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Abstract. In the past few decades, demand forecasting has become relatively difficult
due to rapid changes in the global environment. This research illustrates the use of the
make-to-stock (MTS) production strategy in order to explain how forecasting plays an
essential role in business management. The linear mixed-effect (LME) model has been
extensively developed and is widely applied in various fields. However, no study has used
the LME model for business forecasting. We suggest that the LME model be used as a
tool for prediction and to overcome environment complexity. The data analysis is based on
real data in an international display company, where the company needs accurate demand
forecasting before adopting a MTS strategy. The forecasting result from the LME model is
compared to the commonly used approaches, including the regression model, autoregressive
model, times series model, and exponential smoothing model, with the results revealing that
prediction performance provided by the LME model is more stable than using the other
methods. Furthermore, product types in the data are regarded as a random effect in the
LME model, hence demands of all types can be predicted simultaneously using a single LME
model. However, some approaches require splitting the data into different type categories,
and then predicting the type demand by establishing a model for each type. This feature
also demonstrates the practicability of the LME model in real business operations.
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1. Introduction

Nowadays, companies provide a large variety of product to satisfy diversified cus-
tomer needs. These companies receive customer orders for various types of prod-
ucts, where each order is low volume. This leads to production in the manufacturing
process featuring high variations and low volumes (high-mix low-volume). Conse-
quently, the order commitment task becomes more challenging, such as demands for
shortened production lead times, diverse customer requirements and more frequent
customer orders. Historically, companies usually have a small proportion of orders
with high-mix low-volumes. Therefore, most of manufactories that receive high-
mix low-volume orders usually adopt a make-to-order (MTO) production strategy.
Adopting a MTO strategy means defining production schedules immediately after
customers have placed an order, which is appropriate for high-mix low-volume or-
ders as such orders include large product variety and a large unpredictable demand
fluctuation, where immediately undertaking all production steps immediately af-
ter the placement of orders means manufacturers avoid risks. However, when a
company receives an increasing number of high-mix low-volume orders, which even
becomes the main business model of the company, adopting the MTO strategy gives
rise to numerous business operation issues, such as long production lead times, fre-
quently changing production lines, high operating costs and low product quality.
All this results in the company developing a usually inefficient complex operation
model. Therefore, if issues emerging from high-mix low-volume orders are not re-
solved, despite growing business revenue, operation costs increase rapidly, product
quality falls, and internal employee and customer satisfaction decreases, resulting in
stagnant business development. A solution to the problems arising from the MTO
strategy for high-mix low-volume orders is to modify the production strategy. What
is evident is that companies have in time changed production strategies from the
MTO to make-to-stock (MTS), meaning that factories are less inclined to completely
adopt an MTO production strategy [2, 52]. A company adopting the MTS strategy
manufactures products and stores them in inventory before customers place orders,
and then ship the stored products once the order is placed. The MTS strategy
avoids the above-mentioned problems stemming from the MTO strategy. However,
the MTS strategy importantly relies on forecasting customer demand which mainly
depends on information and reliable forecasting methods. In recent years, demand
forecasting has become increasingly complex, primarily due to a changing global
economic environment. The underlying reasons for this change can be explained
in terms of the following four dimensions: volatility, uncertainty, complexity, and
ambiguity (VUCA) [26, 37, 47]. Volatility means that new products are rapidly
developed, product lifecycles become shorter, customer preferences quickly change,
and organizations are frequently restructured. Consequently, the value of historical
data diminishes. Uncertainty stems from unknown factors that cause sudden shifts
in demand, and these factors are generally regarded as outliers or interferences.
Complexity means that the interaction of these influential factors cannot be mod-
elled easily, whereas ambiguity refers to fuzzy events and situations that cannot be
quantifiably defined, leading to a loss of key influential factors. These four dimen-
sions have been shown to influence demand forecasting [8]. In summary, in line with
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the impact of economics on demand forecasting, developing a reliable forecasting
method requires analyzing whether historical data can contribute to demand fore-
casting, and whether the effects of influential factors are identifiable. To meet the
requirements of modern forecasting methodologies, this study proposes using the lin-
ear mixed-effect (LME) model for forecasting. The LME model has been extensively
developed and widely applied in various fields. However, no study has used the LME
model to do forecasting in business operations. The LME model is characterized by
the inclusion of temporal factors and explanatory variables as well an analysis of
their respective significance. Accordingly, crucial influential factors can be identified
for the purpose of forecasting demand. These characteristics fulfill the requirements
of modern forecasting methodologies and can be used as the basis by companies to
improve their operation efficiency and develop competitive advantages. The follow-
ing sections explore the influence of the MTO and MTS production strategies on
business operation as well as the role of forecasting in the MTS strategy, provid-
ing a overview of the literature on forecasting methodologies, and summarizing the
strengths and weaknesses of commonly used forecasting methods. In addition, the
proposed LME model and a method for model parameter estimation are introduced.
Subsequently, the order demand for a manufacturer located in Taiwan is forecasted
using product type as a crucial explanatory variable. Specifically, the LME model
is applied to forecast the order demand for 20 individual product types. A one-year
forecast of monthly demand is reported, and three accuracy indices are used to assess
the forecasting ability of the model. The results show that the forecasting ability of
the LME model in empirical analyses is more stable than that of a regression model,
autoregressive model, exponential smoothing model, or a time-series model.

2. Literature review

2.1. Influences of the MTO and MTS on business operations

Modern production patterns primarily involve two main production strategies: the
MTO (based on customer orders) strategy, and the MTS (based on production capac-
ity) strategy [48]. From a customer perspective, one of the competitive advantages
of the MTS strategy is the short delivery time and quick response [44]. Therefore,
identifying the types of products that are specifically suitable for the MTS strategy
or both the MTS and MTO strategies is a favored research topic in management
science [48].

Regarding the influence of the MTO and MTS strategies on business operations,
Hendry and Kingsman [29] showed that the MTS and MTO strategies are mostly
used for manufacturing standard and customized products, respectively. Regarding
the attributes of orders, order demand for MTS products is generally predictable,
whereas for MTO products it is irregular and unpredictable. Concerning production
planning, MTS strategy lines operate according to forecast results, and the produc-
tion line schedule can be adjusted easily. However, the schedule of MTO strategy
lines is determined based on recent order demand, whereas long-term manufactur-
ing schedules are difficult to determine. In terms of product delivery, enterprises
that adopt the MTS strategy can ensure rapid product delivery, thus maintain-
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ing high customer satisfaction. The MTO strategy requires long delivery times,
and enterprises adopting this strategy must communicate with customers to achieve
consensus regarding product delivery time. Concerning product price, compared
with the prices of products produced adopting the MTO strategy, the prices of
MTS-produced products are relatively more stable. Soman, van Donk, and Gaal-
man [48] indicated that the MTO strategy is effective for handling orders requesting
high-mix customized products; production planning for the MTO strategy must
prioritize meeting order demands, while production effectiveness is determined ac-
cording to crucial elements in the orders (e.g., the expected delivery volume and
number of delayed delivery days). The goal of a company that manufactures MTO
products is to shorten product delivery times; production efficiency emphasizes the
importance of capability planning, orders that are lost due to problems with manu-
facturing processes, and on-time product delivery. By contrast, the MTS strategy is
effective for handling uniform product specifications and less customized products,
where production planning is determined based on product demand forecasting and
production effectiveness is production-oriented. Therefore, the goal of a company
manufacturing MTS products is to enhance product availability, and its production
efficiency emphasizes the importance of inventory policy, goods inventory, one-off
or batch production, and accurate demand forecasting. Rajagopalan [45] indicated
that inventory costs are slightly higher for the MTS strategy than for the MTO
strategy, particularly for one-off and batch production. In summary, the MTS strat-
egy relies heavily on the accuracy of product demand forecasting. The advantages of
the MTS strategy, including short delivery times, manageable long-term manufac-
turing schedules, and stable product prices, is realized due to accurate forecasting.
In addition, accurate forecasting optimizes inventory levels; therefore, companies
applying the MTS strategy control inventory costs in an effective manner. Some
researchers have explored the inventory policies and material control mechanisms in
the MTO strategy [16]. The forecasting method proposed in this study provides a
relatively accurate basis for forecasting random customer orders (demand) for the
MTS strategy.

2.2. Forecasting methodology

Two main types of forecasting methodologies exist: (1) statistical methods; and (2)
data mining and machine learning [12]. Both types of forecasting methodologies are
aimed at identifying the relationship between influential factors (independent vari-
ables) and research variables (dependent variables), and identifying the effects of the
influential factors on research variables [8]. These two methodologies involve distinct
approaches to interpreting analysis models. The statistical methodol- ogy is based
on data derived from a specific mathematical model as well as unobservable errors.
The machine-learning methodology avoids fitting data to a specific model and devel-
ops algorithms that are suitable for various types of data. These two methodologies
differ in their strengths and characteristics [12]. The statistical methodology uses
the probability distribution of errors to infer the significance of the influential factors
in a model. The reliability of inferences correlates positively with the mathematical
model. The machine learning methodology uses the size of forecast errors as a basis
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Forecasting Can handle Can include Analyzing the importance
method time-correlated influential of influential factors

data factors (e.g., P -value)
Linear mixed-
effect model

© © ©

Exponential
smoothing model

© 4 4

ARIMA © 4 4
Regression model 4 © ©

Table 1: Characteristics of frequently-used forecasting methods. (©: yea; 4: yes following modi-
fication by other studies)

for selecting the optimal forecasting model. Several typical forecasting methods are
introduced here with the characteristics shown in Table 1. An exponential smooth-
ing model was proposed by Holt [32] and the statistical theoretical foundation for
this model was established by Muth [40]. This method involves using a demand
observation and predictive value in the current period to determine the predictive
value for the subsequent period by using weighted mean. The methodology for ex-
ponential smoothing has been developed in recent years to incorporate the effect of
influential factors on the accuracy of demand forecasts [8, 24, 50]. Wang [50] used a
model selection method where crucial influential factors were included in the selected
model, and nonsignificant factors were removed to avoid over-fitting the model.

The time-series model was first developed in the nineteenth century, and past studies
on the model were then systematically compiled by Box and Jenkins [10] into a book.
A time-series autoregressive integrated moving average (ARIMA) model integrates
an autoregressive process and moving average process after obtaining a finite differ-
ence from time-series data. The ARIMA model is used to estimate the correlation
parameter between the time points of observed values, and the estimated parameter
values can then be used for forecasting. Subsequently, Box and Tiao [11] added other
time-series influential factors to the ARIMA model. Pankratz [42] called this model
the dynamic regression model. The regression model is a type of linear model most
frequently mentioned in statistical analyses. The regression model assumes that re-
search variables and influential factors are linearly related, and can thus be used to
explore the effect of influential factors on research variables. Furthermore, the re-
gression model assumes that observation values are mutually independent; hence, it
is applicable for analyzing data containing mutually independent observation values.
If the model is used to analyze time-correlated data, i.e., the observation values are
correlated over time, then unbiased but invalid model coefficient estimators can be
obtained. Consequently, the standard errors of the model coefficient estimators are
incorrect, and problems regarding statistical testing within the models arise, such as
whether the model coefficients are significantly greater than 0, whether the models
exhibit explanatory power, and whether the predictive intervals are reliable in fore-
cast analysis [27, 18]. The LME model is considered as an extension of the linear
model. The LME model adds random effects to the linear model which otherwise
only has fixed effects. Hence, a model that has both fixed and random effects is called
an LME model. This specific model is typically used to describe the relationship be-
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tween research variables and categorical factors with correlated observation values.
A characteristic of the LME model is that observation values at the same categor-
ical level have identical random effect values for de- pendent variables; observation
values at different levels have distinct values of a random effect. This characteristic
explains the correlation between observation values at an identical level. Therefore,
the LME model differs considerably from the regression model. The LME model can
be applied to data where observation values are correlated (e.g., longitudinal data,
repeated measures data, and multilevel data). However, the regression model can
only be applied to data where the observation values are mutually independent. In
industrial operations, the pattern of data observations is often time-correlated. For
example, when forecasting monthly product demand or monthly inventory levels,
the observa- tion values are correlated over time. Under such circumstances, the
LME model is more accurate than the regression model for identifying statistically
significant factors. The ARIMA model is one of the most often used sales forecasting
models for a variety of areas [23, 33]. Exponential smoothing is a nonparametric
method and was found to perform well for outliers [22]. The regression model is
one of the main forecasting techniques [28]. These three methods are widely ap-
plied in industries that demand forecasting [15, 25, 6, 7, 20]. However, in the past
three years, the LME model has been broadly applied in various fields, such as the
timber industry [30], medicine [9, 49], and ecology [31], and to identify crucial influ-
ential factors. In addition, numerous studies have established models for forecasting
[38, 46]. In industrial engineering and management science, no study has used the
LME model to make predictions using time-correlated data or to identify key influ-
ential factors [1, 3, 18, 21]. Therefore, in this study, an LME model was applied to
business operations to analyze the importance of influential factors, and to forecast
product demand. In addition, the performance of the LME model was compared
with the regression model, autoregressive model, times series model, and exponential
smoothing model, which are the research contributions provided by this study.

3. Linear mixed-effect (LME) model

According to parameter attributes, two types of effects exist in a LME model: fixed
and random effects [43, 51]. In linear model, the parameters are all fixed values
and therefore its corresponding covariates are referred to as fixed-effect parameters.
The fixed effect describes the true value of the coefficient for an entire population,
or the true value of the coefficient for a factor that can be repeatedly tested under
identical conditions. If a factor in a model exhibits a random effect, then the factor
is sampled from an entire population. The random effect is a coefficient of the factor;
moreover, the coefficient is a random variable and not a fixed value. The following
section introduces the LME model developed by Laird and Ware [36], and describes
how the research variables are forecasted. The following is an LME model developed
by Laird and Ware [36], and expresses as follows:

yi = Xiβ +Zibi + εi, i = 1, . . . ,M (1)

bi ∼ N(0,Ψ), εi ∼ N(0,Λi), (2)
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where bi is a matrix that is independent of εi (index i denotes the ith group at
a single level), yi contains ni observation values for the ith group, M denotes the
number of groups, β denotes a p-dimensional vector for the fixed effect, bi denotes
a q-dimensional vector for the random effect, Xi denotes an ni × p design matrix
for the fixed effect, Zi is an ni × q design matrix for the random effect, and εi
denotes an ni-dimensional within-group random error term. The variable εi obeys
a multivariate normal distribution with an expected value of 0 and a covariance
matrix of Λi, and bi obeys a multivariate normal distribution with an expected
value of 0 and a covariance matrix of Ψ. The model assumes that εi and εj are
mutually independent (i 6= j); in addition, εi and bi are mutually independent.
Therefore, considering Models (1) and (2), the covariance matrix of the within-group
observation values yi is expressed as follows:

Vi := V ar(yi) = V ar(Zibi) + V ar(εi) = ZiΨZ
T
i + Λi, (3)

where the nondiagonal elements of Vi are not required to be 0. Therefore Vi, the
covariance matrix of yi, is derived from (1) and (2), which allows the existence of the
correlation between observation values within a group. This is the major difference
between LME model and linear model. The feature of the covariance matrix (3)
is that observation values of the different groups are independent of each other,
and the within-group observation values are intercorrelated. The most often used
methods to estimate the parameters in the LME model are the maximum likelihood
(ML) and restricted ML (REML) estimation methods. Regarding the ML method,
the estimates of ML estimators are those that reach the maximum value of ML
functions. The REML estimate of β, β̂, is obtained by applying an iterative method
to a restricted natural-logarithm ML function.

lREML = −1

2

(
ln(2π)(

∑
i

ni − p) +
∑
i

ln(det(Vi))

+
∑
i

(yi −Xiβ̂)TVi(yi −Xiβ̂) +
∑
i

ln(det(XT
i ViXi))

)
. (4)

By comparison, the REML method is aimed at identifying the estimators that exhibit
unbiased characteristics. Therefore, estimators obtained using the REML method
from (4) are unbiased, whereas those derived using the ML method could be biased
or unbiased. Therefore, most researchers prefer the REML method [43, 51]. We
also use the REML method in this study. After the explanatory variables Xnew

i and

Znew
i have been obtained, the estimates of β and bi (i.e., β̂ and b̂i) obtained from

REML method can be used to forecast the research variable yi. The predictive value
is as follows:

ŷi = Xnew
i β̂ +Znew

i b̂i. (5)

4. A case study

This study adopted a single-level LME model to forecast product demand. In the
case study, the sample was acquired from a leading professional industrial LCD/OLED
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Number of Total product Average product demand product
Year orders demand (piece) (piece) per order types
2011 12,911 3,601,903 278.98 2,714
2012 17,961 8,342,283 464.47 3,514
2013 20,164 6,720,794 333.31 4,541
2014 22,591 8,062,995 356.91 5,823
2015 22,362 9,045,073 404.48 5,467

Table 2: Number of orders and product demand during year 2011∼2015

display manufacturer in Taiwan. This manufacturer produces products that are crit-
ical components of various devices used in daily life and are applied in various in-
dustries. Moreover, the company has an international customer base. Table 2 shows
the number of orders, total product demand, average product demand per order,
and product types from 2011 to 2015. Until 2015, the manufacturer produced more
than 5,000 product types, and the average quantity of products required in an order
was approximately 400. Thus, the manufacturer is considered a suitable example
of a business that produces a diverse combination of product types, and shows that
the manufacturer receives a large number of high-mix low-volume orders.

Ranking of standard goods 
(according to the total frequency of orders from 2013 to 2015)
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Figure 1: The plot shows that the accumulated percentage of the maximum total number of orders
from 2013 to 2015 is less than the turnover of standard products in 2015. The first 20 products
accounted for approximately 25% of the turnover from standard products. The numbers in green
denote the number of orders for standard products in 2015 corresponding to the horizontal axis.

A characteristic of high-mix low-volume manufacturers is that they typically com-
mence produc- tion only after receiving a customer order. This production pattern
is typical of the MTO strategy, which is adopted to serve customers of this manufac-
turer. In recent years, the manufacturers profits have decreased despite increasing
revenue and market share. Therefore, the manufacturer planned to change its pro-
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duction strategy by adopting the MTS strategy for some product types in order
to increase batch production capacity, reduce production costs, and improve pro-
duction efficiency. In addition, the manufacturer believed that adopting the MTS
strategy would enhance customer satisfaction by ensuring rapid lead time of pro-
duction, thereby providing a competitive advantage. Thus, the ability to accurately
forecast product demand is important. This study selected the top 20 standard
products most frequently ordered between 2013 and 2015 by customers of the sam-
ple manufacturer with the intention of implementing the MTS strategy. As shown
in Figure 1, these 20 standard products accounted for 25% of the manufacturers
turnover from standard products in 2015, with 86 orders placed in the same year.
After implementing the MTS strategy, the manufacturer planned to run production
of each product type once per month. Accordingly, the production frequency, cost
of handling orders, and frequency of changing production lines was reduced. Thus,
the long-term production capacity plans are implemented to maximize the benefits
of producing a high volume of these 20 products with fewer runs.

4.1. Data structure

The data structure comprises 20 types of standard products. Data on monthly
product demand for each product type were collected in the period from January
2009 to December 2015. Historical data prior to 2014 were used to estimate model
parameters, and the model was used to forecast product demand for the period
January-December 2015. Not all of the 20 products were manufactured from 2009.
The historical data used to estimate model parameters comprises 1295 observation
values (64 observation values on average for each product type). The product life-
cycle varied by year, and the product demand varied by month. Therefore, year
and month were crucial predictors. For each type of product, the monthly product
demands in each month were related. In this study, the explanatory variables (year
and month) were added to the LME model to analyze the monthly product demand
data. Regarding product sales, the product demand varied by product type. Ac-
cordingly, product type was regarded as a crucial explanatory variable as it had an
influence on forecasting product demand. In this study, based on the characteristics
of the LME model, we used product type as a random-effect term. By doing so,
we are able to forecast the demand for each product type in one LME model. Un-
like the LME model, some of the methods we compared in this paper did not have
a universal model to account for the differences between 20 unique product types.
Therefore, for these forecasting methods, the data are divided into several data sets
based on product type, and a model is constructed for each partitioned data in order
to forecast the demand for each product type. This approach substantially reduces
the sample size and the forecast accuracy.

4.2. Model development

Product demand differed by product type, hence we assumed the demand for each
type of product to be mutually independent. In the following model, we consider
two main covariates, time and product types, which should correlate with the ten-
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dency for product demand. We separate the time effect into year and month effects.
The year effect is used to account for growth of demand and the month effect for
the seasonal tendency of demand. Product types are used to account for demand
differences in every product type. In Model (1), which is the single-level model, the
random effect was set as the product type given that products of different product
types have different product demands, which in turn accounts for the effect variation
in product types. The model is expressed as follows:

yi = β0 + β1(year− 2009) + β2(year− 2009)2 + month× β3 +

bi0 + bi1(year− 2009)2 + εi (6)

where yi is a vector that denotes the monthly product demand (the vector length is
equal to the data quantity for product i); β0, β1, β2, and β3 denote the intercept,
year, year-squared, and month for the fixed-effect term; and bi0 and bi1 denote the
intercept and year-squared for the random-effect term. To account for the growth
of demand, year was regarded as a continuous variable with 2009 used as the base-
line, and a year-squared covariate is included allowing the tendency of demand to
be quadratic, not restricted as linear. To account for the seasonal tendency of de-
mand, month was regarded as a nominal categorical variable, which accounts for
the busy and slack seasons of product demand. The intercept is set with random-
effect in product types, which gives each product type an intercept value and thus
accounts for the average difference in demands between product types. We also set
the year-squared covariate in the random-effect as this allows each product type to
have a unique quadratic demand tendency, enabling the model to reflect the current
situation more accurately. In expressing Equation (1) as Model (6), the fixed-effect
explanatory variable Xi is a matrix comprising a column of 1’s vector for the inter-
cept, year, year-squared, and month covariates. Month was a categorical variable;
therefore, the month term in Model (6) was encoded as a dummy variable. The
dummy variable for month had 11 indicator variables with a value of 0 or 1, and
the total product demand in January is used as the baseline. Thus, the expression
β = [β0, β1, β2,β

T
3 ]T is a 14 × 1 vector, where β3 is the coefficient of the dummy

variable for the month covariate and has 11 elements. The explanatory variable Zi

in the random-effect explanatory variable comprised the intercept and year-squared
covariate, where the coefficients are a 2 × 1 vector expressed as bi = [bi0, bi1]T . In
Model (6), the year-squared covariate in the random-effect explanatory variable was
also a part of the fixed-effect explanatory variable, and was used to account for the
fact that the expectation of bi was probably unequal to 0; thus, the assumption that
bi in (2) was equal to 0 was reasonable. To forecast the monthly product demand
for 2015, 2015 was used as the value for the year and year-squared covariates. Both
covariates and the target month were input into the explanatory variable to form
Xnew

i and Znew
i . Subsequently, β̂ and b̂i in (5) were used to obtain the forecasted

value ŷi.
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4.3. Other forecasting methods

Comparing forecasting methods is crucial in methodological studies [41, 34, 13, 19, 4].
The model proposed in this study was compared with commonly used statistical
forecasting methods, and we incorporate the two main covariates, time and product
types, into the following models. We begin with the following regression model:

Yj = α0 + α1(yearj − 2009) + α2(yearj − 2009)2 + month×α3

+productType×α4 + (yearj − 2009)2 × productType×α5 + δj (7)

where α0, α1, α2, α3, α4 and α5 are regression coefficients and α3, α4 and α5 denote
the coefficients of the dummy variables for the covariates month, productType and
the intersection of year square and productType, respectively, and δj is the error
term. Model (7) contains year and year-squared covariates to account for the annual
growth trend, and contains the interaction effect of product type and year square
to account for the unique trend for each product type. The product type nominal
categorical effect is included to account for the baseline differences between product
types. The month nominal categorical effect is included as well, to account for the
seasonal tendency of demand. Model (7) (i.e., the regression model) is designed
to have as much covariates information as Model (6) (i.e., the LME model). The
dummy variable for 20 product types, productType, had 19 indicator variables to
summarize the information in product types, which can correspond to the random-
effect intercept term in Model (6). The intersection covariate, (yearj − 2009)2 ×
productType, is designed to correspond to the year-square random-effect in Model
(6). Therefore, Model (7) can be compared with Model (6) to examine differences
when some covariates are assumed to be random-effect in Model (6). A total of 1295
observations of monthly product demand (Yj , j = 1, . . . , 1295) were used to estimate
the coefficients in Model (7) and to obtain the significance of the coefficients with P -
values. In the results section, Models (6) and (7) are compared for forecast accuracy
and the P -values. We also use the autoregressive model to compare with the LME
model. Given that the error term in this model is autoregressively correlated and
products in different product types should be independent, we build one product type
with one autoregressive model. The data were divided into 20 data sets according
to each product type, and yielded an average of 64 samples for each type of product.
Hence each product type has its own regression coefficients, and the product type
effect does not need to be included in this model. For comparison with Models
(6) and (7), we include year, year-squared and month effects into this model. The
meaning of these effects are the same as in Models (6) and (7), except that they
are built for each product type separately. The autoregressive model is presented as
follows:

Yj = ᾱ0 + ᾱ1(yearj − 2009) + ᾱ2(yearj − 2009)2 + month× ᾱ3 + δ̄j , (8)

where δ̄j is structured as AR1 correlated errors. Model (8) is established for each
of the 20 product types and therefore each product type has its own estimated
coefficients for intercept, year, year-square and month covariates. Hence, applying
Model (8) to each of product type can generate more covariate information than
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that in Models (6) and (7) where the coefficients of year and month covariates are
assumed to be the same for all product types. Next, the model proposed in this
study was compared with the exponential smoothing model, in which the product
demand observation values Yt’s and their predictive values Ft’s were used to obtain
the predictive values for the subsequent period by calculating a weighted mean. The
forecast formula is as follows:

Ft+1 = αYt + (1− α)Ft

where α is the weighted coefficient. To accurately forecast the monthly product
demand in this case, we adjusted the exponential smoothing model to account for two
influential factors (i.e., month and product type). The data were divided into 20 data
sets according to each product type, and each data set was divided into 12 subsets
(one for each month). For each product type, no more than six observations from
each month in the historical data were used. The pre-2014 monthly product demand
data were used to forecast the product demand for the corresponding months in 2015.
The weighed coefficient was α = 1

2(N+1) , where N is the number of observations for

a month (N ≤ 6). Finally, the model proposed in this study was compared with a
seasonal time-series model; specifically, the autoregressive integrated moving average
model (denoted by SARIMA), which was considered to be a suitable model given
that the data were not nonstationary time-series data. The mathematical model
for SARIMA(p, d, q)(P,D,Q)s is expressed as follows: p, d, and q are the order of
autoregressive process, degree of differencing, and the order moving-average process
in ARIMA, respectively; s is a seasonal parameter; and P , D, and Q refer to the
autoregressive, differencing, and moving average terms for the seasonal part of the
ARIMA model:

(1−
p∑

i=1

φiB
i)(1−

P∑
i=1

ΦiB
s×i)(1−B)d(1−Bs)DYt

= (1 +

q∑
i=1

θiB
i)(1 +

Q∑
i=1

ΘiB
s×i)ξt (9)

where φi is the ith order autoregressive process coefficient, θi is the ith order moving-
average process coefficient, d is degree of nonseasonal differencing, Φi is the ith
order seasonal autoregressive process coefficient, Θi is the ith order seasonal moving-
average process coefficient, D is the degree of seasonal differencing, B is a backward
shift operator, and ξt is a normally distributed confounding term. Longitudinal data
were collected for each of the 20 product types. A time-series model was established
for each of the 20 product types. In this case, the month was regarded as a crucial
influential factor for forecasting, and thus the seasonal parameter s was set to 12,
which indicates the existence of correlations in the data for every 12 month. The
samples were categorized by product type, yielding an average of 64 samples for
each type of product. The parameters in Model (9) were determined based on the
characteristics of an autocorrelation function, a partial autocorrelation function, and
an extended autocorrelation function. Finally, the SARIMA(2, 0, 2)(1, 0, 1)12 model
was used to forecast the product demand for each product type.
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4.4. Results

In this study, the mean of absolute error (MAE), mean of absolute percent error
(MAPE), and root-mean-square error (RMSE) were used as accuracy indices. The
definitions for these accuracy indices are provided as follows:

MAE =
1

n

n∑
t=1

|Ft − Yt|

MAPE =
100

n

n∑
t=1

|Ft − Yt
Yt

|

RMSE =

(
1

n

n∑
t=1

(Ft − Yt)2
)0.5

where n denotes the number of months to be forecasted (n = 12 in this case), Yt
represents the true product demand for month t of 2015, and Ft is the forecasted
product demand for month t. The LME model was compared with that in the
regression model. Since the random-effect terms in the LME model may correspond
to the intersection effects in the regression model, we only compare the other fixed-
effects appearing in both the LME model and the regression model (Table 3).

Linear mixed-effect model Regression model

Explanatory
variable

Cf. S.e. P -value Cf. S. e. P -value

The intercept term 39.46 320.14 .9019 -544.04 439.33 .2158

(Year-2009) 800.55 133.52 .0000 *** 828.02 134.28 .0000 ***

(Year-2009)2 -99.97 25.82 .0001 *** -102.42 36.11 .0046 **

February 206.41 283.03 .4660 214.72 283.04 .4482

March 736.88 281.57 .0090 ** 742.45 281.56 .0085 **

April 753.30 281.56 .0076 ** 755.41 281.55 .0074 **

May 536.51 280.89 .0564 - 547.05 280.90 .0517 -

June 253.56 281.62 .3681 266.27 281.63 .3446

July 591.73 271.46 .0295 * 605.51 271.49 .0259 *

August 91.35 271.48 .7366 105.46 271.53 .6978

September 711.75 271.46 .0088 ** 727.24 271.49 .0075 **

October 297.69 271.05 .2723 313.23 271.09 .2481

November 473.91 272.52 .0823 - 489.27 272.56 .0729 -

December 360.30 270.62 .1833 380.94 270.74 .1597

Cf.=Coefficient, S. e.=Standard error

Table 3: The linear mixed-effect model versus the regression model. (“-”: P -value ≤ .1; “*”:
P -value ≤ .05; “**”: P -value ≤ .01; “***”: P -value ≤ .001)

As shown in Table 3, the absolute values of the coefficients for the common effects
(not including intercept term) in the LME model are smaller (i.e., close to 0) than
all of those in the regression model. In addition, the P -values for all of the common
effects in the LME model are greater than those in the regression model except
for the year-square term, and the standard errors for all of the common effects in



370 Yu-Pin Liao and Shin-Kuan Chiu

the LME model are smaller than the regression model except for the March and
April terms. However, the regression model is suitable for data containing mutually
independent observation values. In this case, the observation values for product
demand were correlated over time, thereby violating the assumption of the regression
model. Therefore, the standard errors and P -values for the regression model (Table
3) are not valid estimates [27, 18], whereas those for the LME model are more
reliable.

MAE MAPE RMSE

Mean SD Mean SD Mean SD

Linear mixed-effect model 1412.71 1500.04 152% 150% 1849.42 1919.86

Regression model 1421.39 1397.85 191% 286% 1845.34 1805.35

Autoregressive model 1568.93 1569.31 242% 286% 1965.46 2123.27

SARIMA(2, 0, 2)(1, 0, 1)12 1385.85 1697.60 212% 239% 1801.69 2177.72

Exponential smoothing model 1565.54 1547.88 201% 177% 2003.87 2193.16

Table 4: Accuracy indices for the five forecasting models

Table 4 shows the accuracy indices for the five forecasting methods. Given that
this case involved three accuracy indices for each of the 20 product types, Table 4
presents the mean and standard deviation (SD) of the three accuracy indices over the
20 products. As shown in Table 4, the mean values of MAE, MAPE, and RMSE for
the LME model and the regression model are smaller than those for the exponential
smoothing model, and the autoregressive model. The SD values for the LME model
and the regression model are smaller than those of the other three models, except
that the SD value of MAPE for the regression model is the largest value among the
models. Although SARIMA(2, 0, 2)(1, 0, 1)12 has the smallest mean values in MAE
and RMSE, it also has larger SD values. This result indicates that, in this case,
the performance of the LME model is generally more stable than the other four
methods.
The model comparison is shown in Table 5. Since product type and month ef-
fects are regarded as crucial influential factors in this empirical study, we have to
consider these effects into models. For the models that cannot add these effects
directly, we divided dataset into several parts so that the forecasts will depend on
these two factors. Then for each product type, the pre-2014 monthly data were used
to forecast the monthly product demand for 2015. In this manner, the exponen-
tial smoothing model need divide data into 20 data sets according to each product
type, and each data set was divided into 12 subsets for each month, and applied
exponential smoothing model to the 240 data sets, and therefore used 240 models.
Hense, less than six observations from the historical data were used in the exponen-
tial smoothing model (for a given month, there were at most 6 sets of data from
2009 to 2014); consequently, the risk of inferential error was high because only a
few observations were involved in the prediction. Regarding the seasonal time-series
model SARIMA(2, 0, 2)(1, 0, 1)12, since the month effect can be added into the sea-
sonal parameter, we divided the data into 20 data sets according to product type for
adding the product effect. For each product type, 64 observations were used on aver-
age. The SARIMA(2, 0, 2)(1, 0, 1)12 model was used to forecast the product demand
for each product type by considering the correlation between the data for every 12
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month. Since the autoregressive model can add the month effect into covariates, it
applies the 20 data sets divided by the product type to the autoregressive model for
jointing the product type effect. Accordingly, although such a procedure may take
into account the various monthly effects for various product types and the interaction
between product type and month, it reduces the number of data observations in the
prediction. In the LME model and the regression model, product type and month
effects are incorporated into covariate variables, and 1295 data observations were
used to estimate the coefficients in the models. The number of data observations
used in both models was considerably more than that used in the autoregressive
model, the exponential smoothing and the time-series models, which might explain
why the LME model and the regression model produced lower forecast errors. Fur-
thermore, in the LME model, we took into consideration the random effects for all
effects (including month and year terms) and applied the likelihood ratio test to ex-
amine whether these terms are significant for inclusion into Model (6). The results
showed that only the random effects of the intercept and year-squared terms were
significant, and the random effects of the month and year terms did not significantly
increase the explanatory power of the LME model. Therefore, the random effect of
the month and year terms were not included in Model (6). This testing result is also
due to the fact that we did not include the intersection effect between the product
type and both the month and year terms in Model (7). Therefore, Model (7) can be
compared with Model (6) under a similar covariate information condition.

Number of
models

Number of
samples

The effect of
product type

The effect
of month

The effect of
interaction

Linear mixed-
effect model

1 1,295 © © 4

Regression
model

1 1,295 © © 4

Autoregressive
model

20 ≤ 72 © © ©

SARIMA
(2, 0, 2)(1, 0, 1)12

20 ≤ 72 © © ©

Exponential
smoothing model

240 ≤ 6 © © ©

Table 5: Comparison of the five models. The interaction represents the interaction term between
product type and month. (©: under consideration; 4: removed because of nonsignificance)

5. Discussion and conclusion

In this paper, we propose using the LME model as a vehicle for forecasting in busi-
ness operations. In summary, when applying the LME model, all of the historical
data were used in one model to predict the monthly product demand for each prod-
uct type, and to avoid problems associated with dividing data into smaller data
sets. In this case study, the LME model enables manufacturers who adopt the
MTS strategy to predict the amount of required inventory. Furthermore, the model
is more stable for forecasting product demand than the regression, autoregressive
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time-series, and exponential smoothing models. Similar to the linear model, the
LME model is typically used to examine the relationship between explanatory and
research variables. Unlike the linear model, which assumes the observation values
to be mutually independent, the LME model is suitable for examining correlated
data. Because the data pertaining to business operations are generally correlated
over time, whereas the linear model is limited in its applicability. Regarding the lin-
ear model with specific autocorrelated errors, there is a difficultly in using existing
statistical software to arbitrary model the structure of an error covariance matrix
that matches the rationality of real data. Take the data studied in this paper as an
illustration. The observation values within the same product type can be modeled
as AR1 error structure and the values between product type should be modeled as
independent. This type of autocorrelative error structure is difficult to treat in a
linear model, even when using the existing popular statistical software. This is the
main reason why we divide the entire data into 20 data sets and fit the AR1 error
model on each data set because, by doing so, the problem where observation values
between product types are to be modeled as independent is addressed. By contrast,
the LME model was initially developed to handle correlated data, and is used to
model error structures that are more general than in the regression model. Other
methods such as time-series and exponential smoothing models formulate the cor-
relation between observation values as parameters, and then estimate parameters
using data and forecast response variable using estimates. When time-series and
exponential smoothing models were first developed, these methods were not devised
to analyze relationships between explanatory and dependent variables. Wang [50]
proposed an exponential smoothing model that included explanatory variables to
explore the association of research variable. Given that this method is a relatively
new development, most statistical software packages have not yet incorporated the
related functions, hence this method has not become widely used. By contrast, the
LME model was developed more than 30 years ago, and related functions have been
included in various statistical software packages. Using the models in this paper
to forecast product demand may yield negative predictive values. Negative values
are usually obtained from historical data where product demand is zero or very
low. To prevent this from happening, the predictive value was truncated at 0 (i.e.,
Ft = max(Ŷt, 0), where Ŷt denotes a predictive value derived from any method, and
Ft denotes an actual predictive value obtained from any prediction method). In
other words, if Ŷt > 0, then Ft = Ŷt; if Ŷt ≤ 0, then Ft = 0. Some link functions
in generalized LME models can deal with cases where dependent variables are re-
stricted to Yt ≥ 0 [35]. However, the prediction intervals for the random-effects in
the LME model are well developed [17, 39, 5, 14, 53]. It is useful to applying the
prediction intervals in business operations is useful in knowing whether a random-
effect exists. Implementing an MTS strategy enhances the competitive advantage
of a manufacturer provides the ability to rapidly satisfy product demand, thereby
reducing internal and external transaction costs in handling orders. Employing this
strategy also enables high batch centralized production, reducing production costs
and assisting manufacturers in negotiating material costs with suppliers. Given that
this approach gives short delivery times, customer satisfaction is improved, thus at-
tracting potential customers who need products im- mediately. Consequently, this
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leads to incrased market share. The MTS strategy also improves the usage rate of
production equipment. Companies that adopt an MTS strategy require an accu-
rate forecasting method to realize these advantages. This study has proposed an
accurate forecasting method for deter- mining the stock levels a company requires
when adopting the MTS strategy, a topic that has seldom been discussed in studies
on the MTS strategy. Using an MTS strategy involves the potential risk of in-
creasing inventory costs. Therefore, ther recommendation for future studies is to
adequately apply the strengths of the LME model (e.g., accurately forecasting de-
mand for multiple product types in one go) when forecasting. Future studies might
consider investigating whether the forecasting intervals of the LME model can be
coupled with various inventory strategies to assist manufacturers in adopting the
MTS strategy in order to develop an optimal business operation model in terms of
optimal inventory time points and minimal inventory costs. In addition, to remain
competitive, companies should improve their organizational capability to raise the
threshold at which competitors develop similar operating models. Future studies
might also explore the benefits that the MTS strategy involving an LME model
brings to the various departments of an enterprise and the effects of such a strategy
on customer satisfaction and loyalty.
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