf1 1Cef2Jc) 1)-1:o.

••> X 6 d((f11Cef2JC)1)

••> x s d(f2Jc) and (f2JC:x) s d(f1 1c)

Lemma 3.3.1.1

Of. 3.6.B

Then, by contradiction x 6 O, since d(f2Jc)~~ ••> x 6 d(f2Jc).

Thus, U1,JC(f11Cef2JC)1)-1:o ~ 0.

Now suppose x 6 O. By the lnltlal assumption, UJ((f2Jc)-1:0). o.

••> x s (f2Jc)-1:o, for some J•1 .. p(f).

••> f2JC:x • x· for some x' 6 o.

Then , also by the initial assumption, u1Cf1 1c)-1:o - o.

••> f1 1c:x' 6 o, for some i•1, ... ,p(f1).

Then, f1 1c:(f2JC:x) 6 O for some i ,j.

••> (f1 1Cef2JC) 1 :x 6 o.

••> x s CCf1 1Cef2Jc) 1)-1:o.

--> x s u1,JCCf1 1cef2Jc) 1)-1:o

Thus, u1 ,JCCf1 1cef2Jc) 1)-1:o - o.

Of. 3.6.B.

Of. 3.5.A

Of. 3.6.B

Therefore,((f1 1Cef2Jc) 1)-1:o for al I (I ,J) partition O·d((f1ef2) 1).

Thus, by Lemma 3.3.1.1, d((f1 1Cef2Jc) 1), for al I (i , ... ,j) partition

d((f1-->f2;f3)1).

19

20

case 3) The computational restrictions Induced by [f1, ... ,fnJ 2 are:

Q1(f1kc:X•l) & ... & QnCfnmC:x•l)--> l

for al I (k,m) for al I (Q1·····Qn) where Q1•True or Q1•False, 1•1, ... ,n

and Q1-True for at least one I. Denote this set of restrictions by t 1c,

J•1, .. ,p(f). By Definition 3.5.B, for each k,m and for each Q1 , ... ,Qh.

d(fJC) •ex: Q1(f1kC:X•l) & ... & Qn(fnmC:X•l) }

n ex: x 6 d (f 1 kc) , ... , x 6 d (fnm c) }

Then x G dCfJc)

••> X 6 ex: Q1(f1kC:X•l) & ... & Qn(fnmC:X•l)}

Q1-False ••> -f1kc:X•l ••> f1kC:x ~ l ••> f1kc:x 6 (0-l)

==> x 6 (f1kc)-1:CO-l>

The same proof holds for f2, ... ,fn.

••> x 6 (f1kc)-1 :A1 n ... n (fnmc>-1 : CAn)

where A1•l If Q1•True and A1•0-l if Q1·False.

Consider f 8 C:x and fbC:x, a~ b, a,b-1, ... ,p(f). It must be true that

at least one term In some position I differs In the expressions for

dCfac> and d(fbc). Let these terms be Q1Cflk0 :x•l) and Q' 1Cflmc:X•l>

respectively.

Qi ~ Q. i & k-1 --> Ai n A. i - •

--> (f I kc)-1 : A I n (f Im c)-1 : A I I - ~ Lm. 3. 3.1 .4

=-•> d (fa c) n d (f b c) - ~

If k ~ m, then by the initial assumption about f ic•

(flkc)-1 :A1 n (flmc)-1 :A1 • ,, regardless of QI ,Q' I·

Thus, if a~ b then some i'th terms must be disjoint and since fac• fbc

are arbitrarl ly selected, dCfJc), J•1, ... ,p(f) are disjoint.

Now It Is proved that u1dCfJC) • d([f1, .. ,fn] 2). By Definition 3.5.A

x 6 d([f1, .. ,fn] 2) ••> f1:X•l ! ... ! fn:X•l

••> fl:X•l for one or more I, i•1, ... ,n

••> flJc:X•l for one or more I, and some j•1, ... ,n

& -cflk:x-1>. fork~ J

••>XS {x: Q1(f11C:X•l) & ... & Qn(fnJC:X•l)}

Of. 3.6.A

for some CQ1 , ... ,Qn), some (l, ... ,J). and some Q1•True.

Thus, d([f1, ... ,fn]2) = UjdCfJC).

Now suppose x s UjdCfJc)

••> flJC:x•l for at least one I, some J•1, ... ,pCf 1)

••> fl:X•l for at least one

••> f1:X•l ! ... ! fn:X•l

Hence, UjdCfJc) = d([f1, ... ,fnl2>·

Thus, UjdCfJC) • d([f1, ... ,fn]2).

Th. 3.1

Therefore, dCfJC), J•1, ... ,p(f) partition d([f1, ... ,fnJ 2).

Theorem 3.3. For any f In F, the domains of the computational

restrictions of f partition o.

21

Proof: By Proposition 3.1, dCf 1), 1-1, ... ,flast partition o. Thus, the

theorem can be proved by showing that the domains of the computational

restrictions Induced by each f 1 partition dCf 1). The possible cases for

f1 are given below.

case 1) For al I cases where f Is a primitive function, f 1 induces only

f 1c and the proof is trivial.

case 2) Other cases must be one of the 6 cases of Lemma 3.3.2. A proof

by Induction Is given for these cases.

Let SCN) be the statement "If f•G(f1, ... ,fn) where f is defined by at

most N appl I cations of the definitions of the functional forms In G,

then the domains of the computational restrictions induced by each f 1

partition d(fi>·"

22

Basis: If N-1 then f1, ... ,fn are primitive functions. Then by

Definition 3.4 f 1-f 1c, i•1, ... ,flast and by Proposition 3.1, d(f 1C),

i-1, ... ,flast partition O. Then by the proofs for cases 1-6 of

Lemma 3.3.2, S(1) is true.

Inductive Step: Suppose S(N) is true for al I N ~ 1 and f is defined by

N+1 applications of the definitions of the functional forms in G. Then

f1, ... ,fn must each be defined by M~N appl !cations of the definitions of

G. Then S(N) is true for f1, ... ,fn and by the proofs for cases 1-6 of .

Lemma 3.3.2, the computational restrictions of f partition o.

If S(N) Is true for any N ~ 1, then S(N+1) is true. Therefore, by

induction the domains of the computational restrictions of f partition

o.

Methods

In this section methods are shown to construct an equation for the

domain and range of each computational restriction.

Definition 3.7. The fol lowing definitions give the domains of the set

mappings of Definition 3.6 for the computational restrictions of f in F.

A) A class of sets D1c ls defined as fol lows. Let D be a subset of

O, D - D' U D", where D' - D f) (Atoms U l) and D" is the set of al I

sequences In D. Then D is in D1C iff the fol lowing properties hold.

1) N c D' & N c NUM ••> N•NUM ! N-~.

is in D".,

When D has this property It Is said to be in closed form and the

set of al I sequences of length n in D is denoted by <D1·· .. ,Dn>·

23

D1·····Dn are also sets and

When the set D contains sequences of lengths > n, D is denoted by:

U1<D1·····okl , ... ,Dn>

- <D1·····Dk·····Dn> u <D1·····Dk,Dk·····Dn> u ...

3) D" - <D1 , ... ,Dn> Is In 01°, for n>1

••>DJ, J-1, ... ,n Is In 01°

4) Only what Is def lned above is In 01°.

5) The finite unions of 01 , ... ,Dn In 01° are denoted uo1°.

In the proofs of Lemmas 3.4.1 3.4.5 and Theorem 3.4, uo1° is shown

to be the domain of CfJC)-1, for al I f and for al I fJC•

J-1, ... ,p(f).

B) Let oc c: o be the class of sets defined by A) above except that

the I Imitations of property 2) are relaxed in the definition of

o G oc as fol lows:

2) N ~ D' & N = NUM ••> N•NUM ! N•t ! N•{X} for some x In NUM.

The finite unions of 01, ... ,Dn In oc are denoted uoc. In the proofs

of Lemmas 3.4.1 - 3.4.5, Lemmas 3.5.1 - 3.5.4, and Theorem 3.5, uoc

Is shown to be the domain of fJc• for al I f and al I fJC• J•1, ... ,p(f)

It Is clear that 01° and oc have slmi lar properties and in

particular that 01° is contained in o0 . The reason for the restriction

Imposed by property 2 of A Is that for op G {+,*,sub,dlv}, (op 1°>-1:o is

a relation on (D,X) for each y In D and X•d(op 1°>-<NUM,NUM>, and cannot

be given in closed form for the general case of D. The set mapping

fJC:o Is a function for each x In o. Since 01° Is contained in oc, the

proofs that fol low are for the general case of o0 , and 01° Is referred

to only where it is necessary to make a distinction between the two

domains. In particular, Theorem 3.4 shows that uoc Is closed under

Cfjc)-1, and It Is understood that If op1C occurs in the definition of

fJC• that closure Is only for uo1c.

24

The motivation for the above definitions Is to give a class of sets

which Is closed under the set mappings and Inverse set mappings of this

chapter. The closed form notation Is used to simpl lfy examples and as a

graphic aid to describe the Inverse set mappings of Theorem 3.4. An

extension of this closed form no.tation Is given later to describe the

set mappings of Theorem 3.5. The separate definitions of oc and uoc are

reQulred by various proofs that fol low. By the above definition It Is

clear that If D•<D1, ... ,Dn> and Di-~ for some i-1, ... ,n then o-~.

Lemma 3.4.1. The fol lowing sets are In uoc:

1) 0

2) Any subset of Atoms.

3) r(f1c), 1•1, ... ,flast when f Is a primitive function In F

4) dCf 1c), 1-1, ... ,flast when f ls a primitive function In F

except for the fol lowing cases:

d(f1C), d(f2C) for f GR.

Proof: The closed forms of d(f 1c>. rCf 1c), 1-1, ... ,flast are I lsted In

Appendix c. Proofs are not given for the obvious cases In 1-4. Let f be

in F and Z • 0-l·

case 1)

0 •Atoms U l U1<Z 1>

- Atoms U l u1<CAtoms UJ<ZJ>)I>

Then, clearly properties 1 and 2 of Definition 3.7 hold for o, and by a

simple Inductive proof on the number of expansions of z-0-1. O is In oc.

This same proof shows that al I nontrivial cases of 3 and 4 are in UDc.

25

case 4) For the exceptions in case 4, f in R, d(f 1c) is I lsted In

Appendix C but cannot be given in closed form. A proof for one case is

given to i I lustrate the nature of these exceptions. Consider

d(~1C) •{XI X•<X1,X2>, X1,X2 S NUM, X1~X2}

Then <1,1> and <3,2> are in d(~1 C) but <1,2> is not. This contradicts

property 1 of Definition 3.7 and thus, d(~1 c) is not In Dc.

The exceptions in case 4 can be expressed In an extension of closed form

by showing the relation on d(f 1C) for f in R. This is denoted by

(f1, <NUM,NUM>) for d(f1C) and (-f1, <NUM,NUM>) for d(f2c). Cle~rly

d(f 1C) U d(f 2C) - <NUM,NUM> for al I cases of f given as the exceptions

In case 4. This property Is used later to include these functions in

useful characterizations off in F.

Lemma 3.4.2. If D, D' are in UDc then D n D' is in UDc.

Proof: Let D, D' be in UDc. It is shown that properties 1-3 of

Definition 3.7 hold for D n D'. Consider D,D' in Dc. Let D•<D1, ... ,Dn>

case a) By property 1 of Definition 3.7, if N • (D n NUM) and

N' • (D' n NUM), then

N-$ N' -4> --> (NUM n (D n D .)) •$

and

N•NUM & N' -NUM --> (NUM n (D n D •)) •NUM .

Thus, property 1 holds for D n D'.

--> II • , ,.. D x •<X 1 , ... ,xJ·····x n> o & x11 S D'. Df.3.7

--> x 11 s < D n D •)

Thus, property 2 of Definition 3.7 holds for D n D'.

case c) To prove property 3 It must be shown that

(D n D')•D"•<D"1•····D"n> for some D"1····•D"n In oc.

D n D ' • ex : x S D and x S D ' }

•ex: XIS D1 & XIS D'I• 1•1, .•. ,n}

•ex: x1 S (01 n D'1), 1•1, ••• ,n)}

• <CD1 n D'1), ••• ,(Dn n D'n)>

26

Df. 3.7.2

Of. 3.7.2

Then since o 1, D' 1, 1-1, ••. ,n are In oc by property 3 of Definition 3.7,

properties 1 and 2 of Definition 3.7 hold for o 1, D' 1, 1-1, ••• ,n. Then

by induction on the number of appl I cations of this expansion of D n D',

property 3 holds for D n D'.

Thus, from a-c, D n D' S oc, D•<D1, ••. ,Dn> and D'•<D'1 • ••. ,D'n>·

Now consider

o-u 1<D1 , .•. ,ok 1, ••• ,Dn> and

D'-UJ<D'1·····D'mJ, ••• ,D'n>·

Then for each n" ~ max(n,n'), the Intersection of seQuences of length n"

In

D n D' is e I ther empty or Is In oC by the above proof for 1.

Thus, D () D' s oc.

Now suppose D • U1D1. 1•1, ... ,n and D' - UJDJ, J•1, •.. ,n' In uoc. Then

by DeMorgan's Laws

D n D' • D n CD' 1 U ... U D' n)

• (D n D'1) U ••. U CD n D'n)

• ((01 n D'1) U ••• U CDn n D'1)) U .••

U ((01 n D'n) U •.• U CDn f'\ ... n D'n))

Then the expression given Is a finite union of Intersections of sets In

oc which by property 5 of Definition 3.7 is In uoc.

Therefore, If D, D' are In uoc, D n D' is In uoc.

27

Lemma 3.4.3. If D is In uoc and f is a primitive function If F, then

cf 1 c)-1 : o is in uoc,

except for f 1c, 1-1,2, f 6 R

Proof: Appendix D I lsts Cf 1c)-1:o, D: rCf 1c), for al I primitive

functions in F. For each f that is not an exception above, the equation

for Cf 1c)-1:o is given in closed form. Thus, uoc Is closed under the

equations given in Appendix D. By Lemma 3.3.1.2

Cf1c)-1 :o • Cf1c)-1:CD n rCf1c))

which Is In oc by Lemma 3.3.2 and Lemma 3.3.3. Then it Is only

necessary to show that the equations given for Cf 1c)-1:o in Appendix D

are correct. One example case Is proved below. The other cases are

slml lar.

For X,Y 6 o, and o 6 uoc:

From Definition 3.6:

From Appendix D:

2) (tl2c)-1:o = D ~ U1<Z 1> --> U1<Z,D1·····ok 1 •••• ,Dn>

These two equations are equivalent for al I D ~ rCf 1C) by the fol lowing

proof.

ct1 2c)-1:o - ct1 2c)-1: u 1<D1 , ... ,ok 1,. .. ,Dn>

- U1 CCt l2c)-1 :<D1' ... ,okI ' ... ,Dn>)

.. U1((tt2C)-1:{Yl Y•<Y1·····Yk 1·····Yn»

for YJ 6 DJ• j•1, ... ,n)

I - u1ccx: x•<X1,Y1·····Yk ·····Yn»

x 1 6 0-l · y J 6 DJ , j •1 , ... , n]}

.. U1<Z,D1·····okl , ... ,Dn>

Pr. 3.2.9

Of. 3.7.2

App. A

Of. 3.7.2

Thus, the inverse set mapping for t1 2C In Appendix D Is correct.

Lemma 3.4.4. For al I f1 ,f2 In F, for al I f1 1c, 1-1, ... ,p(f1), f2Jc•

J•1, ... ,p(f2), and for al I Y ~ 0:

((f11C•f2JC)1C)-1 :Y • (f2JC)-1 :((f1 lc)-1 :Y)

Proof: The proof for this Lemma Is given by the derivation of the

eQuatlon In the proof of Lemma 3.3~2.1. An example Is given below to

i I lustrate a computation of this Inverse set mapping.

Example 3.3. Let f1 - (+•tl)1 and z • 0-l·

1) ((+1C9tl1C)1)-1:0

• (tl1C)-1:((+1C)-1:0)

• (tl1C)-1:(d(+1C))

• (tl1C)-1:(d(+1C) n r(tl1C))

• (tl1C)-1: 4)

- (l

2) CC+1C•tl2c>1>-1:0)

• (tl2C)-1:(d(+1C) n r(tl2C))

• <Z,NUM,NUM>

By Lemma 3. 3. 1 . 1 for a I I C I , J) ,

CC+1C•tlJc>1>-1:o - dCC+1Cet1Jc>1c>.

Then by slml lar methods:

d((+1Cetl3C)1) • ~

d((+2Cetl1C)1) • <Z>

d((+2Cetl2C) 1) • <Z,Z> U <Z,Z-NUM,Z-NUM>

U <Z,Z,Z-NUM> U <Z,Z-NUM,Z>

u1<z,z,z,zl>

d((+2Cet13c)1) •ATOMS U l

Lm. 3.4.4

Lm. 3. 3.1 .1

Lm. 3.3.1. 2

App. D

Pr. 3.2.6

Ex. 3.3.1

App. D,E

28

Definition 3.8. The fol lowing notation Is def lned for al I f in F and

for al I fJC• J•1, ... ,p(f):

URfJC

denotes al I fJc such that r 1c or r 2c, r GR does not occur In the

definition of f JC·

29

This notation and natural extensions such as URdCfJc) wi I I be used

extenslvely later In this chapter and In the fol lowing chapter. The

definition Is glv.en here because uoc Is not closed under the Inverse set

mappings for r 1c, r 2C shown In Lemma 3.4.4. Thus, the equation given In

the fol lowing lemma and the constructed equation for dCfJC) of Theorem

3.4 are not valid for these cases. A method for deriving

d(fJc), fJC G URfJC can only be given fol lowing Theorem 3.5.

Lemma 3.4.5. For all f, for all f1 1c, ... ,fnJC not In URf1kc, ... ,URfnkc•

and for al I D G uoc, D•<D1, ... ,Dn>

1) ([f11c, ... ,fnJC]1)-1 :D • (f11C)-1:(D1-.L> n ... n (fnJC)-1:CDn-.L>

2) ([f11c, ... ,fnJC]2(Q1•··Qn))-1 :D • (f11c)-1 :A1 n ... n (fnJC)-1:An·

Proof: A proof for case 1 Is given below. Case 2 Is proved In Lemma

3.3.2.2.

case 1) By Definition 3.6.2

([f11c •... ,fnJC]1)-1:o - (XI [f11c •... ,fnJC]1:X G DJ

- (XI -f11C:x-.L & ... & -fnJC:x-.L

& <f11C:x, ... ,fnJC:x> G DJ

• (f11C)-1:CO-.L) n ... n (fnJC)-1:(0-.L)

n (XI f11C:X•Y1•···•fnJC:X•Yn•

for some Y•<Y1·····Yn> G DJ

Of. 3.5.1

(1)

Of. 3.6.2

Now let A - ct1 1c)-1:o1 () ... n CfnJc)-1:on and

B - {XI f11C:X•Y1·····fnJC:X•Yn, y GO}.

Then

x GB••> x G (f11c)-1 :{Y1)& ...

& x G (fnJC)-1 :CYnl for some y In O

--> x G (f11c)-1:01 & ... & x G (fnJC)-1:on

Thus, B ~A.

Suppose x G A

--> x G (f1C)-1:{Y1} & .. & x G (fnJC)-1:{Yn}, Y1 Go,

••> x G (f11c)-1:{Y1}, for some Y•<Y1·····Yn> Go

Of. 3. 7

.. & .. x G (fnJC)-1 :{Z1} for some Z•<Z1,-·Zn> G 0 Of. 3.7

for <Y1 , ... ,Zn> In o.

••> x G B Of. 3.6.B

Thus, As B

Therefore, A - B.

By substitution of A for B in eQuatlon (1) above:

([f11c, ... ,fnJC]1)-1:0 • ((f11C)-1:01 n ... n (fnJC)-1:0n))

n ((f 1 I c)-1 : 0-l n ... n (f n J c >-1 : 0-l)

• ((f11c)-1 :C01nO-l) n ... n (fnJC)-1 :COnn0-l) Pr. 3.2.9

- ((f11C)-1:(01-l) (l ... n (fnJC>""''1 :CDn-l>

Thus, the eQuatlon for case 1 Is derived for D G uoc.

30

Example 3.4. Let Z • 0-l

1) a) By Lemma 3.3.3.1, d([s1°,t11J1>

- CCCs1c,t11cJ1>-1:0

• (s1C)-1:z n (tl1C)-1:z

• (s1C)-1:(Z n r(s1C))

n (tl1C)-1 :CZ n r(tl1C))

- cs 1 c >-1 = z n c t i 1 c >-1 = <>

• U I <Z I> n <Z>

• <Z>.

b) By slml lar methods,

d([s1c.t12cJ1> - U1<z,zl>

d([s1C,t13CJ1) • ~

d([s2C,t1JCJ1) • ,, J•1, ..• ,3

Thus, dCCs 1C,t1JcJ 1>. 1-1,2, J•1, .•. ,3

partition d([f1, ••• ,fnJ1>

2) By Lemma 3.4.5.2

a) d([s2C, t13°J2(T,T))

• (s2C)-1:(0-l) n (tl3C)-1:(0-l)

• (s2C)-1: ((0-l) (') r (s2C))

n (tl3c)-1 :((0-l) n r(tl3C))

- (s2C>-1 =l n Ct I 3c)-1 =l

• (Atoms U l) n (Atoms U l)

- Atoms U l

b) For a I I other cases of (I, J), CQ1 ,Q2)

d([s1°,t1JC]2(Q1,Q2)) • ~

Thus, d([s 1c,t1Jcl1c>. for all (i,J,k.) partition o.

Lm. 3.4.5

Lm. 3.3.1. 2

App. C

App. D

31

Lemma 3.4.6. For al I f1,f2,f3 In F, and for al I f1 1c, f2 1c, and f3kc

not In URf1c, URf2c , URf3C respectively, and for al I Y ~ O:

1) ((f11C-->f2JC;f3)1)-1:Y • (f1 IC)-1:{T} 0 (f2JC)-1:Y

2) ((f11c-->f2;f3kc)2)-1 :Y • (f1 lc)-1 :{F} n (f3kc)-1 :Y

3) ((f11c-->f2;f3)3)-1:Y - (f11c)-1:(0-{T,F})

32

Proof: Proofs are straightforward from Definition 3.5.A and Definition

3.6.2 and only case 1 Is given here. The other cases are slml larly

proved.

case 1) 8'y Definition 3.6.2 and Definition 3.5.A

((f11C;f2JC;f3)1)-1:Y - {Xl f11C:x-{T} & f2JC:x G Y}

• {Xl f1 IC:X•{T}} n {Xl X G f2JC:x•Y}

- Cf1 1c)-1:{T} l"l Cf2Jc)-1:Y

Example 3.5. Let Z•O-l, f • (atom-->ld;tl)

1) a) By Lemma 3.3.1.1, d((atom1C-->id1C;tl) 1)

- ccatom1c-->ld1c;tl) 1)-1:o

• (atom1 C)-1 :T n (I d1 C)-1 :0

• Atoms n 0

• Atoms

b) By slml lar methods

d((atom1c-->id2C;tl) 1) •'

d((atom 1c-.->idJC;tl) 1) • ~. 1•2,3, J•1,2.

Thus, d((atom 1c-->ldJC;tl) 1), 1•1 .. 3, J•1,2

partition d((atom-->id;tl) 1)

2) a) d((atom2c-->id;tl1c)2)

• (atom2C)-1:F n (tl1c)-1:0

• U I <Z I> n <Z>

• <Z>

Of. 3.6.2

Lm. 3.4.6.1

App. D.

By simi far methods

b) dCCatom2c-->id;t1 2c) 2)) - u 1<z,zl>

c) For al I other cases of (l,J)

d((atom1c-->ld;tlJ)2) • ~

3) a) d((atom3c-->ld;tl)3)

- Catom3C)-1:(0-{T,F}

• (atom3C)-1:((0-{T,F} n r(atom3C))

- (atom3C)-1: l

- l
Thus, d((atom 1c-->ldJC;tlkc) 1), for al I (l,J,k,I) partition o.

33

In the fol lowing theorem the set of equations given In Lemmas 3.4.4

- 3.4.6 are used to construct an equation for CfJC)-1:o for any f In F,

any fJC not In URf 1c, and any D In uoc. The set uoc Is shown to be

closed under al I equations constructed. The spec I al case of D - o

I I lustrates the derivation of d(f Jc).

Theorem 3.4. For al I f In F, for al I f JC not In URf 1c, and for al I

D s uoc, CfJC)-1:o Is In uoc.

Proof: It Is noted that for fJC where op S {+,*,sub,div} that for D in

uoc1 , CfJC)-1:o s uoc1 and hence is In uoc. Also, for the special case

of D•O, by Lemma 3.3.1.1, CfJc)-1:o - dCfJC). By Proposition 3.2.4,

CfJc)-1:u 1o1 • u 1cCfJc)-1:o 1) and therefore only the case of D In oc

needs additional proof.

case 1) If f Is a primitive function in F then CfJC)-1:o Is given in

Appendix D and Is In uoc by Lemma 3.4.3.

case 2) If f•G(f1, ... ,fn) then for each fJc an equation for CfJc)-1:o

can be constructed by recursive expansion using the equations of Lemmas

3.4.4 - 3.4.6 and the Inverse set mapping equations for primitive

34

functions given in Appendix E. Since f 1 ~ f, 1•1, ... ,n the equation has

a finite number of terms which are one of the fol lowing:

I) (f2Jc)-1:((f1 1c)-1:o')

Ii) (f11c)-1 :0' n ... n (fnJC)-1:0'

Ill) (f11c)-1:0' n (f2Jc)-1:0'

Where O' isl· 0-1. 0-{T,F}, or 01-l for some 0'•<01·····0n>· By Lemma

3.4.3 and Definition 3.7, the sets D', 01 , ... ,Dn are al I In uoc. A

proof by Induction Is given that if f•G(f1, ... ,fn), then (f 1c)-1:o G uoc

for al I fJc• J•1, ... ,p(f).

Let S(N) be the statement that "If f Is defined by at most N

appl !cations of the definitions of the functional forms in G, then

(fJC)-1:0 6 UOC."

Basis: If N•1 then f1, ... ,fn are primitive functions Inf.

case I) By Lemma 3.4.3 (f1 1c)-1:D'•D" and (f2Jc)-1:(0") are In uoc.

case I I) By Lemma 3.4.3 and Lemma 3.4.2 the reduction of

(f11C)-1 :D' n ... n (fnJC)-1:0'

gives a set In uoc.

case I I I) By Lemma 3.4.3 and Lemma 3.4.2.,

(f1 lc)-1 :O' n (f2JC)-1 :O'

reduces to a set In uoc.

Thus, S(1) Is true.

Inductive step: Suppose S(N) Is true for any N>1. Then If f Is defined

by N+1 appl lcatlons of the definitions of the functional forms in G,

f1, ... ,fn are each defined by some M~N applications of the definitions

of the functional forms In G. Then S(N) is true for f1, ... ,fn.

case I) Since S(N) Is true for f1 and f2, then

(f1 1c)-1:o' and (f21c)-1:((f1 1c)-1:0'))

are In uoc.

case ii) Since S(N) is true for f1, ... fn then

(f1 lc)-1 :D' ' ... ' (fnJC)-1 :D'

are in UDc and by Lemma 3.4.2

(f11c)-1 :D' f\ ... n (fnJC)-1:D'

is in UDc.

case I I I) Since S(N) is true for f1 and f2 then (f1 1C)-1:D' and

(f2Jc)-1:D' are In uDc. Then by Lemma 3.4.2

(f11.c)-1 :D' n (f2JC)-1 :D'

is in uDc.

Then, S(N) is true for al I N>1.

Therefore, by induction (fJc)-1:D G uDc.

35

Theorem 3.4 shows the construction of an equation for (fJc)-1:D,

for al I f, al I fJC not in URf 1c, and al I D G UDc. Solving the equation

for (fJc)-1:0 gives d(fJC) G UDc. Lemmas 3.5.1 - 3.5.4 and Theorem 3.5

show that by siml lar methods an equation can be constructed for fJC:D,

such that if D G UDc, fJc:D G UDc. Thus, rCfJc) G UDc can be derived by

solving the equation for fJC:d(fJc).

The differences between the two set mappings of Definition 3.6 are

i I lustrated by the fol lowing definitions and observations. The primary

difference between the two set mappings is that CfJc)-1:D maps each y in

D to {xi fJC:x•y), while fJC:D maps each x in D to one y in fJC:D. The

significance of this difference is that each y in fJc:D is bound to some

x in D by fJc· The fol lowing definitions and examples i I lustrate this

property of the set mapping of Definition 3.6.A.

For each D In UDc, every x G D has some n > 1 component objects

each of which has a value attribute and a position attribute. The

closed form of D given in Definition 3.7 denotes these attributes for

al I x In D, but does not show the binding of f 1c:o to D.

Consider fJC:x • ld1C:x and D•d(ld1c>•O. Then

f 1c:o. {f 1c:x: x s O}

• {X: I d1 C: X: X 6 0}

• {X: X 6 0}

- 0

(1)

(2)

Df. 3.6

Of. 3.5

App. D

Equation 2 gives rCf JC) but does not show the binding of each y in

r(id1c> to some x In d(id1c). Applications in this chapter and in the

next chapter require this binding Information.

36

Definition 3.9. For x, f:x In O the fol lowing attributes are defined:

1) Let the name attribute of x in O be the name of the position of x

as fol lows:

a) If x 6 o and x Is not a component object of x' In o then

name(x) • X.

b) If x 6 O and x Is the l'th object of a sequence, x', In o, then

name(x) • name(parent(x)).I.

2) Let the bound value attribute of x In o be defined as:

1) If x Is in O then bound value(x) • name(x).

2) For al I f In F and x In 0, the bound value attribute of

f:x • r 1:Cbound value(x)), such that P1(X)•True.

In the examples that fol low, name(x) wi I I be denoted in

parenthesis to the right of x. Bound value(f:x) is also be shown to

the right of f:x In parenthesis.

Example 3.7.

1) The notation for the name attribute of x In O is shown:

if x - <<4, ... ,last>,T>

then x • «4(X.1.1), ... ,last(X.1.last)>(X.1),T(X.2)>(X)

2) The notation for the bound value attribute of f:x in o Is shown:

ses: <<A(X.1.1)>(X.1),T(X.2)>(X)

• s:(S: <<A(X.1.1)>(X.1),T(X.2)>(X))

• s: <A(X.1.1)>(X.1)

• ACX .1 .1)

3) The value attribute of a sequence x In o Is the length of x

ti: <12(X.1), F(X.2)>(X) • <F(X.2)>(lXl-1)

4) The notation described above extends naturally to sets In closed

form to show the binding of 'Jc:D to D.

+1C: <NUM(X.1), NUM(X.1)>(X) • NUM(X.1 + x;2)

tl2C: <NUM(X.1), NUM(X.2)>(X) • <NUM(X.2)>(lXl-1)

37

Another difference between the two set mappings of Definition 3.6

Is that fJC:D Is defined only for D ~ dCfJc). The fol lowing definition

Is given so that In Theorem 3.5 an equation can be constructed for 'Jc:D

which Is defined for all D cuDc. In particular, this result Is used

later to extend the characterization of f In F by showing that d(f Jc>

can be derived for fJC In URf JC·

Definition 3.10. Definition 3.6.A Is extended as fol lows. For al I f In

F, for all 'Jc• J•1, ... ,p(f), and for all D C:UDc

fJC:D • fJC:(D n d(fJC)).

If D ~ dCfJc) then Definition 3.6.A clearly applies. If dCfJc> c: D then

there are no contradictions of Definition 3.6.A imp I ied by this

extension since fJC:CD-dCfJC)) - ~- Equations are given for fJC:D,

D ~ uDc, in the lemmas and Theorem 3.5 that fol low. For the spec I al

case of D ~ dCfJc) the extended definition is not necessary. It Is

given to show that the equations are stl I I correct when D tdCfJc).

38

Lemma 3.5.1. If f Is a primitive function In F and D is in uoc then

Proof: Either f 6 R or f SR.

case 1) If f 6 R, then fJC:o - fJC:(D('td(fJc)) by Definition 3.10. Then

by property 2 of Definition 3.7.B, D•<D1 ,D2> where o1-cxJ or o1-NUM and

D2•Cx') or D2•NUM, for x,x' In o. In any of these cases f 1C:D•(T) and

f 2C:D•{F) and the Intersection need not be evaluated to determine that

fJC:o Is In uoc.

case 2) For f SR, by Proposition 3.2.4, f 1C:u 1o1 - u 1f 1C:o 1.

Therefore, only D 6 oc needs additional proof. Assume that the

equations for f 1C:o, D '= dCf 1C) given In Appendix E are correct. The

equations are al I given In closed form and by Definition 3.7 It Is clear

that If D G oc, o ~ d(f 1c), then f 1c:o G oc. By Lemma 3.4.2,

D n d(f1C) Is In uoc and thus the only addltlonal proof required Is to

show that the equations of Appendix E are correct. One case Is proved

here. Proofs of the other cases are slml lar.

Consider

Only the second case Is proved. The case of o- <D1·····Dn> Is slmi lar.

By Definition 3.6.A, s 1c:o • cs1C:x : x s DJ

1~1, Xj 6 DJ• J•1, ... ,n+i)

Of. 3.7

Of. 3.9

Of. 3.7

Thus, the set mapping equation In Appendix E is correct for al I

•

Lemma 3.5.2 For al I f1, f2 In F, f1 1c, f2Jc and for al I D s uoc

(f11C9f2JC)1:D • f11C:(Cf2JC: CDlldCf2JC))) n dCf11C))

Proof: Let D s uoc, and fkc denote Cf1 1Cef2Jc) 1 . By Definition 3.6.A

Cf1 IC9f2JC)1 :D • ((f1 IC9f2JC)1 :X l X S D n d(fkC)}

Of. 3.5

• (f11C:x' x I s f2JC: D n dCfkC)} Df. 3.6.A

• f11C:(f2JC: D n dCfkC)) Of. 3.6.A

• f11C: (f2JC: con dCfkC) ndCf2 JC))) n dCf1 IC) Of. 3.10

• f11C: CCf2JC: CD n d(f2 JC))) n d(f1 1c)) Pr. 3.2.8

Thus, the given equation Is correct.

39

In the example that follows the equation for fJC:o given above is

used to derive f JC: dCf JC) • rCf Jc). A proof slmi lar to the proof above

can be used to show that

(f11C9f2JC)1:D • f11C:Cf2JC:D)

when D $: dCfJC). The only difference In the proofs Is the substitution

of Definition 3.6.A for Definition 3.10 In the proof above.

Example 3.7. The example Is a continuation of the computations given in

Example 3.3. For al I cases of dCfJC) ~ $, rCfJC) is derived from the

set mapping equation given in the above lemma for f JC:o.

a) By Definition 3.5.B

rCC+1Cet12C)1)

• C+1C9tl2)1C: dC(+1C9tl2C)1)

- +1C:ct12C:<Z(X.1),NUMCX.2),NUM(X.3)>CX)ndct12C)) Lm. 3.5.2

- +1C: (<NUM(X.2) ,NUMCX.3)>C :x:-nndc+,c))

• NUMCX.2 + X.3)

App. E

App. E

b) From example a above

rCC+2Cetl1C)1) • +2C:(tl1C:(<Z(X.1)>(X) n d(tl1C)))

• +2C: (<> n d(+2C))

- l
c) r((+2Cet12c>1>

- +2c: ct 12c: dCC+2cat 12c> 1 n dCt 12c»

- +2C:(tl2C: <Z,Z> u <Z,Z-NUM,Z-NUM> U1<Z,z,z,zl))

• +2C:(<Z> U <Z-NUM,Z-NUM> U <Z,Z-NUM>

U <Z-NUM,Z> U1<Z,z,zl>) n d(+2C))

- l
d) rCC+2Cetl3C)1)

• +2C:(tl3C:(Atoms U l n d(tl3C))) n d(+2C)

- +2c= <1 n d<+2c))

-1

40

App. E

Lemma 3.5.3. For al I f1, •.. ,fn In F, for al I f1 1c, ... ,fnJC• and for al I

D S uoc,

[f1 le• .•. ,fnJCl1 :0

- <f1 1c:condcf1 1c>no·), ••• ,fnJc:cond<fnJc>no·)>

Where 0' • (f11C)-1:(0-l) n ... n (fnJC)-1:(0-l)

Proof: Let fkc. [f1 1c, ... ,fnJCl 1 . By Definition 3.10

[f11c, ... ,fnJCl1:D • ([f11c, ... ,fnJCl1:XI XS ond(fkC))}

- (<f1 1C:x, ... ,fnJC:x>I x S DOD')} Of. 3.5

- <f1 1c:cono·ndcf1 1c>>> ,fnJc=<Dno·nd<fnJc>» of. 3.10

Thus, the equation Is correct.

For the case of D ~ d([f1 1c, ... ,fnJCl 1 a simpler equation is used

[f1 1c, ... ,fnJcl 1 :o - <f1 1c:o, .•• ,fnJc:o>.

41

A proof siml lar to the above given proof, but based on Definition 3.6.A

rather than on Definition 3.10 proves this simpler form of the eQuation.

Example 3.8. This example Is a continuation of Example 3.4.

Computations are shown for rCf Jc), for al I cases where dCf Jc) "~­

a) By Definition 3.6.B

r([s1C,t11Cl1> - [s1C,t11Cl1: <Z(X.1)>(X)

Lm. 3.5.3

• <Z(X.1)>,<>> App. E

b) By slml lar methods

r([s1C,t12cl1>

- [s1C,t12Cl1: U1<Z(X.1),Z 1CX.l)>(X)

- <s1c: u1<z,zl>, t1 2c: u1<z,zl>>

- <ZCX.1), u1<z'cx.1+1>>c:x:-1>>

Lemma 3.5.4. For al I f1,f2,f3 In F and for al I f1 1c,f2Jc,f3kc• and for

a 11 D c: UDc

1) (f11C-->f2JC;f3)1: D • f2JC:(D n d(f2JC) n (f1 lc)-1 :{T})

2) Cf 1 I c __ > f 2; f 3k c) 2: D • f 3k c: (D n d Cf 3k c) n (f 1 I c)-1 : { F})

Proof: Proof of case 1 is given. Case 2 Is slml lar.

Let fkC•(f11c-->f2JC;f3)1.

By Definition 3.10, Cf1 1c-->f2JC;f3) 1 : D

• {(f11C-->f2kC;f3)1:x: X 6 D n d(fkC)}

• {f2JC:x: X 6 D n d(fkC)}

• f2JC:(D n d(fkC) n d(f2JC))

• f2JC:(D n d(f2JC) n (f11c)-1 :{T})

Thus, the eQuatlon is correct.

Df.3.5

Df. 3.10

Lm. 3.4.6

When D ~ d(fkc) then the above eQuation can be reduced to

This simpler equation is used in the example that fol lows to derive

rCfJc). The more complex form of the equation is used in Theorem 3.5

and later used to extend the characterization of f to Include fJc 6

URflC·

42

Example 3.9. The computations of Example 3.5 are continued, and r(f Jc)

Is derived from the equation given In the lemma above for f Jc: d(f Jc).

Only cases where d(fJC) ~~are shown.

a) By Definition 3.5.B

r((atom1C-->ld1C;tl) 1)

- Catom1C-->ld1C;tl) 1: Atoms(X)

• ld1C: ATOM(X)

• ATOM(X)

b) By slml lar methods

r((atom2c-->ld;tl1)2)

• (atom2c-->ld;t1 1c>2: <Z(X.1)>(X)

• tl1c: <Z(X.1)>(X)

- <>

c) rCCatom2C-->ld;tl2c>2)

- t12C: U1<Z(X.n,z'cx.1+1)>(X)

- u1<z 1cx.i+1)>CIXl-1)

Lm. 3.5.5

App. E

Theorem 3.5 For all f In F, for all fJC• 1-1, ... ,p(f), where fJC e

URf 1c, and for al I o 6 uoc,

fJC:O 6 UOC.

Proof: The proof of this theorem Is slml lar to Theorem 3.4. An

equation Is constructed for f JC:o by recursive appl lcations of the

equations given in Lemmas 3.5.2 - 3.5.4 and the set mappings of

43

primitive functions In Appendix E. For the special case of D•dCfJC) by

Definition 3.5.3, the eQuation gives rCfJC). By Proposition 3.2.4,

f 1c:u 1D1 - u1f 1c:D 1 and thus only the case of D G UDc needs additional

proof.

case 1) If f Is a primitive function In F then by Lemma 3.4.2, Lemma

3.5.1 and Definition 3.10, fJC:D G De.

case 2) If f•GCf1, ... ,fn) then an eQuatlon for f 1c:D can be constructed

by the above described method. The eQuatlon has a finite number of

terms and by the method of construction each term Is one of the

fol lowing:

I) f1JC:(f2kC:(D n d(f2kC)) n d(f1JC))

I I) < f 1 J c : (D n d (f 1 I c) n D ,) , ... , f nk c : (D n d (f nk c) () D ,)>

Where D' • (f11C)-1:CO-l) n ... fl (fnkC)-1:(0-l)

Ill) f2JC:(D n d(f2JC) n (f11c)-1:{T))

f3kC:(D n d(f3kc) n (f1 lc)-1 :{F))

By Definition 3.7 and Lemma 3.4.1, {T), {F), and 0-l are In UD0 . A

proof by induction Is given that t 1c:D G UDc.

Let SCN) be the statement that "If f Is defined by N appl !cations of the

definitions of the functional forms In G, then f 1c:D G UDc ...

Basis: If N•1 then f1, ... ,fn are primitive functions in F.

case I) By Lemma 3.4.2 and Lemma 3.5.1

f1JC:(f2kc:(D n d(f21cC)) n d(f1JC)

reduces to a set In UDc.

case I I) By Lemma 3.4.2 and Lemma 3.5.1 D', Is in UDc. Then by

Definition 3.7 and Lemma 3.5.1

<f 1 Jc: CD n d (f 1 Jc))() D') , ... , fn1c c: CD n d (fn1c c) n D')>

reduces to a set In UDc.

case I I I) By Lemmas 3.5.1, 3.4.3, and 3.4.2

f2JC:(D f\ d(f2JC) fl (f11c)-1:{T))

reduces to a set In uoc.

Thus, s (1) is true.

44

Inductive step: Suppose S(N) Is true for each N>1. If f is defined by

at most N appl I cations of the definitions of the functional forms In G,

then f1, ... ,fn are defined by some M~N appl !cations of the functional

forms in G. By the Inductive assumption f1Jc:o· , ... ,fnkc:D' are In uoc

for al 1 o· G uoe.

case I) Then by Lemma 3.4.2, D n d(f2kc) is In UDC and by the

Inductive assumption

f1 Jc: CD n d(f2kc))

Is In uoc. Then by Lemma 3.4.2

f 1 Jc: (D n d (f 2k c) n d (f 1 Jc) Is In UD .

case I I) By Lemma 3.4.2

D n d(f1Jc) n D' and D n d(fnkC) n D'

are In uoc. Then by the Inductive assumption and Definition 3.7

<f1Jc:eondcf1Jc>no·), ... ,fnkc:condcfnkc>no·» is in uoc.

case 111) By Lemma 3.4.2, D n d(f2JC) Is In uoc and by Theorem 3.4

and Lemma 3.4.2

D n d(f2Jc) n (f1Jc)-1:{T)

Is In uoc. Then by the Inductive assumption

f2JC:(D n d(f2JC) n (f11c)-1: {T))

Is in uoc. The same proof holds for

f 3k c (: D n d (f 3k c) n (f 1 I c)-1 : { F)) .

Thus, by induction fJC:o Is In uoc for al I f In F and for al I fJc not

In URflC·

45

For fJC in URf 1c, It has been shown that (fJc)-1:o Is not in uoc.

Thus, Theorem 3.5 completes the characterization off over o for al I f

where any r 6 R Is not used In the definition of f. Equations have been

given for d(f 1C) and rcf 1C), i•1, ... ,p(f) by Theorems 3.4 and 3.5

respectively. The observations and methods which fol low show that this

characterization can be extended to the general case of f In F.

Consider f In F and fJC 6 URflc·

1) First a set O' Is derived such that d(fJC) ~ O', and O' 6 uoc.

Construct the equation for CfJC)-1:0 by Theorem 3.4. For each term

cr 1c>-1:o" or cr 2c>-1:o", r 6 R, that occurs In the equation for fJC:o,

first reduce the term for O". Then If O" n r(r1C)•$, replace the term

for Cr1c)-1:0" by •• and If 0" n r(r1C) r/. ~replace the term for

cr 1c)-1:o" by the set, <NUM,NUM>. Reduce this modified equation for

CfJC)-1:o. The result Is a set D' which must be In uoc by Theorem 3.4.

2) To derive rCf Jc) construct the equation for fJC:D', D' derived In

step 1), by Theorem 3.5. Each term of the equation must be one of the

cases 1-1 I I given In Theorem 3.5. Then for any occurrence of a term in

the equation for fJC:o where the term Is In one of the fol lowing forms,

c1) f2JC:(D n d(f2JC) n (f11C)-1 :{T})

C2) f31cC:(O n d(f31cc) n (f11c)-1:{F})

derive (f1 1c)-1:{T}(F) by the methods of Theorem 3.4 and Lemma 3.6.1.

Then by the proof of Theorem 3.5, the terms c1 and c2 reduce to a set

In uoc.

Every occurrence of r1c or r 2c in the equation for f JC:o, must
I

occur In a term In the form of c1 or c2 described above or be some

occurrence of

where D" is in UDc. The set D" n d(r1C) is not in UDc but

r 1c: (D n d(r IC)

can be reduced to a set in UDc. By Definition 3.7.B.2 , D" is one of

<(X},NUM>, <NUM,(X}>, <(X},(x'}>, or <NUM,NUM>, for x,x· 6 NUM. Thus,

r 1c: CD" n d(r IC)) Is (T} or (F} or 0 depending on I and D" and can be

reduced without reducing D" n d(r1c), and clearly is in UDc.

46

Then, the result Is fJC:D' • rCfJC) by Theorem 3.5 and Definition 3.10.

3) The derivation of d(f JC) is similar to the derivation of r(fJc).

Predicates P1, i•1,. . .,n are defined on D', derived in 1), such that:

d(fJC) • (xl X 6 D' & P1(X)•True, i•1,. . .,n}.

as fol lows.

Consider al I primitive functions op 6 (eq,~,>.~,<,and,or,not}. In the

equation for fJC:D', replace each occurrence of op1C:D" or op2C:D" with

the right hand side of the equation below for the particular case of op.

a) for op 6 (eq,~,>,~,<}

op1C:D 11 • BOOL(X.1 op X.2)

OP2c:D 11 • BOOL(-(X.1 op X.2))

b) not1C:D" - BOOL(X) 1-1,2

C) and1C:D" - BOOL(X.1 and X.2) 1•1,2

d) or1C:D" - BOOL(X.1 or X.2) 1-1,2

•

The right hand side of each of the above equations Is of the form

BOOLCP1) and clearly for either OP1c or OP2c. BOOLCP1l Is an equivalent

expression. The cases where CD" n <BOOL,BOOL>) •.need no additional

consideration since this lmpl les fJC:D'·~·

Reduce this equation for fJc:D'; For each occurrence of a term, c1

or c2 construct a separate equation for f1 1c:D" by the same method,

replacing each op 1C by the right hand side of the equations for a-d

above. The reduction of each of these equations for f1 1C:D" gives

BOOLCP 1) for some predicate P1. Define each of these predicates, P1,

i•1 .. n", encountered in the reduction of fJC:D' on D'.

47

Then the reduction of fJC:D' gives a set In uoc with some

predicates, P1, 1-1, ... ,n', given as the binding of fJC:D' to D'. For

each of these occurrences of P1, also define P1 on D'. Each predicate

P1, i•1, ... ,n, n•n'+n", constructed by either of the above steps Is

either True or False for each x 6 D' and Is True for each x such that x

6 d(fJc). The resulting expression

{x: x 6 D' & P1(X)•TRUE, 1-1, ... ,n}

equals dCfJc).

Example 3.10.3 which fol lows shows the computation of dCf 1c) and

rCfJC) for fJC in URdCf 1C) by this method. Other examples computed by

the program described In the Introduction to this paper are given In the

fol lowing chapter. The method gives correct results for al I examples

considered.

Example 3.10.

1) Let f:x • (~ --> +; s1). Then the computational forms off are:

a) (~IC --> +1C; s1) 1 , 1•1,2

b) (~IC --> +2C; 1S)1, 1-1,2

C) (~IC --> +; s1C)2, 1-1 ,2

d) (~IC --> +; s2C)2, i-1 ,2

f1C e URflc are also shown

e) (~3C --> +1C; SjC)lc, I , j , lc•1 , 2

f) (~ --> +; 1)3.

48

2) The equations for D', d(fJC) c; D', for each f JC Ina-dare derived

from Theorem 3.4.

a) By Lemma 3.3.1.1

d(C~1c --> +1c; s)1)

• ((~IC--> +1C; S)1)-1 :0, 1•1,2

(~1 c)-1: {T) n (+1)-1 :0

D' • <NUM,NUM> n (+1C)-1 :0

• <NUM , NUM> n <NUM, NUM>

• <NUM,NUM>

b) By the above methods

d(C~1c --> +2c; s)1)

• (~IC)-1 :{T) n (+2C)-1 :0, 1•1,2

D' • <NUM,NUM> n d(+2C)

c) dCC~1c -- > +; s1C)2)

• (~I C)-1: {F) n (s1 C)-1 :0

D ' • <NUM , NUM> n (s 1 c)-1 : 0

• <NUM, NUM> n U I <Z I>

• <NUM,NUM>

d) d((~lc --> +; s2C)2)

• (~I C)-1: F n (s2C)-1 :0

D' • <NUM ,NUM> n (Atoms U l)

By previously demonstrated methods

e) d((~3c __ > +1C; sJc) 3) - ~.for all (l,J,k)

f) d((~ --> +; S)3) • d(~3C)

Lm. 3.3.2.4

Lm. 3 .6 .1

App. D

49

3) fJC: D' Is shown for cases a-d. The construction of the

predicates P1 , ... ,Pn Is shown to the right of the computations of

rCfJC). Only non nul I cases of D' or d(fJC) computed in 2) are shown.

a.1) By Lemma 3.5.4.1

(~1c-->+1C; s)1 : <NUM,NUM>

• +1C:(<NUM,NUM> n d(+1C> n C~1c>-1 :{T))

• +1C: (<NUM(X.1),NUM(X.2)>(X) n <NUM, NUM>)

• +1C: <NUM(X.1),NUM(X.2)>(X)

• NUM(X.1 + X.2)

a.2) By similar methods

(~2c-->+1C; s)1: <NUM,NUM>

P1 • (X.1 ~ X.2)

• +1C:(<NUM(X.1),NUM(X.2)>(X) n C~2c)-1:{T))
• +1C: (<NUM(X.1) ,NUM(X.2)>(X) n 0)

-.
c.1) By Lemma 3.5.4.2

(~1c-->+,s1C)2: <NUM,NUM> • •

c.2) By slml lar methods

(~2c-->+;s1C>2= <NUM,NUM>

- s1C:(<NUM,NUM> 0dCs1C) n (~2c>-1 :{F))

• s 1 c : (<NUM , (X . 1) , NUM (X . 2)> (X) n <NUM , NUM>)

• s 1C:(<NUM(X.1),NUM(X.2)>) P1 • c-cx.1 < X.2))

• NUM(X .1)

4) The domains d(fJC) are given by the sets D' derived In 2) with the

predicates P1, 1-1, ... ,n, derived In 3), defined on the sets, D', as

fol lows.

a.1) d((~1c-->+1C;s)1) - <NUM,NUM>, (X.1 ~ X.2)

c.2) d((~2c-->+;s1C>2> - <NUM,NUM>, -cx.1 ~ X.2)

50

A set of restrictions of f in F is defined and shown to have the

fol lowing properties.

1) The set of restrictions is a finite set.

2) The domains of the restrictions In the set partition o, the domain

of f.

Equations are given for the domain and range of each restriction in the

set.

Since al I programs in FP are applications of functions f In F to

objects x In O it Is reasonable to assume that the characterization of f

In F given in this chapter may be useful for reasoning about properties

of programs in FP. In the fol lowing chapter an execution time cost

model Is defined for FP, and the methods of this chapter are used to

show that the cost of f:x over o can be given as a f lnlte set of costs.

In particular It Is shown that given x,x' In the domain of some

restriction, cost(f:x) • cost(f:x').

CHAPTER IV

EXECUTION TIME COST ANALYSIS FOR FP

Definitions and Pre I lmlnarles

In this chapter a method Is shown for estimating the execution time

cost of functions f In F over the data domain o. It Is slml lar to

existing methods of cost analysis in several ways.

1) A computational model Is defined which gives the cost of f:x, for

each f In F and each x In o. The cost of f:x Is defined to be the

number of basic operations performed In the reduction of f:x.

2) An expression is given for the cost of f :x over the data domain,

0.

Certain properties of FP reQulre variations from existing methods.

Given the conditional semantics of FP It Is not apparent that these

methods can be used to determine al I poss Ible computation seQuences for

f:x, x In o. However, al I functions f In Fare total functions,

f:0-->0, and thus a cost must be def lned for f :x, for al I x In O.

Then a method must be given to derive the possible computation seQuences

of f:x and to estimate the cost of f:x for each computation seQuence.

The methods of the previous chapter are used to solve these

problems. In particular, It Is shown that the possible computation

seQuences of f:x are eQulvalent to the computational restrictions off.

The fol lowing definition defines an execution time cost computatlonal

model for FP.

51

52

Definition 4.1. The fol lowing execution cost model is defined for FP:

A) The computation sequence for f In F Is given by the definition of

f (3). The choice of a particular reduction order for [f1, ... ,fn]:x

is arbitrary and does not affect the cost of f:x defined below, since

the execution time cost of f:x Is defined to be the total number of

operations performed in the reduction of f:x.

8) The symbolic constants cCf 1) denote a symbol le cost associated

with f 1, where f:x =. P1Cx) --> f 1, 1-=1, ... ,flast. The symbolic

constant c(f) denotes a base cost associated with the reduction f:x.

The symbolic constant C(*) denotes the cost of the constant function

in FP.

C) Let f be a function Inf defined by

f:X = P1(X)-->f1; ... ;P1astCX)-->f1ast·

Then for each x In O the cost of f:x Is denoted by "cost(f :x)" and is

defined to be:

1) If f Is In {atom,nul I ,eQ,~,>.~,<}, then

cost(f:x) - c(f)

Thus, cCf1)•cCfJ), l,J•1, ... ,flast.

2) If f ls a primitive function not In case 1) then for

I •1 , ..• , f I ~st,

P1Cx) & f1 is a constant function••> cost(f:X)•C(*)

P1Cx) & f 1 Is not a constant function••> cost(f:X)•cCf1)

It Is noted that for al I these cases off except for f•apndl, that

cCfi> may unambiguously be denoted by c(f). 3) If f•GCf1, ... ,fn)

for some f1, ... ,fn in F then

a) cost(y:x) • c(*), where y:x Is the constant function y.

b) cost((f1ef2):x) - c(e) + cost(f2:x) + cost(f1:(f2:x))

53

c) cost([f1, ... ,fn]:x) • c([]) + cost(f1:x) + ... + cost(fn:x)

d) P1(X) ••> cost((f1-->f2;f3):x) - cC-->) + cost(f1:x)

+ cost(f2:x)

P2(X) ••> cost((f1-->f2;f3):x) • C(-->) + cost(f1:x)

+ cost(f3:x)

P3(X) ••> costCCf1-->f2;f3):x) • C(-->) + cost(f1:x)

The fol !owing observations are made about the execution cost model

of Definition 4.1.

1) For every f In F If P1Cx)•True and f 1 is not a constant function

then the actual execution time of f:x for any particular machine

Implementation may vary significantly over x In O. This level of

Inaccuracy In estimating the cost(f:x) cannot be avoided unless

Implementation dependent assumptions are Introduced into the model.

2) No cost Is assigned to the operations required to determine the

case of P1Cx). The order given for f 1, 1-1, ... ,flast In Appendix A

and by Backus (3) Is clearly not optimal for minimizing the number of

these operations required. Including them In cost(f:x) would require

assumptions about the average case of x for f:x, or would require

that cost be defined as worst or best case cost. For these reasons

and for the sake of simpl lclty In the examples of this chapter, they

are not Included In Definition 4.1.

3) For the case of f In 1) above cost(f:x) Is given as c(f) even

though f 1, i•1, ... ,flast Is a constant function. This choice is made

arbltrarl IY to reflect patterns of cost In cost(f:x). For al I cases

of c(f) or c(#), cCfi> could be substituted without affecting the

methods described later In this chapter.

54

The model of Definition 4.1 is Independent of any particular

machine implementation, except for the cases described In 3) above. The

choices for the cost functions given are made arbltrari ly for the sake

of simpl I city or to maintain machine Independence In the model. Other

cost functions could be defined to reflect some particular hardware or

software Implementation. For a developing language such as FP, both

machine Independence and flexlbi I ity are desirable properties of an

execution time cost model.

Methods for Estimating Execution Time Cost

In this section methods are given for estimating the cost of f:x

over the data domain, o. In particular, the results of the previous

chapter are used to show that a finite set of cost functions under

Definition 4.1 gives the cost of f:x over O.

Theorem 4.1. For al I f In F and for al I f 1c, 1-1, •.. ,p(f),

If x',x" are In dCf 1c)

then cost(f:X') - costCf:x").

Proof: A proof of this theorem Is given In Appendix F.

Definition 4.2. The notation of Definition 4.1 is extended as fol lows.

Let

cCf 1c) denote cost(f:x) for al I x In dCf 1c).

This extension lmpl les no contradictions of Definition 4.1 since c(f)

and c(dCf 1c)) are both cost functions under the definition.

Methods are shown in Chapter 3 to derive dCf 1C) and rCf 1C> for al I

f In F and for each f 1c, 1-1, •.. ,p(f). By Theorem 3.2 p(f) Is finite

and by Theorem 4.1 cCf 1C) is a single cost function under Definition

4.1. Therefore, cost(f:x) for al I x in O is given by cCf 1c),

i•1, ... ,p(f).

Theorem 4.1 also shows that cCf 1C) can be computed directly from

f 1c. In the examples that fol low, rCf 1C) and cCf 1c) are computed in

para I lei to i I lustrate this for one case of each f in G.

Example 4.1. Let f:X•(setl):x and Z•O-l. Computations are shown for

1) r((s1Cet12c)1c)

- s1C:(tl2C: U1<Z(X.1),zlcx.1+1)>(X)

c(e) + cost(tl 2) + costcs1)

• s 1c:cU 1<zlcx. i+1)>C:x:-1) c(e) + c(tl) + costcs1)

- Z(X.2) c(e) + c(tl) + C(S)

2) rC<s2Cet11c)1c)

• s2:(tl1c: <Z(X.1)>(X)

I
~

3) rC<s2Cetl3c)1c)

- s 2c:ct1 3C:(Atoms U l))

• I
~

55

Example 4.2. Let f:X•[s,tlJ:x and z-0-1.

1) r([s1C,t11CJ1)

• <s1C:<Z(X.1)>(X), tl1c:<Z(X.1)>(X)>

c([J) + costCs1) + cost(tt 1)

• <Z(X.1), <>> C([]) + C(S) + C(*)

2) r([s1C,t12CJ1)

•<S1C:U1<Z(X.1),Z 1cx. 1+1)>(X),tt2C:U1<Z(X.1),Z 1cx. 1+1)>(X)>

c([J) + cost(s1) + cost(tl2)

- <ZCX.1), u1<z'cx.1+1)>C:x:-1)>

C([]) + C(S) + C(tl)

3) r([s2C,t13CJ2)

• <s2C:(Atoms U l), tl3c(Atoms U l)>

c([]) + cost(s2) + cost(tl 3)

C([]) + C(*) + C(#)

-l
Example 4.3. Let f:x - Catom-->ld; tl):x and z-0-1.

1) r((atom1C-->ld1C;tl)1)

- ((atom1c:Atoms)-->ld1c;tl): Atoms(X)

c(-->) + cost(atom1) + cost(ld1)

- CT--> ld1 ; tl)1c: Atoms c(-->) + c(atom) + cost(ld1)

- ld1c: Atoms(X)

- Atoms(X) c(-->) + c(atoms) + c(ld)

56

2) r((atom2C-->ld;tt 1C)2)

- ((atom2C:<Z(X.1)>(X))-->ld; tt1C)2C: <Z(X.1)>(X)

c(-->) + cost(atom1) + cost(tl 1)

• (F -->ld;tt1C)2C: <Z(X.1)>(X)

c(-->) + c(atom) + cost(tl1)

- <> c(-->) + c(atom) + c(*)

3) r((atom2c-->id;tt 2C) 2)

- ccatom2c:u 1<z,zl>)-->id;tl): 2c: u 1<z,zl>

c(-->) + cost(atom2) + cost(tl 2)

- (F -->ld;tt2C>2C: U1<Z(X.1),Zlcx.1+1)>(X)

c(-->) + c(atom) + cost(tl2)

- tt2C: U1<Z(X.1),z 1cx.1+1)>(X)

c(-->) + c(atom) + c(tl)

4) r((atom3c-->ld;tt) 3)

- ((atom3C:l)-->ld;tt) 3C: l

c(-->) + cost(atom3)

c(-->) + c(atom) ·

- l

57

The examples above show the computation of cost(f:x) over o for

simple cases off In F. The tables of Appendix G show d(f 1c), rCf 1c),

and cCf 1C) for more complex cases of f. These values were computed by

the program described In the Introduction of this paper, except for the

cases of rCf 1C>•l which were computed by hand. For each f, u 1dCf 1C)

such that rCf 1C>•l Is given as a single set, and a single cost function,

58

cost(f:x), Is given which Is the max(cost(f:x)) for al I x such that

A machine independent model for FP Is defined which gives the cost

of f:x for al I f In F and for each x In 0. The methods of Chapter 3 are

then used to show that the cost of f:x over O can be given as a finite

set of cost functions derived from this definition. Computations of the

cost of f:x over Oare shown for simple cases of f In F, and computed

results are given for more complex cases of f.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

summary

A set of functions, F, Is defined which is a subset of functions in

FP as defined by Backus (3). The set contains functional forms for

construction, conditional, and composition and contains a subset of

the primitive functions defined by Backus (3) and WI I I lams (11). Then

for each function f in Fa set of computational restrictions off is

defined. Definition 3.4 gives a method to derive the computational

restrictions of f In the general case and Theorem 3.4 proves that this

set of restrictions Is finite. The examples of Chapter 3 and the

computed results of the program described In the Introduction of this

thesis verify that the set of restrictions can be computed.

In Theorem 3.3 It Is proved that the domains of the computational

restrictions of f partition 0, the domain of f. Thus, every data object
. .

in o is in the domain of one and only one computational restriction.

Theorems 3.4 and 3.5 show that an eQuatlon can be constructed for the

domain and the range of each computational restriction off. The

methods for constructing the eQuatlons are proven to be correct for a

significant subset of F, and for the remaining cases examples are shown.

The computed results in Appendix G give further verification of the

methods and show that the methods can be automated. Thus, a method has

been shown for computing a nontrivial characterization of functions In F.

59

60

In Chapter 4 this characterization of functions for FP Is shown to

be useful. An execution time cost model Is defined which gives an

estimate of the execution time cost of f:x for al I f In F and for each x

in o. The model is derived directly from the definition of FP (3). It

is shown to be a machine Independent model and also to have a flexible

framework which may be used to define an execution time cost model for

any particular hardware or software implementation of FP.

Theorem 4.1 shows that the set of computational restrictions of

each function f In F correspond to the possible computation sequences of

f. A proof is given that a single cost function derived under the model

gives the cost of f:x for al I x In the domain of some computational

restriction. Then since the set of computational restrictions Is

finite, the cost of f over O Is given by a finite set of cost functions.

In Chapter 3 examples are shown of the computation of the execution time

cost of f over o for simple cases off. Then for more complex cases of

f, the domain, range and cost of each restriction of fare given In

table form In Appendix G. These results were computed by the program

described In the Introduction to this thesis. Al I computed results are

consistent with the expected results given by the theory and methods.

Conclusions

FP Is a functional programming language In which al I programs are

the appl !cation of a function to an object. Existing methods for

characterizing programs and existing methods of cost analysts for

conventional languages do not give any apparent solution to the problem

of execution time cost analysis for functional languages. A machine

61

independent execution cost model based on existing methods of cost

analysis is defined for FP in Definition 4.1. Then the characterization

of functions given in this thesis is combined with this cost model to

give a method for execution time cost analysis for FP. The examples

given In Chapter 4 and the computed results given in Appendix G verify

this method of cost analysis for a significant subset of FP.

In particular, this characterization of functions gives the finite

set of possible computation sequences for each function and the domain

and range of each computation sequence. A formal specification is given

by Definition 3.7 for the domains and ranges of these computation

sequences. The examples of Chapters 3 and 4 and the computed results in

Appendix G show that these sets can be computed for the general case of

f In F. Then by comparing the respective domains and ranges of any two

functions in F It is possible to determine if the two functions are

equivalent. The computed results of Appendix G show the domains and

ranges for several cases of functions which are equivalent (3). In al I

of these cases the computed domains and ranges of equivalent functions

are equivalent. Thus, It Is reasonable to assume that the

characterization of functions given in this thesis might be useful for

examining other properties of programs in FP such as program

equivalence.

Recommendations

The characterization of functions given In this paper is proven to

be correct for a significant subset of F, the set of functions in FP.

The examples shown indicate that the equations constructed for the

domains and the ranges of the computation sequences of the functions are

62

correct for the general case, but a formal proof Is needed. The set F

as defined for this paper does not include programs which contain

Iteration or recursion. Given the consistency of the results obtained

for the subset of FP considered and assuming the proof described above

is given, then it Is clear that extending the methods of this paper to a

larger class of functions Is a promising course for future work.

Execution time cost analysis Is a deslrable tool In the

developmental stage of a programming language as wel I as a necessary

tool In a production level language. One valuable use for automated

techniques of cost analysis is program optimization. The proofs of

Chapter 3 and the computed results of Appendix G show that the method

can be used to determine the equlvalence of two functions In F.

Combined with the cost analysis model this gives the potential for

automated optimization of programs. Thus, another promising course for

future work Is the appl lcatlon of the methods to some particular

hardware and software implementation of FP.

The characterization of functions given In this paper clearly has

other appl !cations distinct from cost analysis of functional languages.

For procedural languages techniques exist to formally specify the

relationship between the Input and the eutput of programs. These

methods are used to give proof of correctness of programs, but they are

I lmlted In that heuristic Input about program Intent Is required (12).

The methods of this paper clearly meet the requirements for formally

specifying the results of a program over al I possible Inputs without the

above described I Imitations.

The possible appl icatlons of the methods described In this paper

are wide ranging. For the subset of FP considered they give a useful

63

tool for future work in the development of functional languages. If the

methods can be applied to a larger class of functions, then some of the

I Imitations of conventional algebraic languages may be shown to not

apply to functional languages.

BIBLIOGRAPHY

(1) Aho, A. V., J. E. Hopcroft, and J. D. UI Iman. The Design and
Analysis of Computer Algorithms. Reading: Addison-Wesley
Publishing Co., 1974.

(2) Aho, A. V., R. Sethi, and J. D. UI Iman. Compl lers: Prlnclples,
TechniQues, and Tools. Reading: Addison-Wesley Pub I ishing
Co., 1986.

(3) Backus, J. "Can Programming Be Liberated From the Von Neumman
Style?" CACM, 21, 8(August), pp 1-10.

(4) Backus, J. "Function Level Programs as Mathematical Objects."
Proceedings of the ACM Conference on Functional Programming
Languages and Computer Architecture. Portsmouth, N.H,
October, 1981, pp 1-10.

(5) COSERS: The Computer Science and Engineering Research Study.
edited by Bruce W. Arden, Cambridge: The MIT Press, 1980, pp
137-295.

(6) Hoare, c. "An Axiomatic Basis for Computer Programming." CACM,
12, 10(0ctober), pp 576-583.

(7) Katayama, T. "Type Inference and Type Checking for Functional
Programming Languages: a Reduced Computation Approach."
Conference Record of the 1984 Symposium on Lisp and Functional
Programming. 1984, pp 263-272.

(8) Manna, z., s. Ness, and J. Vul I lemln.
Proving Properties of Programs."
491-502.

"Inductive Methods for
CACM, 16, 8(August), PP

(9) McCarthy, J. "Recursive Functions of Symbol le Expressions and
Their Computation by Machine, Part I." CACM, 3, 4(Aprl I), pp
184-195.

(10) Simmons, George F. Introduction to Topology and Modern
Analysis. New York: McGraw Hi I I, 1963.

(11) WI 11 lams J. "Notes on the FP Style of Functional
Programming." Proceedings of the 1981 Conference on
Functional Languages. 1981, pp 73-101.

(12) Wulf, w. A., M. Shaw, P. N. Hi lfl Inger, and L. Flon.
Fundamental Structures of Computer Science. Reading:
Addison-Wesley Pub I lshlng Co., 1981.

64

APPENDIX A

DEFINITIONS OF FUNCTIONS INF

Primitive Functions

For a 11 x In O

2) ld:X • X

3) tl:X :CX•<X1>) --> <>; (X•<X1·····Xn>,n~2) --> <X2·····Xn>; l

4) atom:x - ex Is an atom)--> T; (X•<x 1 , ... ,Xn>,n~1) --> F; l

5) nul I :x - (X•<>) --> T; -ex-<> ! x-1> --> F; l

6) rev:X - (X•<>) --> <>; (X•X1·····Xn>,n~1) --> (<Xn·····X1>; l

7) apndl:X - (X•<X1,<>>) --> <X1>;

(X•<X1,<X2·····Xn>>) --> <X1·····Xn>; l

8) and:X - (X•<T,T>) --> T;

(X•<T,F> ! X•<F,T> ! X•<F,F>) --> F; l

9) or:x - (X•<T,T> ! X•<T,F> ! X•<F,T>) --> T;

(X•<F,F>) --> F; l

10) not:x = (X•T) --> F; (X•F) --> T; l

11) For op In {+,*,sub,div)

op:x: (X•<x 1 ,x 2>, x1 ,x 2 are numbers)--> Cx1 op x2); l

12) For r In R• {eq,~,>.~,<)

r.:x • (X•<x 1 ,x 2>, x1 ,x 2 are numbers, x1 r x2) --> T;

(X•<x 1 ,x 2>, x1 ,x 2 are numbers, x1 -r x2) --> F; l

65

Functional Forms

For all x,y in 0 and all f1, •.. ,fn in F

1) (f1ef2):X = f1:(f2:X)

2) [f1, ... ,fn]:x =: -(f1:X•l ! ... ! fn:x•l) --> <f1:x, ... ,fn:x>; l

3) (f1-->f2;f3):X =: (f1:X•T) --> f2:X; (f1:X•F) --> f3:X; l

4) X :y • -(Y•l) --> X; l

66

APPENDIX B

COMPUTATIONS OF f :x

The examples below are computations of f:x for various cases of x

in 0 and f in F.

1) f:X • (~-->+,S):X

a) (~-->+;S): <5,4>

• ((~:<5,4>)-->+;S): <5,4>

• (T-->+;S): <5,4>

- +: <5,4>

- 9

b) (~-->+;s): <5,4,3>

• ((~:<5,4,3>)-->+;S): <5,4,3>

• Cl-->+;S): <5,4,3>

- l
2) f:x - (eQeapndl):x

a) (eQeapndl): <6,<2>>

• eQ:(apndl:<6,<2>>)

- eQ: (<6,2>)

• F

b) (eQeapndl): <6,2>

• eQ:(apndl:<6,2>)

- eQ:(l)

s I
.!...

67

68

3) f:X • [+,tl]:X

a) [+,ti]: <2,3>

- <+:<2,3>, ti :<2,3>>

- <5,<3>>

b) [+,ti]: <2>

- <+:<2>, tl:<2>>

- <l, <>>

- l

4) f:x • CC~e[s,10])--> sube[s,1]; tl):x

a) CC~e[s,10])--> sube[s,1]; ti): <13, AB>

- CC~e[s,10]:<13,AB>)--> sube[s,1]; ti): <13,AB>

- (~:([S,10]:<13,AB>)--> sube[s,1]; ti): <13,AB>

- (~:(<S:<13,AB>,10:<13,AB>)-->sube[s,1];tl):<13,AB>

- (~:(<13,10>)--> sube[s,1]; ti): <13,AB>

- T --> sube[s,1]; ti): <13,AB>

• sube[s,1]: <13,AB>

- sub:([S,1]:<13,AB>)

- sub:(<S:<13,AB>, 1:<13,AB>>)

• sub:(<13,1>)

- 12

b) ((~es,10])--> sube[s,1]; ti): <AB,13>

• ((~e[s,10]:<AB,13>)--> sube[s,1]; ti): <AB,13>

- (~:([S,10]:<AB,13>)--> sube[s,1]; ti): <AB,13>

• (~:(<S:<AB,13>,10:<AB,13>)-->SUb[s,1];tl):<AB,13>

- ((~:<AB,10>)--> sub[s,1]; ti): <AB,13>

• I
~

APPENDIX C

DOMAINS AND RANGES OF COMPUTATIONAL RESTRICTIONS

OF PRIMITIVE FUNCTIONS IN F

The domain and range of each canonlcal restriction are given for

each primitive function In F. The sets are given in the closed form of

Definition 3.7. Let Z -0-1.

s1C U1<ZI> z

s2C Atoms U I I
.!.. .!..

ld1c 0 0

t I 1 c <Z> <>

tl2C u1<z,zl> U1<ZI>

t13c Atoms U I I
.!.. .!..

atom1C Atoms T

atom2c U1<ZI> F

atom3C I I
.!.. .!..

nul 11 <> T

nul 12c 0-{<>,l} F

nul 13c I I
.!.. .!..

69

rv1C <>

rv2 U1<ZI>

rv3C (Atoms-<>) u I
.!.

apnd 11 c <Z,<>>

apnd1 2c <Z,U1<Z 1»

apnd1 3c Atoms U I U<Z> .!.

U <Z,Atoms-<>> u1<z,z,z'>

<T,T>

<T,F> U <F,T> U <F,F>

Atoms U l U <Z> U <Z-BOOL,Z>

<>

I
.!.

<Z>

I
.!.

T

F

U <Z,Z-BOOL> U <Z-BOOL,Z-BOOL>

u1<z,z,zl> I
.!.

or Jc and not JC• j•1 .. 3 are slml far to and

for op s {*, +, sub, div}

OP1c <NUM,NUM> NUM

op2C Atoms U I U <Z> U <Z,Z-NUM> .!.

U <Z-NUM,Z> u <Z-NUM,Z-NUM>

u1<z,z,zl> I
.!.

for r S R•{eq ,~,> .~,<}

r1 c (r, <NUM,NUM>) T

r1 c c-r, <NUM,NUM>) F

r3C Atoms U I U <Z> u <Z,Z-NUM> .!.

<Z-NUM,Z-NUM> u <Z-NUM,Z-NUM>

u1<z,z,zl> I
.!.

70

APPENDIX D

INVERSE SET MAPPING EQUATIONS FOR

THE COMPUTATIONAL RESTRICTIONS OF

PRIMITIVE FUNCTIONS INF

For al I canonical restr 1ctions fJC• J•1 .. flast an eQuation is given

for CfJc)c-1:0, where D Is any subset of r(fJc). For the cases where

r(fJc) Is a constant, (fJc)-1:o • dCfJc), and the set d(fJC) is given In

Appendix c. In these cases r(fJC) Is a singleton set. Let Z•O-l and D

6 oc.

(s1C)-1:D = D: z --> U1<D,zl>

<s2c)-1:0 = D - ClJ --> dCs2c)

ct1 1c)-1:o = D - C<>} --> d(t1 1c>

(tl2c)-1:o = D = U1<ZI> --> U1<Z,D1·····ok 1 •... ,Dn>

(tl3c)-1 :D - D - Cl}--> d(tl3c)

(atom1c)-1:o • D • CT} --> d(atom1C>

catom2C)-1:o • D • CF} --> d(atom2C)

catom3c)-1:o • D • Cl} --> d(atom3C>

(nu I 11 c)-1 : D • D • CT} --> d(nu 11 1 c)

cnu11 2c>-1:o • D • CF} --> d(nu 11 2C>

(nul 13c)-1:o = D. Cl} --> d(nu 11 3c>

71

(rev1c)-1:o = D - C<>} --> d(rev1c)

(rev2C)-1:o = D ~ U1<Z 1> --> U1<Dn·····ok 1 •... ,D1>

(rev3c)-1:o - D s. (Atoms-<>U-:) --> d(rev3°)

(apnd1 1°)-1:o = D £ <Z> --> <D1 ,<>>

Capnd1 2°)-1:o = o ~ u1<Z,Z 1> --> <D1 ,u 1<D 2, ... ,ok 1, ... ,Dn>>;l

(apnd1 3°)-1:o - D - Cll --> d(apnd1 3°)

cand1c)-1:o - D - CT}--> d(and1c)

cand2c)-1:o - D - CF}--> d(and2c)

cand3°)-1:o - D - Cl}--> d(and3°)

corJC)-1:o and (notJC)-1:o, J•1, ... ,3 are slml far.

For op S C*, +, sub, div},

(OP1c)-1:o = D !. NUM --> <NUM,NUM>

(op2°)-1 :o = D - Cll --> d(op2°>

Is give as a relation on <NUM,NUM>

(r1C)-1:o = D - {T} -->

(r2C)-1:o = D - {F} -->

(r, <NUM,NUM>)

c-r, <NUM,NUM>
•

crc 3°)-1:D = D - Cl}--> dCr 3°)

72

APPENDIX E

SET MAPPING EQUATIONS FOR THE

COMPUTATIONAL RESTRICTIONS OF

PRIMITIVE FUNCTIONS IN F

For al I fJc• J•1, ... r,flast an equation is given for fJC:o, where D

_ d(fJc). The equations are defined for al I D soc except where noted.

Let Z - 0-1. and D s oc.

s1C:o = D ~ U1<ZI> --> D1CX.1)

s 2C:o - D c (Atoms U l> --> Cll

tl1C:D • D c <Z> --> C<>}

tr 2c:o = o ~ u1<z,zl>

--> U1<D2CX.2), ... ,ok 1cx.k+l-1), ... ,DnCX.last)>(IXl-1)

tr 3c:o = D c: Atoms u l --> Cll

atom1c:o - D c: Atoms --> CT}

atom2C:o = D ~ U1<ZI> --> CF}

atom3C:o • D • Cll --> Cll

nul r1c:o - D - C<>} --> CT}

nul 12C:o = D: co - C<>,l}) --> CF}

nul 13C:o • D - Cll --> Cll

73

rev1°:o - D - {<>) --> {<>)

rev2C:o - D ~ U1<ZI>

74

--> u1<DnCX.last), ... ,ok 1cx. 1ast-Cn-k)-i+1), ... ,o1cx.1)>(X)

rev3°:o = D ~((Atoms - <>) U l) --> ClJ

apndl1C:o = D = <Z,{<>)> --> <D1CX.1)>

apnd12°:o = D-; <Z,U1<ZI>> --> U1<D1(X.1),D21<X.2.1), ...

,D2k 1cx.2.k+l-1), ... ,D2n<X.2.n)>(IX.21+1)

apnd1 3°:o - D ~ (Atoms u l U<Z> u <Z,Atoms-l> u1<Z,z,z 1>) -~> ClJ

and1°:o = D - <{T),{T)> --> {T)

and2C:o = D ~ {<{T),{F)> u <{F),{T)> u <{F),{F)>) --> {F)

and3°:o - De (Atoms u l u <Z> u <Z,Z-BOOL> u <Z-BOOL,Z>

u <Z-BOOL,z-eooL> u1<z,z,z'>) --> ClJ

orJC:o and notJC:o, J•1, ... ,3 are slmi lar

For op 6 {*,+,sub,dlv)

op1C:D = D ~ <NUM,NUM> --> NUM((X.1) + (X.2))

OP2°:o = D ~(Atoms u ClJ u <Z> u <Z,Z-NUM> u <Z-NUM,Z>

u <Z-NUM,Z-NUM> u1<z,z,z'>) --> ClJ

For r 6 R

r,c:o - D = (r,<NUM,NUM>) --> {T)

r 2C:D = D 5: c-r,<NUM,NUM>) --> {F)

r3C:o = D s- (Atoms u l U<Z>, <Z,Z-NUM> u <Z-NUM,Z>

u <Z-NUM,Z-NUM> u1<z,z,z 1>) --> ClJ

APPENDIX F

THEOREM 4.1

Theorem 4.1. For al I f In F and for al I f 1c, 1•1, ... ,p(f),

If X' ,X" 6 d(f1C)

then cost(f:x')•cost(f:x")

where cost(f:x) is defined In Definition 4.1.

Proof: Let f be In F, and x',x" be In dCf 1C). The various cases off

are proved below. The notation for P1Cx) Is extended to show the

particular case off as fol lows. For f 1:x = P1Cx)-->f 1, i-1 .. flast,

denote P1(X) by

P1(f,X).

case 1) If f Is a primitive function In F, then the canonical

restrictions of fare

f I c: x - f i= x - p I (x) --> f I , l •1 , ... , f I ast.

Since x',x" 6 dCf1c> for one and only one i, then P1Cf,x')•True and

P1Cf,x")•True for one and only one I. Then by Definition 4.1 either

a) cost(f:x') - cost(f:x") - C(*), or

b) cost(f:x') • cost(f:x") • c(f).

1) Thus, cost(f:x') • cost(f:x").

case 2) If f•G(f1, .. .,fn) then all the canonical restrictions off are

given by one of the cases of definition 3.5.A, for some f 1,

1-1, ... , f last. By Theorem 3.3 d(f Jc) ~ d(f 1), for a 11 f Jc,

J-1, ... ,p(f). Thus, If x',x" are In dCfJC) for some J then x',x" are In

75

76

dCfil for one and only one I, i-1, ... ,flast. Then by Definition 3.1.B

and Definition 3.3, P1Cf,x')•True and P1Cf,x")•True for one and only one

I, and cost(f:x') and cost(f:x") are given by the same cost function

under Definition 4.1. For f:X•Y:X, It Is direct that cost(f:x') •cost

(f:x") for al I x' ,x" In d(f1l· For the cases where f 1 Is not a constant

function a proof by mathematical Induction Is given.

Let S(N) be the statement, "If f•G(f1, ... ,fn) and f Is defined by

at most N appl !cations of the expansion rules of G, then If x',x" are in

d(f 1C) for any f 1c, 1•1, ... ,p(f), cost(f:x') - cost(f:x")."

Basis: If N•1 and f•G(f1, ... ,fn) then f1, ... ,fn are primitive functions

In f. Proof that S(1) is true Is given for each case of f 1 In

Definition 4.1.

b) Suppose f 1C:x•f1JC:(f2kc:x)and x',x" G dCf 1c).

••> x, x' G d(f2kc) & f2kc:x, f2kc:x' G d(t1 1c)

••> x',x" G {x: P1(f,X) & Pk(f2,X) & PJ(f1,X)}

••> P1Cf,x') & P1Cf,x") & cost(f2:x')•cost(f2:x")

& cost(f1:(f2:X'))•COSt:(f1:(f2:X"

Then by Definition 4.1

(1)

Df. 3.5.B

Of. 3.5.A

Df. 4 .1

cost(f:x') • c(e) + cost(f2:x') + cost(f1:(f2:x'))

By (1) cost(f2:X')•COSt(f2:X") and cost(f1:(f2:X'))•COSt(f1:(f2:X")).

Thus, cost(f:x') - cC•l + cost(f2:x") + cost(f1:Cf2:x")).

• cost(f1:(f2:Cx"))

• cost(f :x")

Thus, cost(f:x') • cost(f:x")

c) Let f:X•[f1, ... ,fn]:x. The proofs of both cases of f 1, i•1,2 are

Identical.

Let x',x" G d([f1Jc, ... ,fnkCJ 1C), for some (J,k).

--> x . • x II G (d (f 1 J c) n ... n d (f nk c)) Of. 3.5.B

••> x',X" G {x: P1(f,x) & PJ(f1,X) & ••• & Pk(fn,X)}

Of. 3.5.A

••> P1Cf,x') & P1Cf,x") & Ccost(f1:x')•cost(f1:x")) ..

& ... (cost(fn:x')•cost(fn:x")) (2) Df. 4.1

••> cost(f1:x) + ... + cost(fn:x') - cost(f1:x") + ... + cost(fn:x")

Then by Definition 4.1

cost(f:x') - c([J) + cost(f1:x') + + cost(fn:x')

By eQuatlon (2) above

- c([]) + cost(f1:x") + ... + cost(fn:x")

- cost([f1, ... ,fnJ:x"

- cost(f:x")

Thus, cost(f:x') - cost(f:x")

d) Let f:x • (f1-->f2;f3):x. The proofs for al I 3 cases of f 1,

1-1, ... ,3 are Identical. They are slmi lar to case c.

77

Inductive Step. Let S(N) be true for al I N > 1. Then If f•G(f1, ... ,fn)

and f Is defined by at most N+1 appl !cations of the expansion rules of

G, f1, ... ,fn are defined by at most M < N appl !cations of the expansion

rules of G. By the Inductive assumption, If x',x" G d(f1 1c), for some

1-1, ... ,p(f1), cost(f1:x') - cost(f1:x"). The same holds for f2, ... ,fn.

Proof that SCN+1) Is true Is given below for the various cases of f.

b) Let f:X•(f1ef2):x and let x',x" G d((f11Cef2Jc>1°:x), for some

(I' J).

••> x',x" G d(f2Jc)

Then by the Inductive assumption for f2,

cost(f2:x') - cost(f2:x").

Also, x',x" G d((f11C•f2J•c>1c>

Of. 3.5.B

(3)

••> (f2JC:x' 6 d(f1 1c)) & Cf2JC:x" 6 dCf1 1c))

Then by the Inductive assumption for f1,

cost(f1:(f2:x')) - cost(f1:(f2:x")) (4)

Then by Definition 4.1

cost(f:x') - c(e) + costCf2:x') + cost(f1:Cf2:x'))

By equations (3) and (4) above,

- c(e) + costCf2:x") + cost(f1:(f2:x"))

• cost((f1ef2):x")

- cost(f:x")

b) Thus, cost(f:x') • cost(f:x")

c,d) Cases c and d are slml lar to b.

2) Thus, If SCN) Is true then SCN+1) Is true for al I N > 1.

Therefore, S(N) Is true for all N > 1.

Df. 3.5.B

Df. 4.1

Therefore, for al I f In F If x',x" 6 dCf 1C), for some 1•1 .. p(f) then

cost(f:x') • cost(f:x").

78

APPENDIX G

COMPUTED RESULTS

The results In this table were computed by the program described in

the introduction of this paper except for the case denoted by an '*'

which were computed by hand.

1) f:x - CCatomes)-->s;tl):x

a)

C)

f1C - CCatom2Ces1C)-->s; tl1C)2C

d(f1C) - <U 1<zlcx.1.l)>CX.1)>CX)

r(f1C) - <>

C(f1C) • C(-->) + c(e) + c(s) + ccatom) + C(*)

dCt 1c) - u1<UJ<zJcx.1.J)>CX.1), zlcx.1+1)>CX)

r(f1C) • U1<Z 1CX.1+1)>(1Xl-1)

cct 1C) - c(-->) + c(e) + c(s) + c(atom) + c(tl)

f1C - CCatom1C•s1c)-->s1C; tl)1c

d(f1C) • U I <Atom(X .1), zlcx.1+n>CX)

r(f1C) • AtomCX .1)

C(f1C) - cC-->) + c(e) + c(s) + c(atom) + C(S)

• c(-->) + c(e) + 2c(s) + c(atom)

79

d)* t 1C • ((atom3Ces2c)-->s; tl) 3c

U1(d(fic)) - Atoms U l

d(f 1C) •Atoms U l

r(f1C) • l

c(f 1c) - c(-->) + c(e) + c(*) + c(atom)

2) f:x • ((~e[s,SJ)-->tl; rev):x

a) fie - <<~1Ce[s1c,51cJ1c)-->tl2c; rev)1c

d(f1C) - Ui<NUM(X.1), zlcx. i+1)>(X), (X.1 > 5)

r(f1C) • U1<Zl(X. 1+1)>(:X:-1)

c(f1C) - c(-->) + c(e) + C([]) + C(S) + C(*) + C(~) + c(tl)

b) fie - C<~1Ce[s1c,51cJ1c)-->tl1c; rev)1c

d(f1C) - <NUM(X.1)>(X), (X.1 ~ S)

r(fjC) • <>

c(f1C) - c(-->) + c(e) + C([]) + C(S) + C(*) + c(~) + C(*)

• c(-->) + c(e) + c([J) + c(s) + 2C(*) + c(~)

C) f1C - ((~2Ce[s1C,i1CJ1C)-->tl; rev2C)2C

d(f1C) - U1<NUM,(X.1), z 1cx. i+1)>(X), (X.1 < 5)

r(f1C) - U1<Z 1cx.1+1), NUM(X.1)>(X)

c(f1C) - c(-->) + c(e) + c([]) + c(s) + c(*) + c(~) + c(rv)

d) t 1c - cc~2Ce[s 1 c,51 c)-->tl; rev1c) 2c

d(f1C) • <NUM(X.1)>(X), (X.1 < 5)

r(f 1C) • <NUM(X.1)>(X)

c(f1C) - C(-->) + C(e) + C([]) + C(S) + C(*) + C(~) + C(*)

- C(-->) + c(e) + C([]) + C(S) + 2(C(*) + c(~)

80

e)* f 1c - cc~3cers2c,51 c1 2ccr,F))-->tl; rev) 3c

U1dCf1C) •Atoms U l

dCf 1c) - Atoms

rcf,c) - l

maxCcCf 1C)) - c(-->) + c(e) + c([]) + 2C(*) + c(~)

3) f:x - Capndle([9,ld]etl)):x

a) f 1c - (apnd1 1Cecre1c,id1c1 1cetl 1c)

d(f1C) • <Z(X1)>(X)

r(f1C) • <9>

cCf 1c) - c(e) + c(e) + c(*) + c([]) + c(ld) + c(#)

+ c(apndl1)

• 2c(e) + 2c(*) + c([]) + c(ld) + c(apndl1)

b) t 1C - (apnd1 2cec(91c,1d1c1 1cetl 2c)

dCf,c) - u1<ZCX.1), zlcx.1+1)>(X)

r(f1C) • U1<9, Z1(X.1+1)>(X)

cCf 1c) - c(e) + c(e) + c(tl) + c([]) + c(ld) + C(*)

+ c(apndl2)

- 2c(e) + c(tl) + c([]) + c(ld) + C(*)

+ c(apndl2)

c)* t 1c - Capnd1 3ccr92C,1d1c1 2ccr,T)et1 3c)

U1dCf1C) - Atoms u l

d(f1C) • l

r(f(C) • l

maxccct 1C)) - 2c(e) + 3c(*) + c([]) + c(ld)

81

4)

5)

f:X • (apndle([9, t I]): x

a) f1C (apnd 11 Ce [91 c, tl1C]1C)

d(f1C) - same as 3.a

rCf 1C) - same as 3.a

C(f1C) - c(e) + C([]) + 2c(#) + c(apndl1)

b) f1C - (apnd1 2cer91C, tl2Cl1C)

d(f,c) - same as 3.b

rcf,c) - same as 3.b

c(frc) - c(e) + C([]) + C(tl) + C(#) + c(apndl2)

c)* frc - (apnd1 3cer92c, t 13c1 2ccr, n)

U1d<f 1c) • same as 3.c

dCf,c) - same as 3.c

rcf,c) - same as 3.c

max(c(f 1 c)) • c(e) + C([]) + 3C(#)

f:x - (apndle[atometl, [+etl, *etl]J):x

a) ftC -(apndt 2Ce[atom2Cetr 2c, [+1Cetr 2c,.1cetl 2c1 1c1 1c

d(t 1°) • <Z(X.1), NUM(X.2), NUM(X>2)>(X)

rct 1°) • <F, NUM(X.2+X.3), NUM(X.2*X.3)>

c<frc) - 4c(e) + 2c([J) + 3c(tl) + C(*) + c(+) + c(atom)

+ c(apndl)

b)* ftC

- (apndl3Ce[atom2°et12C,[+2Cet12c,*2C•tl2CJ2C(T,T)J2C(T,T)

U1d(f 1C) - Atoms u l u <Z> u <Z,Z> u <Z,Z-NUM,Z-NUM>

u <Z,Z,Z-NUM> u <Z,Z-NUM,Z> U1<Z,Z,z,zl>

. d(frc) • <Z,Z> U <Z,Z-NUM,Z-NUM> U <Z,Z-NUM,Z>

82

u <Z,Z,Z-NUM> U1<Z,z,z,zl>

max(cCf 1C)) • 4c((e) + 2c([]) + 3c(tl) + 3c(#) + c(atom)

6) f:x • [atometl, +etl, *etl]:x

a) f 1c - [atom2Cet1 2c, +1Cet1 2c, *iCet1 2c1 1c

d(f 1c) •same as 5.a

r(f 1c) - same as 5.a

c(f1c) • c([]) + 3c(e) + 3c{tl) + c(*) + c(+) + c(atom)

b)* t 1C • [atom2Cetle2c, +2Cet1 2c, *2Cet1 2c1 2ccr,T,T)

U1d<f1c) •same as 5b

d(f 1C) - same as 5b

rCf 1c) - same as 5b

maxCcCf 1C)) • c([]) + 3c(e) + 3c(tl) + 2c(#) + c(atom)

7) f:x • [atom, + , *]:x

a) f1C - [atom2c, +1c, *1c 11 c

d(f1C) • same as 5.a and 6.a

r(f1C) • same as 5.a and 6.a

C(f1C) - c(e) + c(tl) + C([]) + C(*) + C(+)

b)* t 1c - [atom2c, +2c, *2c1 2cet1 2ccr,T,T)

u1dCf 1c) - same as 5.b and 6.b

dCf 1c) - same as 5.b and 6.b

rCf 1c) •same as 5.b and 6.b

+ c(atom)

maxcccf 1c)) - c(e) + c(tl) + c([]) + 2C(#) + c(atom)

83

VITA

Richard Walter Matzen

Candidate for the Degree of

Master of Science

Thesis: A CHARACTERIZATION OF FUNCTIONS FOR EXECUTION TIME COST ANALYSIS
IN FP

Major Field: Computing and Information Science

Biographical:

Personal Data: Born In Rochester, New York, May 12, 1948, the son
of Walter T. and Virginia Matzen. Married to Janet E. Chaney.
on February 28, 1974.

Education: Graduated from Richardson High School, Richardson Texas,
In May, 1966; received Bachelor of Science Degree from the
University of Central Arkansas In August, 1984; completed
requirements for the Master of Science Degree at Oklahoma State
University In July, 1987.

Professional Experience: Teaching Assistant, Department of Computing
and Information Sciences, Oklahoma State University, August,
1984, to August, 1986; Lecturer, Department of Computing and
Information Sciences, Oklahoma State University, August, 1986,
to January, 1987; Software Engineer, Time Management Software,
Inc., Sti I !water, Oklahoma, February, 1987, to present.

