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Abstract

This paper reviews the development of agent-based (computational) economics (ACE) from an

econometrics viewpoint. The review comprises three stages, characterizing the past, the present,

and the future of this development. The first two stages can be interpreted as an attempt to build

the econometric foundation of ACE, and, through that, enrich its empirical content. The second

stage may then invoke a reverse reflection on the possible agent-based foundation of econometrics.

While ACE modeling has been applied to different branches of economics, the one, and probably

the only one, which is able to provide evidence of this three-stage development is finance or

financial economics. We will, therefore, focus our review only on the literature of agent-based

computational finance, or, more specifically, the agent-based modeling of financial markets.

1 Introduction

1.1 A three-stage development

In recent years, we have witnessed increased interaction between agent-based computational

economics (ACE) and econometrics1. In this paper, we review the relationship between the two.

While the link can be bi-directional, as we shall see in this survey, most of the work developed so far

follows the direction from econometrics to ACE and has gradually consolidated ACE by shaping its

econometric foundation. However, what is perhaps equally important and interesting is the reverse

direction, that is, the potential influence of ACE on econometrics. One issue that has long concerned

econometricians is the problem of aggregation over individuals, in particular when these individuals

are heterogeneous and their composition is dynamically changing (Stoker, 1993; Gallegati et al.,

2006). ACE, as a micro–macro model, serves as an ideal approach to studying this problem.

This survey article is, therefore, divided into three parts, which correspond to a three-stage

development of the literature. The first two stages, namely, the econometric influence on ACE,

examine the use of econometrics in ACE modeling. The first stage, entitled ‘presenting ACE with

econometrics’, uses econometrics to analyze the data generated from the ACE models, and see

whether they are able to display a number of frequently observed empirical features, that is, to

replicate or grow ‘stylized facts’. At this stage, efforts are made to fine-tune the ACE model by

matching the statistical properties of the real data with those of the artificial data to a qualitative

precision. For example, if the real data exhibit the feature of volatility clustering, can a specific

ACE model with a proper design generate data sharing the same feature? As we frequently

experienced, there may be many designs, which are capable of featuring the same stylized fact;

however, attempts to distinguish them were only made at the later (second) stage.

1 In fact, this trend is generally shared in other social sciences to which the agent-based approach is applied

(Janssen & Ostrom, 2006).



The concept of ‘optimizing’ ACE models with real data characterizes the development of the

next stage, which is entitled ‘building ACE with econometrics’. In this stage, econometrics is used

directly or indirectly, top-down or bottom-up, to estimate or calibrate ACE models. An attempt is

made to construct ACE models that can replicate the stylized facts to a degree of quantitative

precision, and, even more ambitiously, use ACE models to forecast the future.

The last part of the paper examines the above link in the reverse direction, that is, by looking at

the influence of ACE on econometrics. In this third stage, entitled ‘emerging econometrics with

ACE’, econometrics is still applied to the artificial data generated by ACE; however, instead of

replicating the macroscopic structure, we examine whether the macroscopic structure described by

the econometric results from the artificial data can be, in a sense, consistent with the micro-structure.

This brings us to the elusive quest for a representative agent and the associated economic conditions

for consistency in aggregation, an issue well discussed in both economic theory and econometrics

(Kirman, 1992; Hartley, 1997; Casella et al., 2007).

However, the three-stage development sketched above is not generally shared by all economic

research areas. The one, and probably the only one, which can demonstrate the three-stage

development is finance or financial economics. This is because, over the last decade, the research

area referred to as agent-based models of financial markets has grown very rapidly, and, in the

meantime, financial econometrics has also experienced much prosperity. The two together happen

to provide an excellent opportunity for us to examine the collaboration between ACE and

econometrics. In this survey, we, therefore, review the three-stage development exclusively within

this background. To make this focus sharp, we shall use the abbreviation ACF (agent-based

computational finance), instead of ACE, when this specificity is clear.

1.2 Organization of the survey

Our survey mainly focuses on the concepts and the associated key questions appearing in each

stage. For the first stage of the development, the question to address, given a set of stylized facts,

concerns the elements that are needed to make an ACF model able to replicate those stylized

features. By and large, we inquire how much of the causes of the stylized facts we can attribute to

the heterogeneity and bounded rationality (learning) of agents, the two pillars of ACE2. This

naturally leads us to a taxonomy of ACF models based on the design of agents, also known as

agent engineering3.

In this paper, we consider two different designs of financial agents. The first design is referred to

as the N-type design (Section 2.1), whereas the second design is referred to as the autonomous-agent

(AA) design (Section 2.2). The most familiar example of the former is the fundamentalist-chartist

model, and the most often cited example of the latter is the SFI (Santa Fe Institute) artificial stock

market. The latter is more complex than the former in many ways, including the decision rules, the

adaptive behavior, and the degree of heterogeneity among agents.

The two designs can be considered as two opposite positions in a spectrum as shown in Figure 1,

which arranges the ACF models from simple to complex. This incremental process in design

makes it easier for us to address the need for complex models. Specifically, Section 3 will address

this issue: given the set of stylized facts that can be explained by the simple agent-based models,

what is the additional explanatory power that can be gained by making more complex models?

Can complex models grow or replicate more stylized facts? Section 3.1 provides a quick summary

2 One can further include social networks to make it become three. However, in this paper, the review is

mainly restricted to agent-based financial markets, and so far there has not been much work that has taken

social networks into account. We shall, therefore, omit this from this paper. We will come back to visit this

issue in the concluding section.
3 The design of financial markets, such as different trading mechanisms, from a more decentralized pure

order-book driven mechanism to a less centralized market-maker mechanism may provide an alternative

explanation for stylized facts (Bottazzi et al., 2005; Anufriev & Panchenko, 2009). However, this paper simply

has the design of agents as its focus.
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of those stylized facts based on the literature. Section 3.2 then analyzes how these stylized facts are

successfully explained or replicated by various classes of ACF models.

The same style of analysis is carried over in addressing the second stage of the development. At

this stage, we ask what makes an ACE model econometrically tractable. Alternatively put, what are

the necessary restrictions or assumptions that need to be imposed before an ACE model can be

estimated? However, we will soon realize that the answer cannot be independent of the estimation

method involved. This leads us to distinguish three main estimation methods, namely, maximum

likelihood (MLE), least squares (LS), and the method of moments, as well as variations of the

three. Generally speaking, the complexity of the objective function associated with the number of

the parameters to be estimated will determine which of the estimation methods will be used. As a

result, ACE models can also be categorized by the appropriate estimation method, which makes

them econometrically tractable.

The questions addressed in the third stage are very different from those asked in the first two.

The issue is not the empirical relevance or empirical validation of the built ACE models, but

concerns using the ACE models as a tool to address the aggregation problem or the analogy

principle, which has been extensively discussed in the literature (Blinder, 1983; Barker & Pesaran,

1990; Forni & Lippi, 1997; Gallegati et al., 2006). In light of the Debreu-Mantel-Sonnenschein

theorem, there are no grounds to expect macro behavior to be in any way similar or analogous to

the behavior of individual agents. ACE models can help us to see how dissimilar the macro and

micro behavior can be.

With the above description, the rest of the chapter is organized as follows. A taxonomy of ACE

models is given in Section 2. The three-stage development of the literature is described in Section 3,

Section 4, and Section 5. Concluding remarks are given in Section 6.

2 Taxonomy of agent-based computational economics models

In the middle and late 1990s, we began to see some of the attempts to use agent-based financial

models to explain some empirical regularities observed from financial data. (Lux, 1995, 1997, 1998;

LeBaron et al., 1999; Arifovic & Gencay, 2000). These attempts involve the use of very different

agent-based models. To see how different they are, it is useful to categorize the ACF models by their

density (simplicity or complexity) in terms of the three essential elements, namely, heterogeneity,

learning, and interactions4.

In terms of heterogeneity, we can distinguish simple heterogeneity from complex heterogeneity

(LeBaron, 2000). The former can be exemplified by the famous models of fundamentalists and

chartists5, where there are only two different types of agents. The latter can be exemplified by the

SFI artificial stock markets, where they are potentially infinite types of agents (Arthur et al.,

1997). Regarding learning, there is also a spectrum from simple learning (algorithms) to complex

learning (algorithms). Examples of the former are pure imitation and reinforcement learning,

2-type
models

3-type
models

n-type
models

   -type
models

Few-type
models

Many-type
models

Figure 1 A spectrum of agent-based computational finance models: heterogeneity

4 By saying so, the authors are aware of the existence of other taxonomies (Hommes, 2006; LeBaron, 2006;

Samanidou et al., 2007).
5 A nice survey of this class of models is given in Hommes (2006).

Agent-based economic models and econometrics 189



whereas examples of the latter are artificial neural networks (ANN), genetic algorithms (GAs),

and genetic programming (GP)6. Likewise, as for interactions, we can start from simple interactions,

which either involve no network topologies or only simple networks, and progress to sophisticated

interactions, which require complex network topologies.

With these three essential elements as the background, we shall start with the simplest possible

class of ACF models, which is simple in each of the three elements, that is, simple heterogeneity,

simple learning, and simple interaction. We then ask what are the stylized facts that can be

accounted for by this simplest class of ACF models, and what are the stylized facts that are beyond

their reachability. Using an incremental approach, we then ask how far we can move by gradually

building more complex models, by being more complex in heterogeneity, learning, or interaction.

From this gradual process, we can appreciate the contribution of each of the three elements to the

emergence of the stylized facts. This way of organizing and presenting ACF models is similar to

the inquiry into the necessary and sufficient conditions of the stylized facts.

2.1 N-type designs

In reality, financial agents can differ in many dimensions, ranging from expectations formation

(beliefs), trading strategies, information exposure, risk attitudes, wealth (investment scale), and the

need for liquidity, etc. Given this high-dimensional heterogeneity, the essential question for

financial agent engineering is to decide how much heterogeneity is to be reflected in the artificial

markets. How much more coarsely or finely do we want to differentiate these financial agents?

Before we examine the design of artificial financial agents, it is useful to recall what we have

done for other artifacts. To name a few, the design of artificial ants (ant algorithms) was motivated

by observing the behavior of real ants in a laboratory; the design of artificial bacteria (bacterial

algorithms) was inspired by the microbial evolution phenomenon; the design of the artificial brain

(neural networks, self-organizing maps) was motivated by the study of the real human brain; and

the design of the evolutionary process (evolutionary algorithms) was inspired by real biological

evolution. Generally speaking, the design of an artifact is, by and large, motivated and guided by

the behavior of its counterpart in nature.

The design of artificial financial agents is no exception. It is highly motivated by observing how

real financial agents behave. Empirical evidence accumulated since the late 1980s and early 1990s

has shed new light on the forecasting behavior of financial agents. This empirical evidence was

obtained through different kinds of surveys, such as questionnaires and telephone interviews, with

financial specialists, bankers, currency traders, and dealers, etc. (Allen & Taylor, 1990; Frankel &

Froot, 1990). The general findings from these abundantly established empirical data are twofold.

First, the data indicate that, by and large, there are two kinds of expectations existing in the

market. The expectation characterized as a stabilizing force of the market is associated with a type

of financial agent, called the fundamentalist. The expectation characterized as a destabilizing force

is associated with another type of financial agent, called the chartist, technical analyst or trend

extrapolator. Second, the proportion (micro-structure) of fundamentalists and chartists, also

called the market fraction, is changing over time, which indicates the adaptive aspects of financial

agents. These empirical findings provide the initial direction for the early development of financial

agent engineering. First, they suggest what rules to look at; second, they point out the significance

of learning and adaptation.

Fundamentalists and chartists are concerned with two very different beliefs regarding stock

price dynamics. In a simple setting, they differ in terms of the mean-reverting speed of the stock

price when it is mispriced (undervalued or overvalued). Fundamentalists tend to believe that the

mispriced situation will soon be corrected, whereas chartists tend to believe that in the short run it

will continue.

6 Brenner (2006) and Duffy (2006) provide rich resources on various learning algorithms used in agent-based

modeling.
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2.1.1 Two-type and three-type designs

Among all classes of ACF models, obviously the two-type design is the simplest kind of hetero-

geneity which one can have. There is a precise behavioral rule for each type of agent. In each

period of time, each agent has to choose one of these two types, and this choice will be reviewed

and revised constantly. Hence, in the next period, agents may switch between the two types.

Learning and interaction are both encapsulated in the switching mechanism, that is, the binary-

choice model, the simplest discrete-choice model.

To make this design more precise, we denote the forecasting rule of a type-h agent in the general

sense as follows:

Eh;t½ptþ 1� ¼ f h;tðpt; pt� 1; . . .Þ ð1Þ

where Eh,t refers to the expectations of the type-h agent at time t. Equation (1) indicates the one-

step ahead forecast. At the beginning, we start with a very general forecasting function fh,t, which

uses all the historical data on price up to the present. In addition, considering that agents are

adaptive, we allow the function to change over time and hence denote it by the subscript t.

For the fundamentalists (h5 f) and chartists (h5 c), their forecasting rules, in a very simple

setting, can be written as

Ef ;t½ptþ 1� ¼ pt þ af ðpft � ptÞ; 0pafp1 ð2Þ

Ec;t½ptþ 1� ¼ pt þ acðpt� pt� 1Þ; 0pac ð3Þ

Among all classes of ACF models, the simplest class that can serve as a starting point is that of the

two-type models. These models have two types of agents, and they differ in their beliefs and the

associated trading strategies. While one of these two types of agents is always called fundamen-

talists, the other may have different names, such as chartists, technical traders, trend-followers, or

noisy traders.

The idea behind these two behavioral rules is that the fundamentalist has a mean-reverting

belief, and his belief is characterized by a reverting coefficient (af), whereas the chartist has the

trend-continuing belief, and his belief is characterized by an extrapolating coefficient (ac). The

magnitude of the reverting coefficient (af) measures the speed with which the fundamentalists

expect the price to return to the fundamental price (p
f
t ), whereas the magnitude of the extra-

polating coefficient (ac) expresses the degree to which chartists extrapolate the past change into

the future.

Three-type designs. There is little doubt that the behavior of financial agents can be more

complex than the two-type design. One obvious way to scale-up this design is to add more types of

agents to the model so as to take into account a finer degree of heterogeneity of financial agents.

This type of expansion is called the N-type design. For example, in a three-type design, one can

further distinguish two kinds of chartists, namely, momentum traders and contrarian traders, or

simply, contrarians. Like momentum traders, contrarians extrapolate past movements of the price

into the future, but they follow the opposite of the trend. More precisely, their forecasting rule

is as follows:

Eco;tðptþ 1Þ ¼ pt þ acoðpt� pt� 1Þ; acop0 ð4Þ

Contrarians consider that the price trend will finish soon, and then start to reverse. However,

unlike fundamentalists, contrarians do not base their forecasts on the fundamental price, which

they either do not know, or do not care about.

The recent availability of more proprietary data has enhanced the transparency of the trading

behavior of financial agents, including both individual and institutional investors. Empirical

studies using such data have shown that individuals and institutions differ systematically in their

reaction to past price performance and the degree to which they follow momentum and contrarian

strategies. On average, individual investors are contrarian investors: they tend to buy stocks that

have recently underperformed the market and sell stocks that have performed well in recent weeks
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(Barber & Odean, 2000). With this empirical basis, financial agent engineering has already added

the contrarians to the fundamentalist–chartist model, and popularized this three-type design7.

Generalization of two- and three-type designs. Financial agent engineering can also be advanced

by enriching the behavioral rules associated with each type of financial agent. This alteration may

make financial agents more interdisciplinary. Considerations from different fields, including the

neural sciences, cognitive psychology, and statistics, can be incorporated into designs. For

example, in behavioral finance, there is a psychological bias known as the ‘law of small numbers’,

which basically says that people underweight long-term averages, and tend to attach too much

weight to recent experiences (the recency effect). When equity returns have been high for many

years, financial agents with this bias may believe that high equity returns are ‘normal’. By design,

we can take such bias into account. One way to do so is to add a memory parameter to the

behavioral rules of our financial agents. This more general rule for contrarians is specified as

follows:

Ec;tðptþ 1Þ ¼ pt þ acð1� bcÞ
XT
i¼ 0

ðbcÞiPT
i¼ 0 ðbcÞ

i

 !
ðpt� i � pt� i� 1Þ; 0pac; 0pbcp1 ð5Þ

Eco;tðptþ 1Þ ¼ pt þ acoð1� bcoÞ
XT
i¼ 0

ðbcoÞiPT
i¼ 0 ðbcoÞ

i
ðpt� i� pt� i� 1Þ; 0X aco; 0pbcop1 ð6Þ

The momentum traders and contrarians now compute a moving average of the past changes in

the stock price and extrapolate these changes into the future of the stock price. However, we

assume that there is an exponential decay in the weights given to the past changes in the stock

price. The parameters bc and bco can be interpreted as reflecting the memory of momentum

traders and contrarians. If bc 5 bco 5 0, momentum traders and contrarians remember only the

last period’s price change and they extrapolate this into the future. When bc and bco increase, the

weight given to the price changes farther in the past increases. In other words, the chartists’

memory becomes longer.

The psychological bias mentioned earlier, therefore, corresponds to a small value of this

memory parameter, and this ‘hypothesis’ can actually be tested (Amilon, 2008)8.

Adaptive behavior. In the original fundamentalist–chartist model, learning does not exist.

Agents who initially happen to be fundamentalists will continue to be fundamentalists and will

never change this role, and likewise for chartists. As a result, the proportion (market fraction) of

fundamentalists and chartists remains fixed. Nonetheless, this simplification underestimates the

uncertainty faced by each trader. In general, traders, whether they are fundamentalists or chartists,

can never be certain about the duration of the biased trend, since the trend can finish in weeks,

months, or years. This uncertainty causes the alerted traders to review and revise their beliefs

constantly. In other words, traders are adaptive.

Therefore, a further development of financial agent engineering is to consider an evolving

micro-structure of market participants. In this extension, the idea of adaptive agents or learning

agents is introduced into the model. Hence, an agent who was a fundamentalist (chartist) may now

switch to being a chartist (fundamentalist) if he considers this switching to be more promising.

Since, in the two-type model, agents can only choose to be either a fundamentalist or a chartist,

7 There is no standard specification of these three types of traders. One way to construct the three-type

model is simply to add one more type of trader to the existing two-type model, for example, by adding noise

traders to fundamentalists and chartists (Kaizoji, 2003), or adding contrarian traders to the fundamentalists

and trend-followers model (Sansone & Garofalo, 2007).
8 Using the data for the S&P 500 index, from January 1980 to December 2000, Amilon (2008) actually

estimated a three-type agent-based financial market model, and found that contrarians have a longer memory

than momentum traders when they form their forecasts of the future price. Of course, this is just the

beginning in terms of seeing how agent-based financial market models can be quantified so as to commu-

nicate with behavioral finance.
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modeling their learning behavior becomes quite simple, and is typically done using a binary-choice

model, specifically, the logit model or the Gibbs–Boltzmann distribution (Luce, 1959; Blume, 1993).

The logit model, also known as the Luce model, is the main model used in the psychological

theory of choice. Consider two alternatives, f (fundamentalist) and c (chartist). Each will produce

some gains to the agent. However, since the gain is random, the choice made by the agent is

random as well. The logit model assumes that the probability of the agent choosing f is the

probability that the profits or utilities gained from choosing f are greater than those gained from

choosing c. Under a certain assumption for the random component of the utility, one can derive

the following binary logit model:9

ProbðX¼ f ; tÞ ¼ explVf ;t� 1

explVf ;t� 1 þ explVc;t� 1
ð7Þ

where Vf,t and Vc,t are the deterministic components of the gains from the alternatives f and c at

time t. The parameter l is a parameter carried over from the assumed random component. The

logit model says that the probability of choosing the alternative f depends on its absolute deter-

ministic advantages, as we can see from the following reformulation:

ProbðX¼ f ; tÞ ¼ 1

1 þ exp�lðVf ;t� 1 �Vc;t� 1Þ
ð8Þ

When applied to agent-based financial models, these deterministic components are usually related

to the temporal realized profits associated with different forecasting rules. So, in the two-type

model, Vf,t is the temporal realized profits from being a fundamentalist, and Vc,t is the temporal

realized profits from being a chartist. In addition, there is a new interpretation for the parameter l,

namely, the intensity of choice, because it basically measures the extent to which agents are

sensitive to the additional profits gained from choosing f instead of c.

Market-maker equation. The distribution function above then determines the market fraction of

each type of agent in the market. For example, if Prob(X5 f)5 0.8, it means that 80% of the

market participants are fundamentalists and the remaining 20% are chartists. The asset price will

be determined by this market fraction via the market-maker equation:

pt ¼ pt� 1 þ m0 þ m1Dt ð9Þ

where

Dt ¼
X
h

wh;tdh;t ¼
X
h

ProbðX�¼ h; tÞdh;t ð10Þ

Equation (9) is the market-maker equation, which assumes that the price is adjusted by the market

maker, whose decision is in turn determined by the excess demand normalized by the number of

market participants, Dt. Dt, in Equation (10), is a weighted average of the individual demand of

each type of trader, weighted by the market fractions (7).

An alternative to determine the market price is through the familiar Walrasian equilibrium,

which is also frequently used in ACF models.

Risk preference and portfolio. Demand for the assets of each type of trader is derived in a

standard expected-utility maximization manner, and depends on the risk preference of the type-h

agent. Risk preference is important because it is the main determinant of agents’ portfolios, that is,

how agents’ wealth is distributed among different assets. The classical Markowitz mean–variance

portfolio selection model offered the first systematic treatment of asset allocation. Harry Markowitz,

who received the 1990 Nobel Prize in Economics for this contribution, assumes that investors are

concerned only with the mean and variance of returns. This mean–variance preference has been

extensively applied to modeling agents’ risk preferences since the variance of returns is normally

accepted as a measure of risk.

9 The extension into the multinomial logit model is straightforward.
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In addition to the mean–variance preference, there are two other classes of risk preferences that

are widely accepted in the standard theory of finance. These two correspond to two different

attitudes toward risk aversion. One is called constant absolute risk aversion (CARA), and the other

is called constant relative risk aversion (CRRA). When an agent’s preference exhibits CARA, his

demand for the risky asset (or stock) is independent of his changes in wealth. When an agent’s

preference exhibits CRRA, his demand for risky assets will increase with wealth in a linear way.

Using a Taylor expansion, one can connect the mean–variance preference to CARA preferences

and CRRA preferences. In fact, when the returns on the risky assets follow a normal distribution,

the demand for risky assets under the mean–variance preference is the same as that under the

CARA preference, and is determined by the subjective-risk-adjusted expected return.

dh;t ¼
Eh;tðDptþ 1Þ

ah;tsh;tðDptþ 1Þ
¼ Eh;tðptþ 1Þ� pt

ah;tsh;tðDptþ 1Þ
ð11Þ

where Dpt1 15 pt1 1 2 pt and ah,t is a risk aversion coefficient. The Eh,t(pt1 1) in the numerator of

Equation (11) is given by Equations (2)–(4), and the sh,t in the denominator represents the perceived

risk by the type-h agents. Further details of the formation of this subjective perceived risk can be

found in the agent-based finance literature (De Grauwe & Grimaldi, 2006; Hommes, 2006).

2.1.2 Many-type designs

Adaptive belief systems (ABS). Brock and Hommes (1997, 1998) initiate an N-type design called

the ABS. This system can be considered to be an extension of the two-type or three-type design,

which we observed earlier. In this case, there are more than two or three kinds of beliefs in the

market, and the number is denoted by N. Like the two- or three-type designs, each of these beliefs

is known in advance and is fixed. Brock and Hommes (1998) further assume that they are all linear

forecasting rules, as follows:

Eh;t½ptþ 1� ¼ ah;0 þ ah;1pt þ ah;2pt� 1 þ � � � þ ah;Lþ 1pt�L; h ¼ 1; 2; . . . ; N ð12Þ

In this simplification, each belief is characterized by a set of coefficients (ah,0, ah,1,y,ah,L1 1),

denoted by ~ah. The adaptation part or the switching mechanism can be easily extended from the

original logit model (Equation (7)) into the multinomial logit model:

ProbðX¼ h; tÞ ¼ explVh;t� 1PN
j¼ 1 exp

lVj;t� 1

; h ¼ 1; 2; . . . ; N ð13Þ

The rest of the ABS is essentially the same as the few-type designs.

Large type limit (LTL) and continuous belief systems (CBS). One further extension of the N-type

design is to consider not just a finite N but an infinite N, that is, N-N. In this line, Brock et al.

(2005) introduce the notion of a LTL, whereas Diks and van der Weide (2005) propose a CBS.

They both rely on the idea of a distribution of beliefs. The distribution of beliefs is a distribution

over a belief space, from which the observed beliefs are sampled. When the belief space is a space

of real numbers, one will then have an infinite-type design. The earlier finite N-type design can be

regarded as a sample with size N from this distribution. Once it is generated, the sample is fixed,

and then later on the adaptation or switching mechanism is just operated within this fixed sample.

However, the infinite N-type design works directly on the population of beliefs, instead of a sample

of beliefs. Since the distribution of beliefs can be captured by a few parameters, one can effectively

use a small number of parameters to represent a large number of different types of traders. The

discrete-choice problem is now expanded into a continuous-choice problem, but still with the

Gibbs–Boltzmann distribution.

ProbðX¼~al; tÞ ¼ explVð~a
l ;t� 1ÞR

explVð~a;t� 1Þ d~a
ð14Þ

‘Type’ in few-type and many-type designs. While the large-type design can be considered to be

a natural mathematical extension of the few-type design, one should notice that it does have a
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dramatically different notion of type. The notion of type in the few-type designs is in fact a cluster,

that is, a cluster of similar trading strategies or beliefs. Therefore, while there are a large number of

traders in the world, their behavior is limited to just a few clusters or a few types10. The early

literature on fundamentalists and chartists is developed in this fashion. In other words, they are

two different types, not because they are different, but because they are fundamentally different.

Two fundamentalists may still have different beliefs, but compared with those of chartists, their

differences are negligible. The large-type designs no longer keep this notion of a cluster; instead,

traders with even an arbitrarily small difference are considered to be different types by them.

2.1.3 Illustrations

In the literature, there are three major N-type ACF models; in chronological order, they are the

Kirman model, the Lux model, and the Brock–Hommes model. The entire structure of Section 2.1.1

is written by largely following the Brock–Hommes ABS model. Section 2.1.2 also provides the

extension of the ABS model. Therefore, only the Kirman and Lux models will be highlighted here.

Kirman’s ANT model. Kirman’s model was first proposed by (Kirman, 1991, 1993). It is a two-

type model. The two types are fundamentalists and chartists. The model, however, differs from the

previous description of the two-type model in its switching mechanism. The switching is not driven

by the Gibbs–Boltzmann distribution (Equation (7)), but by a herding mechanism. Within this

herding mechanism, the main determinant of the respective binary choice is not the financial

success (the Vf,t and Vc,t appearing in Equation (7)) but the fraction of the majority. Therefore, the

decision is more psychologically than economically driven.

The herding mechanism was inspired by an observation in entomology. ‘Ants, faced with two

identical food sources, were observed to concentrate more on one of these, but after a period they

would turn their attention to the other’ (Kirman (1993), p. 137). Inspired by observing the

behavior of ants, Kirman characterizes the switching potential of each individual by two para-

meters, namely, a probability of self-conversion and a probability of being converted. The self-

conversion probability gives rise to the probability that an individual will switch to other types of

agents without external influence, whereas the probability of being converted gives rise to the

probability that the individual will be persuaded by the other individual with whom he is randomly

matched. This switching process is discrete and can be studied in a general theoretical framework

of a Polya urn process.

Lux’s IAH (interactive agent hypothesis) model. The Lux model was initiated by Lux (1995,

1997, 1998). It is a hierarchical two-type model. It is hierarchical in the sense that there are

fundamentalists and chartists, but the chartists are further divided into optimists and pessimists.

Like the Kirman model, the Lux model also has the herding element. However, the original

discrete-time discrete-choice behavior in the Kirman model is now replaced by a continuous-time

discrete-choice model. This change has caused the Lux model to have a very different mathe-

matical structure, which is a jump Markov process. In such continuous-time mathematics, the

switching mechanism among the three groups of agents is captured by the transition rate function.

The transition rate specifies the change rate of the conditional probability of shifting to another

state after an infinitesimal time interval that is conditional upon a specific current state. The state

refers to each possible distribution (each set of fractions) over the types (clusters). For example, in

a two-type model, the distribution at a point in time can be characterized by one parameter, that

is, the fraction of type one, say, w1(t), since subtracting it from unity gives the fraction of type two,

that is, w2(t)5 12w1(t).

Lux considers two determinants in the transition rate function. One is the profit differential,

that is, the difference in trading profits between the fundamentalists and chartists. The transition

rate function is negative in the profit differentials between own profits and alternative profits.

In this way, as expected, when fundamentalists earn a higher profit than chartists, it will become

10 Aoki (2002) provides a theoretical support for the two-type or two-cluster models.
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less likely for a fundamentalist to switch, but more likely for a chartist to switch. Hence, in this

regard, it is very similar to the Gibbs–Boltzmann distribution used by Brock and Hommes’ ABS.

The other determinant is herding. In this case, traders’ decisions to switch between different

clusters are affected by the number of traders in each cluster. The majority cluster may find it

easier to attract traders from the minority cluster, but this is less likely to happen the other way

round. In the Lux model, herding is only applied to the switch between optimists and pessimists.

Minority games (MG). Since trend-chasers and contrarians in the financial market can be

positioned as the majority and minority, a mixed minority and majority game, also known as an

$-game, has been applied to agent-based financial markets (Challet & Zhang, 1997). There are

some designs of agents that can be particularly suitable for the MG models. One example is the

threshold model proposed by Ghoulmie et al. (2005) and Cross et al. (2007).

2.2 Autonomous-agent designs

In the N-type designs, all the types and rules of financial agents are given at the beginning of the

design, and what financial agents can do is to choose among these different types or rules based on

their past experiences. The N-type design has characterized a major class of agent-based financial

markets. However, this way of doing things also severely restricts the degree of autonomy

available to financial agents. First, they can only choose how to behave based on what has been

offered; secondly, as a consequence, there will be no new rules available unless they are added

exogenously by the designers. If we want our artificial financial agents to behave more like real

financial agents, then we will certainly expect that they will learn and discover on their own.

Therefore, as time goes by, new rules that have never been used before and have not been supplied

by the designer may be discovered by these artificial agents inside the artificial world.

2.2.1 The sante fe institute artificial stock market

GAs. Designing artificial agents who are able to design on their own is an idea similar to John von

Neumann’s self-reproducing automata, that is, a machine that can reproduce itself. This theory had

a deep impact on John Holland, the father of the GA. Under von Neumann’s influence, Holland

devoted himself to the study of a general-purpose computational device that could serve as the

basis for a general theory of automata. In the 1970s, he introduced the GA, which was intended to

replace those ad hoc learning modules in contemporary mainstream Artificial intelligence. Using

GAs, Holland could make an adaptive agent that not only learned from experience but could also

be spontaneous and creative. The latter property is crucial for the design of artificial financial

agents. In 1991, Holland and John Miller, an economist, published a sketch of the artificial

adaptive agent in the highly influential American Economic Review (Holland & Miller, 1991). This

blueprint was actually carried out in an artificial stock project in 1988 at the SFI (Palmer et al.,

1994; Arthur et al., 1997).

Armed with GAs, the Santa Fe Artificial Stock Market (SFI-ASM) considers a novel design for

financial agents. First, like many N-type designs, it mainly focuses on the forecasting behavior of

financial agents. Their trading behavior, as depicted in Equation (11), will depend on their

forecasts of the price in the next period. Second, however, unlike the N-type designs, these agents

are not divided into a fixed number of different types. Instead, the forecasting behavior of each

agent is ‘customized’ via a GA. We shall be more specific regarding its design because it provides

us with a good opportunity to see how economists take advantage of the increasing computational

power to endow artificial decision makers with a larger and larger degree of autonomy.

In the SFI-ASM, each financial agent h uses a linear forecasting rule as follows:

Eh;tðptþ 1Þ ¼ ah;t þ bh;tpt ð15Þ

However, the coefficients ah,t and bh,t not only change over time (are time-dependent), but are also

state-dependent. That is, the value of these two coefficients at time t will depend on the state of the

economy (market) at time t. For example, the recent price dynamics can be an indicator, so, say, if
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the price has risen in the last three periods, the financial agent may consider lower values of both

a and b than otherwise. The price dividend ratio can be another indicator. If the price dividend

ratio is lower than 50%, then the financial agent may want to take a higher value of b than if it is

not. This state-dependent idea is very similar to what is known as classification and regression trees

or decision trees, a very dominant approach in machine learning.

Therefore, one simple way to think of the artificial agents in the SFI-ASM is that they each

behave as machine-learning people who use regression trees to forecast the stock price. At each

point in time, the agent has a set of indicators, which help him to decompose the state of the

economy into m distinct classes ðA1
h;t;A

2
h;t; . . . ; A

m
h;tÞ, and corresponding to each of the classes there

is an associated linear forecasting model. Which model will be activated depends on the state of

the market at time t, denoted by St. Altogether, the behavior of the financial agent can be

summarized as follows:

Eh;tðptþ 1Þ ¼

a1h;t þ b1h;tpt; if St 2 A1
h;t

a2h;t þ b2h;tpt; if St 2 A2
h;t

� �
� �
� �
amh;t þ bmh;tpt; if St 2 Am

h;t

8>>>>>>>>><
>>>>>>>>>:

ð16Þ

A few remarks are added here. First, the forecasting rule summarized above is updated as time

goes by, as we keep the subscript t there. So, agents, in this system, are learning over time with a

regression tree, or they are using a time-variant regression tree, in which all the regression coefficients

and classes may change accordingly with the agents’ learning. Second, agents are completely

heterogeneous, as we also keep the subscript h above. Therefore, if there are N financial agents in the

market at each point in time, we may observe N regression trees, each of which is owned and

maintained by one individual agent. Third, however, the forecasting rules introduced in the SFI-ASM

are not exactly regression trees. They are, in fact, classifier systems.

Classifier system. A classifier system is another of John Holland’s inventions from the late 1970s

(Holland, 1975). It is similar to the Newell–Simon type of expert system, which is a population of

if-then or condition-action rules (Newell & Simon, 1972). Conventional expert systems are not

able to learn by themselves. To introduce adaptation into the system, Holland applied the idea of

market competition to a society of if-then rules. A formal algorithm, known as the bucket-brigade

algorithm, credits rules generating good outcomes and debits rules generating bad outcomes.

This accounting system is further used to resolve conflicts among rules. The shortcoming of the

classifier system is that it cannot automatically generate or delete rules. Therefore, a GA is applied

to evolve them and to discover new rules.

This AA design has been further adopted in many later studies. While most studies continuously

carried out this task using GAs11, a few studies also used other population-based learning models,

such as evolutionary programming, GP, and particle swarm optimization.

2.2.2 Genetic programming and autonomous agents

The development from the few-type designs to the many-type designs and further to the AA designs

can be considered to be part of a continuous effort to increase the collective search space of the

forecasting function Eh,t, from finite to infinite space, and from parametric to semi-parametric

functions. The contribution of GP to this development is to further extend the search space to an

infinite space of non-parametric functions, whose size (e.g. the dimensionality, the cardinality, or the

number of variables used) and shapes (e.g. linearity or nonlinearity, continuity or discontinuity) have

to be determined, via search, simultaneously. This way of increasing the degree of autonomy may

11 A lengthy review of this literature can be found in Chen (2008).
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not contribute much to the price dynamics, but it can enrich other aggregate dynamics as well as the

behavior at the individual level. As we shall see below, the endogenous determination of the size and

shape of Eh,t provides us with great opportunities to see some aspects of market dynamics, which are

not easily available in the N-type designs or other AA designs.

The first example is about the sophistication of agents in market dynamics. The definition and

operation of GP (Koza, 1993) rely on a specific language environment, known as LIST Programming

(LISP). For each LISP program, there is a tree representation. The number of nodes (leaves) or the

number of depths in the LISP trees provides one measure of complexity in the vein of the program

length. This additional observation enables us to study not just the heterogeneity in Eh,t, but also

the associated complexity of Eh,t. In other words, GP cannot only distinguish agents by their

forecasts, as the N-type designs did, but can further delineate the differentiation based on the

agents’ sophistication (complexity). Must the surviving agents be sophisticated or can the simple

agents prosper as well?

One interesting hypothesis related to the question above is the monotone hypothesis: the degree

of traders’ sophistication is an increasing function of time. In other words, traders will evolve to be

more and more sophisticated as time goes on. However, this hypothesis is rejected in Chen and

Yeh (2001). They found that, based on the statistics on the node complexity or the depth com-

plexity, traders can evolve toward a higher degree of sophistication; at some point in time, they can

be simple as well.

The second example concerns the capability to distinguish the information from noise. As we

mentioned earlier, the variables recruited in the agents’ forecasting function are also endogenously

determined. This variable-selection function allows us to examine whether the smart pick of these

variables is crucial for their survival. In particular, the hypothesis of the extinction of noisy traders

says that traders who are unable to distinguish information from noise will become extinct. Chen

et al. (2008) test this hypothesis. In an agent-based artificial market, they supplied traders with

both the informative and noisy variables. The former includes prices, dividends, and trading

volumes, whereas the latter are just series of pseudo-random numbers. Their simulation shows,

as time goes on, that traders who are unable to distinguish information from noise do have a

tendency to decline and even become extinct.

2.3 Heterogeneity in N-type designs and autonomous-agent designs

However, the AA design is not entirely the same as the N-type design built upon the discrete-choice

or continuous-choice models12. The main difference lies in learning. While both designs consider

evolutionary selection as an essence of learning, their technical implementations are different, which

also introduces some conceptual differences between the two.

The evolutionary selection mechanisms used in the discrete-choice or continuous-choice models

simply assume that all agents are homogeneous in the sense that they are facing the same uncertainty

when making their choices. It is the randomness of their choices (stochastic choices) that makes them

behave differently. In other words, all agents are homogeneous ex ante, but heterogeneous ex post.

However, this assumption or restriction may not generally apply to the SFI models.

Depending on the specific setting, the SFI models can allow agents to be truly heterogeneous in

the sense that not only can they be heterogeneous ex post, but they can also be heterogeneous

ex ante, that is, each agent’s stochastic choice can come from his own idiosyncratic distribution.

A typical example is the SFI model whose agents are modeled via multi-population GAs or multi-

population GP (Yeh & Chen, 2001). In these examples, each agent learns from his own experiences

rather than from a socially shared experience, as the one used in a multi-nominal logit model. This

style of learning is known as individual learning in the literature, which is distinct from social

learning (Vriend, 2000, 2002; Arifovic & Maschek, 2006).

12 Diks and van der Weide (2005) actually distinguish the two by calling the former computational finance

models, and the latter economic dynamic models.
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Other variants of agent-based computational models go further to consider agents with varying

degrees of learning capabilities. For example, Chan et al. 1999 consider three classes of forecasting

agents in their artificial stock market, namely, empirical Bayesian traders, momentum traders, and

nearest-neighbor traders. Yang (2002) also considers a mixture of a class of ANN agents and and a

class of momentum agents. In each class, agents can be further distinguished by the specific

parameters used to articulate their forecasting or trading behavior.

To sum up, the movement from the two-, many- to infinite-type models, and its further jump to

the computational models can be characterized by a higher degree of heterogeneity and also a more

complex learning behavior. The question is what benefit can we gain from this? Can we explain

more stylized facts than the baseline models?

3 Presenting agent-based computational economics with econometrics

3.1 Stylized facts

The first contact between ACE and econometrics was motivated by examining whether ACE

models are able to provide explanations for some stylized features, which the existing economic

theories have difficulties accounting for. The most notable examples can be found in the modern

financial literature, with a list of stylized facts, which cannot be easily accounted for by the long-

standing standard asset-pricing models built upon the device of representative agents. These

stylized facts include statistical properties of various trading data, such as trading volume, and

trading duration, but mostly concentrate on asset return. Table 1 provides a comprehensive

coverage of these stylized facts.

There is a total of 30 stylized facts listed in this table, which are separated into six blocks. The

first two blocks refer to the stylized facts of low-frequency financial time series, whereas the last

four blocks refer to the stylized facts of high-frequency ones. The first two blocks give the stylized

facts of returns and trading volume. The last four blocks refer to the stylized facts of returns,

trading duration, transaction size, and bid-ask spread13.

3.2 Facts to be explained

Can the above stylized facts be generated from a collection of interacting software agents? To see

the bigger picture, a few tables are prepared to answer this question. We first categorize all ACF

models based on the taxonomy given in Section 2. Some selected ACF models are separately listed

in Tables 4–6 (see Appendix A), based on their designs being two-type, three-type or many-type,

whereas another group of ACF models using the AA design is listed in Table 7 (also in Appendix A).

The four tables together include 50 ACF models, among which there are 38 N-type models

and 12 AA models; the ratio of the two is 3:1. The constituents of the N-type models are 18 (47%)

two-type models, 9 (24%) three-type models, and 11 (29%) many-type models.

3.2.1 Demographic structure

These four tables are by no means exhaustive, but comprise just a sample of a large pile of existing

studies. Nonetheless, we believe that they well represent some basic characteristics of the under-

lying large pile of literature. First, the largest class of ACF models is the few-type design. The sum

of the two-type and three-type models account for about 50% of the entire sample. The few-type

design models not only have support from empirical studies, but their simplicity also facilitates

analytical work. This is probably the most important reason for seeing the dominance of this

few-type design. Nonetheless, if a large degree of heterogeneity can be represented by a parametric

distribution, then one can directly work with this distribution so as to extend the analytical work

13 Mainly for space considerations, the detailed account of each stylized fact will not be given here.

The interested reader is referred to the associated reference listed in the last column of Table 1.
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to the many-type designs. Using the continuous-choice model to replace the discrete-choice model

is one case in point. This helps N-type design models gain an additional market share of 20–25%.

The residual goes to the AA design models, which only take up one-fourth of the sample. This

minority position may indicate that economists are not yet ready to accept the complex hetero-

geneous agents, which may easily defy analytical feasibility, but the more important question is:

can more complex designs provide us with better explanatory power?

3.2.2 General performance

In Tables 4–7, the sides with each ACF model are shown to be the stylized facts that ‘can’ be

replicated by the designated model. We have to be careful as to what we mean by ‘can’. First, we

do not verify the model, and hence do not stand in a position to provide a second check as to

whether the reported results are correct. In this regard, we assume that the verification of each

model has been confirmed during the refereeing process. Second, we do, however, make a minimal

effort to see whether proper statistics have been provided to support the claimed replication. A study

that does not satisfy this criterion will not be taken seriously.

In addition, column 2 contains acronyms, which stand for the origin of the respective ACF

models. Those origins have been briefly reviewed or mentioned in Section 2. In addition, the last

Table 1 Stylized facts

No. Code Stylized facts Reference

1 AA Absence of Autocorrelations Cont (2001)

2 AG Aggregational Gaussianity Cont (2001)

3 BC Bubbles and Crashes Rosser (1997)

4 CE Calendar Effect Taylor (2005)

5 CHT Conditional Heavy Tails Cont (2001)

6 EPP Equity Premium Puzzle Kocherlakota (1996)

7 EV Excess Volatility Cont (2005)

8 FT Fat tails Cont (2001)

9 GLA Gain/Loss Asymmetry Cont (2001)

10 LE Leverage Effect Cont (2001)

11 LM Long Memory Cont (2001)

12 PLBR Power Law Behavior of Return Gabaix et al. (2003)

13 PLBV Power Law Behavior of Volatility Lux (2007)

14 VC Volatility Clustering Cont (2001)

15 VVC Volatility Volume Correlations Cont (2005)

16 PLBTV Power Law Behavior of Trading Volume Gabaix et al. (2003)

17 VLM Long Memory of Volume Engle and Russell (2007)

18 AA-H Absence of Autocorrelations Taylor (2005)

19 FT-H Fat Tails of Return Distribution Taylor (2005)

20 LM-H Long Memory Taylor (2005)

21 PE Periodic Effect Taylor (2005)

22 BU Bursts Taylor (2005)

23 CTD Clustering of Trade Duration Pacurar (2006)

24 DLM Long Memory Pacurar (2006)

25 DO Overdispersed Pacurar (2006)

26 PLBT Power Law Behavior of Trades Gabaix et al. (2003)

27 US U Shape Tsay (2002)

28 SCPC Spread Correlated with Price Change Tsay (2002)

29 TLS Thinness and Large Spread Muranaga and Ohsawa (1997)

30 TD Turn-of-the-year Declining Muranaga and Ohsawa (1997)

The stylized facts are separated into six blocks in the table. The first two refer to the stylized facts

pertaining to return and trading volume, using low-frequency data. The next four refer to the stylized facts

of return, trading duration, transaction size, and bid-ask spread, using high-frequency data.
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column in each table serves to show whether the ACF model has a switching mechanism to allow

agents to change their type. Switching or evolving fractions have been considered to be a funda-

mental cause of many stylized facts (Kirman, 1991, 1993; Lux & Marchesi, 1999, 2000; Hommes,

2002). Therefore, it is useful to have this information to examine whether the evolving fraction is a

necessary condition for replicating stylized facts.

We shall start with the overview table (Table 2). A quick grasp begins with the last column

of the table, which is a frequency count of the replications of the respective stylized facts shown in

the first column. While there are 30 stylized facts shown in Table 1, only 12 (12 rows) appear in

Table 2. The stylized facts that do not appear in this table are the facts that have not been

replicated in any of the 50 papers in our survey. As a result, all stylized facts pertaining to the high-

frequency data, or the so-called intraday data, are left unexplained by the ACF models, which

include high-frequency returns (18–22; Table 1), trading duration (23–25), transaction size

(26–27), and the bid-ask spread (28–30). In fact, even for those stylized facts appearing in the

table, the counts associated with them are quite uneven.

First, there are four stylized facts, which clearly receive more intensive attention than the

others. These four are fat tails (41 counts), volatility clustering (37), absence of autocorrelation

(27), and long memory of returns (20). Fat tails and volatility clustering received the highest

attention. This, in fact, is well anticipated, given the close connection between the two and the

dominance of various GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)-

type models in financial econometrics14. Long memory ranks fourth. This again is closely related

to volatility clustering, since long memory reflects long-run dependencies between stock market

returns, and volatility clustering describes the tendency of large changes in asset prices to follow

large changes, and small changes to follow small changes.

Second, we also notice that all stylized facts explained exclusively pertain to asset prices; in

particular, all these efforts are made to tackle the low-frequency financial time series. This sharp

bias is also not difficult to understand. Although most ACF models have their own artificial clock,

it is not clear what the interval [t,t1 1] can best mean in real time. Does it refer to a tick, a minute,

Table 2 Summary of stylized facts explained

No. Stylized facts 2 types 3 types Many types AA No. of Studies

1 AA 11 2 9 5 27

2 AG 1 2 2 1 6

3 BC 3 2 2 2 9

4 EPP 0 0 1 0 1

5 EV 2 0 3 0 5

6 FT 14 7 9 11 41

7 GLA 0 0 1 0 1

8 LM 7 2 5 6 20

9 PLBR 4 3 1 2 10

10 VC 14 6 9 8 37

11 VLM 0 0 0 3 3

12 VVC 0 1 4 1 6

No. of facts 8 8 11 9

The last row ‘No. of facts’ is the total number of stylized facts that are replicated by the corresponding

class of agent-based computational finance models. So, for example, the numbers 8, 8, 11, and 9,

appearing in the last row, indicate that there are a total of eight stylized facts replicated by the two-type

models, eight stylized facts replicated by the three-type models, and so on and so forth. It is not the total

sum of the number appearing in the respective column.

14 Volatility clustering is treated as a source of fat tails (Ghose and Kroner, 1995).
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an hour, a day or a week? There is no easy way in which we can tell the difference from the

corresponding models. The difference can only be made via the empirical part of the models,

which requires a consideration of which dataset is involved. Since the high-frequency dataset is

rarely used as the empirical correspondence of these ACF models, it remains a challenge to extend

these ACF models to the high-frequency domain. The other reason for the observed bias is that

most ACF models use either the Walrasian tatonnement scheme or the market-maker scheme to

determine the market price. The continuous-time double-auction mechanism or the order-driven

mechanism is rarely used. Time, therefore, becomes less sensible with the simplified mechanism.

3.2.3 The role of heterogeneity and learning

Our taxonomy of the ACF models enables us to address two specific questions: first, would the

degree of heterogeneity matter, and, second, would learning matter? Of course, these two aspects

are not completely disentangled because complex learning models may also be the ones with

complex heterogeneity. Therefore, our answer below may be very tentative or rough, and is best

used to motivate further studies.

Do many-type models gain additional explanatory power compared with few-type models? The

last row of Table 2 shows that few-type models (two-type and three-type) can together replicate

nine stylized facts, whereas many-type models can add two more. These two are the equity

premium puzzle and gain/loss asymmetry. Nevertheless, from Table 6, these two are the results of

the same study (Shimokawa et al., 2007), which focuses more on the prospect theory feature of

financial agents. The loss-averse feature of financial agents is largely not shared by other ACF

models; therefore, it is not clear whether the credit should go to the many-type design. If we

conservatively remove this ‘outlier’, then the many-type models do not perform significantly better

than the few-type models.

Would more complex learning behavior help? Table 2 shows that the only additional stylized

fact captured by the AA design is the long memory of volume (VLM), and there are studies

devoted to this replication (LeBaron et al., 1999; Lawrenz & Westerhoff, 2001; Lebaron &

Yamamoto, 2007; see also Table 7). In all these three studies, autonomous agents are modeled

using GAs, but GAs alone should not be the main cause of long memory in trading volume, and

there is no particular reason why N-type models are unable to replicate VLM. Data on trading

volume existed in many N-type ACF models, but they were not well exploited. Hence, this

advantage of AA designs may not be that absolute, and it is likely that N-type models or even

few-type models perform equally as well as AA models.

In sum, we do not find significant evidence in support of the complex design of ACF models,

including many-type designs and AA designs. If our interests are restricted to the stylized facts listed

in Table 2, then we can confine ourselves to just few-type designs. This can have very important

implications for the next stage of the development of ACF models, namely, building the econometric

models of agent-based financial markets. As we shall see in Section 4, few-type designs have another

advantage when we want to treat the ACF model as an econometric model and estimate it.

4 Building agent-based computational econometrics with econometrics

The use of econometric techniques to validate or estimate the agent-based models surveyed in

Section 3 starts from the late 1990s and early 2000s (Miller, 1998; Winker & Gilli, 2001). As we see

in Section 3, the stylized facts can be replicated qualitatively by many different classes of agent-

based models, ranging from low-dimensional parametric models to high-dimensional parametric

models. Moving one step further, the second stage of the development of agent-based models is

not just satisfied with its capabilities to grow stylized facts in a qualitative sense, but is more

concerned with the appropriate parameter values used in the model. This development is well

anticipated. Supposing that we are given the significance of the intensity of choice (l in Equation (7))

in generating some stylized facts, then the next legitimate question will be: can this intensity be

empirically determined, and if so, how big or how small is it?
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How to estimate? Nevertheless, given the very different dimensionality of the agent-based models,

the econometric techniques involved also vary. Table 3 lists a number of studies related to calibration

or estimation work. Estimation methods are given in the third column of the table. The three major

estimation methods, namely, the method of moments, MLE, and LS, or their variants, are all

involved. In addition to these standard methods, non-standard methods, such as GAs, are also used.

What to estimate? To have an idea of the diversity shown in this table, it would be useful to first

understand what we mean by estimating an agent-based financial model. The econometric con-

struction of an agent-based financial model mainly contains two parts. The first part is directly

related to the behavioral rules (parameters) of agents, for example, the reverting coefficient of

fundamentalists, the extrapolating coefficient, the intensity of choice, the herding intensity, and the

thresholds of rule switching. The second part is related to the external setting of the environment

facing the agents, for example, the price adjustment speed (see the last column of Table 3).

4.1 How to estimate?

Direct estimation. The general idea of estimation is to derive the aggregation equation in which all

these parameters are encapsulated. Then by applying appropriate statistical techniques to these

equations one can derive the estimates of these parameters. Hence, if the aggregate equation

happens to be a likelihood function, then the method involved is naturally the MLE method

(Alfarano et al., 2005, 2006, 2007). If the aggregate equation happens to be a regression, then the

employed method is LS (de Jong et al., 2006; Boswijk et al., 2007; Manzan & Westerhoff, 2007).

Indirect estimation. However, for some classes of agent-based financial models, particularly

those complex agent-based models reviewed in Section 2.2, it may not be easy to derive the

aggregation equation in an analytical way, so that the direct application of econometric techniques

is not feasible. Hence, an alternative approach is that, instead of deriving the aggregation ana-

lytically, the aggregation is derived via simulation, and the econometric steps are applied based on

these simulated aggregations. Some estimation work shown in Table 3 belongs to this kind, which

is also known as indirect estimation, to be distinguished, however, from the above-mentioned

Table 3 Estimation methods of ACF Models

Models Origin Methods Parameters estimated

Alfarano et al. (2005) IAH ML Herding tendency

Alfarano et al. (2006) IAH ML Herding tendency

Alfarano et al. (2007) IAH ML Herding tendency

Amilon (2008) ABS EMM/ML Intensity of choice

Boswijk et al. (2007) ABS NLS Belief coefficients/intensity of choice

de Jong et al. (2006) ABS NLS Belief coefficients/intensity of choice

de Jong et al. (2009) ABS NLS Belief coefficients/intensity of choice

Diks and van der Weide (2005) ABS ML ARCH and GARCH relations/sign of MA

Ecemis et al. (2005) AA IEC Market fractions/behavioral rules

Gilli and Winker (2003) ANT MSM Mutation/conviction rate

Manzan and Westerhoff (2007) ABS OLS Reaction coefficients/switching threshold

Reitz and Westerhoff (2007) ABS Quasi ML Behavioral rules/intensity of choice

Westerhoff and Reitz (2003) ABS Quasi ML Behavioral rules/intensity of choice

Winker and Gilli (2001) ANT MSM Mutation/conviction rate

Winker et al. (2007) ANT MSM Mutation/conviction rate

IAH Frequency of revaluation/reaction strength

ACF5 agent-based computational finance.

The full meaning of the acronyms under ‘Origin’ are available in the Appendix. Here, we only provide the

full name of those under ‘Methods’. ML stands for Maximum Likelihood, EMM for Efficient Method of

Moments, NLS for Nonlinear Least Squares, OLS for Ordinal Least Squares, IEC for Interactive

Evolutionary Computation, and MSM for Method of Simulated Moments.
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direct estimation. Examples of indirect estimation are Winker and Gilli (2001), Gilli and Winker

(2003), Winker et al. (2007), and Amilon (2008). Since this approach is relatively new for agent-

based economists, and can potentially be applied to a larger class of ACE models, we will give a

brief review of this approach in Section 4.1.1.

4.1.1 Simulated-based estimation

Despite the progress observed in Section 4.1, agent-based models in general are very hard to estimate

due to the lack of tractable criterion functions (likelihood functions, moments). Nevertheless, this

problem is largely shared by many other economic or econometric models15, and has received

in-depth treatment during the last two decades, which has also inspired the development of entirely

new procedures based on simulation, referred to as the simulation-based econometric methods16. As

we shall see later, these new proposed methods are very applicable and may dramatically open the

empirical accessibility of agent-based models in the future.

Simulation-based econometric methods include the method of simulated moments (MSM),

simulated maximum likelihood (SML), methods of simulated scores (MSS), efficient method of

moments (EMM), and indirect inference. Some of these methods have already been applied to

estimate agent-based models. For example, the MSM is used in Winker and Gilli (2001), Gilli and

Winker (2003), and Winker et al. (2007), whereas the EMM is used in Amilon (2008).

4.1.2 Methods of simulated moments

The basic idea of simulated-based inference is to calibrate the parameter vector so that the properties

of the simulated series resemble those of the observed data. Take MSM as an example. We first

choose a vector of parameter values to generate the simulated time series by running the agent-based

model with this chosen set of parameter values. We then compare some statistics (moments) of this

simulated time series, the simulated moments, with those using real data, the sample moments. The

difference between the two is used to form a distance function (the objective function). The MSM is

purported to minimize the distance by searching over the entire parameter space.

Formally speaking, let X be a set of chosen statistics derived from the real data,

X5 (X1, X2,y,Xm), and Y be X’s counterpart in the artificial data, Y5 (Y1, Y2,y,Ym). In

addition, let L be a distance function between X and Y. Then the indirect estimation of a set of

parameters y involves finding y* such that

yl ¼ argfmin
y2Y
LðX;Y; yÞg ð17Þ

The indirect method, as claimed by Winker and Gilli (2001), is general enough to be applied to

other agent-based financial models, including SFI-like models. However, one of the main diffi-

culties is solving Equation (17). Of course, an analytical solution in general is rarely available, and

one has to rely on numerical approaches.

Example: Winker and Gilli (2001). Take Winker and Gilli (2001) as an example. Winker and Gilli

(2001) attempted to estimate a version of the Kirman model (Kirman, 1991, 1993). There are two

major parameters in this model, the self-conversion rate and the conviction rate, denoted by y1 and
y2, respectively. To replicate the two characteristic features of financial time series, namely, fat tails

and volatility clustering, their choice of X includes the following statistics: kurtosis and the first-order

ARCH (AutoRegressive Conditional Heteroskedasticity) coefficient, which are denoted by X1 and X2.

Then, given a specific choice of the distance function as shown below, the indirect estimator of y is

yl ¼ ðŷ1; ŷ2Þ ¼ arg min
ðy1;y2Þ2Y

jY1�X1j þ jY2�X2j ð18Þ

15 Examples include nonlinear dynamic models, models with latent (or unobserved) variables, and models

with missing or incomplete data.
16 A review of the development of simulation-based econometrics is beyond the scope of this chapter. The

interested reader is referred to Gourieroux and Monfort (1996). In addition, the Journal of Applied Econo-

metrics has a special issue on this subject; see its volume 8 (1993).
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Y1 and Y2 are the counterparts of X1 and X2 in the artificial data. They are not based on a single run

of the Kirman modelMðy1; y2Þ, but on 10000 runs. In other words, Y1 and Y2 are the averages

taken over the 10 000 sample statistics derived from the corresponding 10000 artificial time series.

To solve the optimization problem posted in Equation (18), Winker and Gilli (2001) and Gilli and

Winker (2003) suggested the use of the simplex method, combined with threshold accepting.

Practical issues of MSM. It can be seen from the previous illustration that the indirect estimation

results, ŷ, can depend on a number of choices, which include

1. the dimensionality of the target vector (X),

2. the statistics included in the target vector (X1, X2,y)

3. the parameters considered (y)
4. the distance function (L),
5. the search algorithm used to solve global optimization,

6. the number of runs of the modelMðyÞ, or the sample size upon which Y is derived.

This sensitivity may introduce a number of issues in the use of the indirect estimation approach.

The first issue has to do with the selection of adequate statistics X. Winker et al. (2007) proposed

two criteria: robustness and powerfulness. The robustness criterion is involved because y may be

sensitive to the actual realization of X, say, x. If x is not stable over the entire sample, it would be less

meaningful to anchor a specific ŷ to the whole series. The powerfulness criterion requires

the involved statistics to exhibit the potential to discriminate between alternative models and/or

parameter constellations.

The second issue is the selection of the parameter vector (y). While, in principle, all parameters

involved in the agent-based model under study should be included, it is very difficult to do this in

practice. This is mainly because the search space grows exponentially with the dimension of y.
Hence, this practical restriction allows us to estimate only a subset of y5 (y1,y2), say, y1, and the

rest, y2, has to be fixed a priori.

4.1.3 Genetic algorithms

What seems to be interesting is that the estimation of agent-based models actually starts with the

one involving the complex objective functions (Miller, 1998; Ecemis et al., 2005; Midgley et al.,

2007). A common feature shared by these papers is the use of GAs. Midgley et al. (2007) provide a

general framework for this approach17. The idea is to use GAs to evolve the agent-based models so

as to optimize the objective function.

Of all econometric agent-based models, Ecemis et al. (2005) is probably the one with the most

general objective function. They consider the possibility that the objective function for a model

cannot be practically formulated mathematically, and is highly qualitative. In general, how well

the model reproduces the data qualitatively can be no different from the appraisal of a performing

art. A few statistics or moments may not be able to capture all we want. When it is hard to

articulate the objective function, which reveals what we really want, then an automatic evaluation

of a model becomes infeasible. An alternative solution is to allow financial experts to directly

evaluate the models based on their expertise.

4.2 What to estimate?

The next issue concerns what is estimated. This issue is as important as the issue of how to

estimate, because it is what was estimated that helps us to gain more insights from agent-based

financial models. In particular, many agent-based financial models emphasize the contribution of

learning or social interaction to the asset price dynamics. It would then be desirable to know

whether these effects are empirically significant. In the last column of Table 3, we list the key

parameters estimated by each model.

17 See Midgley et al. (2007), p. 890, figure 1.

Agent-based economic models and econometrics 205



4.2.1 ANT model

We start with the ANT model, proposed by Kirman (1991, 1993), since this is the first agent-based

financial model being estimated. The ANT model is a two-type model consisting of fundamen-

talists and chartists. Let q1 and q2 be the fraction of fundamentalists and chartists, respectively,

q1 5 12 q2. There are two key parameters in the ANT model. Let y1 and y2 be the mutation rate

(the self-conversion rate) and the conviction rate18. It is found that when the following inequality,

Equation (19), holds, the market fraction q1,t spends little time around the value of one-half but a

great deal of time at the extremes, that is, nearly zero or one.

y1 o
y2

N � 1
ð19Þ

where N is the number of agents. The ANT model has been estimated three times in the literature

(Winker & Gilli, 2001; Gilli & Winker, 2003; Winker et al., 2007). Using the indirect estimation

mentioned in Section 4.1.1, Winker and Gilli (2001) found

ŷ1 o
ŷ2

N � 1
ð20Þ

Gilli and Winker (2003) considered a three-parameter ANT model: in addition to the two para-

meters above, they also included a parameter related to noise distribution19. Equation (20) is again

sustained. Based on Kirman (1991), this finding indicates that there is significant switching

between fundamentalists and chartists; sometimes the market is dominated by fundamentalists,

and sometimes by chartists20. Winker et al. (2007) moved back to the two-parameter ANT model,

but by using an objective function, which is closer in spirit to the simulated method of moments.

This time they also gave a significance test of the model being estimated via a bootstrap method21.

Whether the relation (20) holds was no longer discussed explicitly, even though the model with the

parameter vectors considered was rejected.

4.2.2 Lux’s interactive agent hypothesis model

As discussed in Section 2.1.3, there are two determinants that govern the switching behavior

in Lux’s IAH model, that is, herding and the profit differential. When it comes to the estimation

of the Lux model, only the simple version with herding was estimated in Alfarano et al. (2005,

2006, 2007), whereas the more general version with both determinants was estimated in Winker

et al. (2007). It should be noted that although herding is a common switching setting in the

ANT model and the Lux model, the magnitudes of the parameters play different roles in these

two models. In the ANT model, the switching parameters must satisfy Equation (19) in order

to generate a bimodal distribution, which replicates the original observation in entomology

and this is also an indication of significant switching behavior. In the Lux model, herding is

presented only in the sense of following the majority (micro-level) but is not necessarily a strongly

dominated group all the time (macro-level). In addition, the significance of switching behavior

can be estimated and inferred directly (Alfarano et al., 2005, 2006, 2007) or indirectly (Winker

et al., 2007).

18 Kirman himself used A and 12 d.
19 In Kirman (1991), each agent tries to assess what the majority opinion is. Each agent observes q1,t but

with some noise. The noise follows a normal distribution N ð0; s2Þ. The third parameter considered by Gilli

and Winker (2003) is s2.
20 Unfortunately, a unique series q̂1;t is not available from this estimation. The estimation only gives us ŷ1
and ŷ2, which allows us to simulate many equally likely series q1;t. Hence, we are not able to answer the

question: between 1991 to 2000, when is the market dominated by fundamentalists and when is it dominated

by chartists?
21 Notice that, both in Winker and Gilli (2001) and Gilli and Winker (2003), whether Equation (19) holds

was only examined numerically as in (20), rather than statistically. This is because a formal test had not been

proposed then.
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Alfarano, Lux, and Wagner (2005, 2006, 2007). A two-type Lux model with only a herding

mechanism in the transition rate function was estimated by Alfarano et al. (2005, 2006, 2007)22.

Similarly to Kirman (1991, 1993), they introduced the parameters of an idiosyncratic propensity a

and herding tendency b, with the difference that the idiosyncratic propensity to switch to the other

strategy is asymmetric, and is denoted as a1 and a2, which is different from the common prob-

ability of self-conversion that implies a1 5 a2 in Kirman’s setting. The major parameters to be

estimated in this model are e1 and e2 where �1;2 � a1;2
b
. Let z be the fraction of noise traders. It can

be shown that e1 and e2 determine the average percentage of noise traders in the market:

EðzÞ ¼ �1
�1 þ �2

ð21Þ

They can characterize the market by a dominance of fundamentalists’ or noise traders’ activity

through estimating the magnitude of switching parameters. Although there is an exception in the

Australian stock market (Alfarano et al., 2006), the noise traders’ dominance in stock markets, that

is, �̂14�̂2, seems a robust result over almost each individual stock in Japan and Germany (Alfarano

et al., 2005, 2007). Furthermore, the model with an extreme switching tendency, �1 � �2, implying

extreme dominance of noise traders, cannot be rejected for a large number of cases in Japan.

Winker, Gilli, and Jeleskovic (2007). Another empirical estimation of the Lux model was per-

formed by Winker et al. (2007), based on the indirect estimation mentioned in Section 4.1.1. They

estimated a three-type Lux model, including fundamentalists and two types of chartists, that is,

optimists and pessimists. Unlike Alfarano et al. (2005, 2006, 2007), the complexity of this version

of the Lux model makes the selection of the parameters being estimated no longer so trivial. They

only choose three parameters: the general frequency of the revision of opinion between optimists

and pessimists, the general frequency of the revision of opinion between fundamentalists and

chartists, and the reaction strength of the fundamentalists’ excess demand. A significance test of

the model being estimated is also performed via the bootstrap method. As it turns out, the Lux

model was rejected, similar to the rejection of the ANT model, and the estimates of the parameters

were not discussed in this work.

4.2.3 Adaptive belief systems model

Unlike Kirman (1991), the ABS model (Brock & Hommes, 1998) leaves the forecasting rules, in

parametric forms, that are employed by agents to be determined by the data. In some settings, the

estimation of these coefficients can be interesting. For example, in the simple fundamentalist-and-

chartist model, the expectations of fundamentalists and chartists can be described as in Equations

(2) and (3). The parameters to estimate are the reverting coefficients (af) and (ac). As discussed in

Section 2.1.1, the magnitude of af measures the speed with which the fundamentalists expect the

price to return to the fundamental price, whereas the magnitude of ac expresses the degree to

which chartists expect the past to change in the future. Together with the intensity of choice (l) in

the switching model (Equation (7)), there are at least three economically meaningful parameters to

be estimated, namely,
ðy1; y2; y3Þ ¼ ðaf ; ac; lÞ ð22Þ

There are at least two empirical estimations of the ABS model (Boswijk et al. 2007; Amilon, 2008).

Boswijk, Hommes, and Manzan (2007). Boswijk et al. (2007) estimated a three-parameter ABS

model using yearly S&P 500 data from 1871 to 2003. The three parameters are the ones described

in (22)23. Their estimated y1 and y2 are significantly different from zero, and are also correct in

22 In Alfarano et al. (2005, 2006, 2007), the two clusters of traders are defined as fundamentalists and noise

traders instead of the fundamentalists and chartists in Kirman (1991, 1993).
23 Actually, Boswijk et al. (2007) studied a modified version of the standard ABS model. Instead of fore-

casting price, (2) and (3), agents are assumed to forecast the price-to-cash flow ratios, but the counterpart of

the reverting coefficient (af) and the extrapolating coefficient (ac) remains. However, with this modification,

the reasonable ranges for these two parameters are: 0, af , 1, and ac . 1.
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terms of their magnitude, which justifies the co-existence of the mean-reverting belief and the

trend-following belief. Their estimation also provides us with a time series of the market fraction,

which again shows that q̂1 (the fraction of fundamentalists) can swing from zero to one, with a

mean of around 0.5. This result is similar to the empirical results from the ANT model (Winker &

Gilli, 2001; Gilli & Winker, 2003), and lends support to the market fraction hypothesis or evolving

fraction hypothesis. What may differ from the ANT model is the learning behavior of agents. In

the ABS model, the learning behavior is mainly captured by the parameter, intensity of choice,

which is, however, not found to be significant in Boswijk et al. (2007).

Market fraction hypothesis (MFH). The market fraction hypothesis basically says that the

financial time series observed can be described in terms of switching between different types of

agents, each with either different beliefs or different trading rules. In sum, the market dynamics is

well explained by the evolving fractions of different types of financial agents. This is one of the

most fundamental implications obtained from ACF models. Using yearly S&P 500 data from 1871

to 2003, Boswijk et al. (2007) found that the two types of investors, fundamentalists and chartists,

coexist and their fractions exhibit considerable fluctuations over time. Before the 1990s, only

occasionally did chartists (trend-chasers) dominate, and this dominance never persisted for more

than 2 consecutive years. However, in the late 1990s the fraction of them increased to close to one

and persisted for a number of years. The persistently high fraction of chartists in the market

contributed to an explosive growth of the stock market, and resulted in annual returns of more

than 20% for 4 consecutive years. Similar findings regarding the considerable fluctuations in the

fractions are also obtained in other different agent-based financial markets, including foreign

exchange markets.

Amilon (2008). Amilon (2008) estimated both a two-type and a three-type ABS model. For the

latter, in addition to the behavioral rules (2) and (3), he also introduced contrarians into the model

with their behavioral rule described in Equation (4). Furthermore, both the behavorial rules (3)

and (4) are extended to incorporate a memory parameter, bc and bco, respectively, as in Equations

(5) and (6). Therefore, in addition to the mean-reverting and extrapolation coefficients, the

memory of both chartists and contrarians becomes another parameter to estimate. This, with

other extensions, actually leads to a 9-parameter two-type ABS model and a 14-parameter three-

type ABS model24.

It is found that all major behavorial coefficients in the two-type model are insignificant,

whereas they, including the intensity of choice, are all significant in the three-type model25.

Nevertheless, most of the parameters are right in terms of magnitude. In particular, in the three-

type model, all three heterogeneous beliefs are successfully identified. What, however, is interesting

is that the swing between different types of agents is restricted only to the chartists (momentum

traders) and contrarians. The fraction of fundamentalists is effectively zero. In other words, the

inclusion of contrarians makes it hard for fundamentalists to survive. It, therefore, makes us wonder

whether these three types of agents are redundant and whether either a fundamentalist–chartist

model or a trend-chaser and contrarian model would suffice to do the job.

4.2.4 Santa Fe Institute-like models

AGEDASI TOF. AGEDASI TOF, standing for A GEnetic-algorithmic Double Auction SImulation

in the TOkyo Foreign exchange market, was initially proposed by Izumi and Okatsu (1996) and

Izumi and Ueda (1999). It follows an AA design. Like the SF-ASM, agents (artificial dealers)

make their investment decisions (buying or selling foreign currency) based on their forecasts of the

24 Amilon (2008), in fact, modified standard ABS models in many ways, including the agents’ perceived risk

of investment, risk preference, fitness measure, and, most importantly, the noise structure. The additional

number of parameters actually comes from this extension.
25 Of course, the two models are associated with different noise structures; hence, they are estimated with

different methods. The two-type model is estimated by the maximum likelihood method, and the three-type

model is estimated by the efficient method of moments.
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investment return and risk. To forecast investment return, each artificial dealer will refer to a

number of economic and political variables, such as gross domestic product (GDP), the consumer

price index (CPI), interest rates, money supply, etc. However, the exact relationships between the

foreign exchange rate and these variables are unknown, and have to be exploited.

Therefore, in the vein of the SF-ASM, AGEDASI TOF also used GAs to model agents’

learning behavior (forecasting). GA helps agents to decide the magnitudes and signs assigned to

each variable. Up to this point, there is nothing significantly different from the SFI model.

However, AGEDASI TOF allows its artificial dealers to get access to external data, that is, data

from the real world, to forecast the exchange rate, which means the data, such as GDP, CPI, etc.

are all real. This modeling strategy is essentially equivalent to a direct estimation of the behavioral

rules (forecasting models) of agents, and then uses the estimated rules of each agent to generate the

aggregate behavior (exchange rate).

The system has been shown to have a better forecasting performance than benchmarks, such as

the random walk. In particular, it has a good performance in long-term forecasting; it can also be

used to forecast the probability of a particular event, such as bubbles and crashes. For example,

the model gives a probability of 42% of observing a bubble in the Tokyo foreign exchange market

in the years 1989–1991.

From an estimation viewpoint, the econometric approach exemplified by AGEDASI TOF is

not a real econometric approach but a computational intelligence approach in a bottom-up style.

This direct bottom-up estimation approach is more intuitive and applicable to the SF-type models;

nonetheless, whether it can satisfy econometrics standards requires further study.

4.3 Forecasts with agent-based financial models

It has been long asked, instead of just replicating or growing the stylized facts, whether the agent-

based model can be a useful tool for forecasting. In other words, in addition to providing a

bottom-up mechanism to explain the stylized fact as an emergent outcome, interest is further

drawn to the prediction power of the same mechanism. The recent research trend seems to indicate

that one can be cautiously optimistic about this possibility. This is particularly so given the recent

contribution of de Jong et al. (2006) and Manzan and Westerhoff (2007)26.

de Jong, Verschoor, and Zwinkels (2006). Following standard econometric forecasting proce-

dures, first of all, de Jong et al., (2006) estimated two versions of a three-type ABS model, one with

a switching mechanism and one without it. The first two types of agent are the usual funda-

mentalists and chartists (Equations (2) and (3), or, in general, Equation (5)), but, for the third

type, they considered a different kind of chartist, called the MA-chartist, whose forecasting rule is

based on the difference between a long-term moving average and a short-term moving average:

Ema;t½ptþ 1� ¼ pt þ amaðMAL
t �MAS

t Þ ð23Þ

where MAL
t refers to the moving averages with a window length of L and MAS

t refers to a window

length of S (L.S). One can consider the MA-chartist as a kind of fundamentalist if the funda-

mental price p
f
t in Equation (2) is replaced by the long-term moving average MAL

t .

de Jong et al. (2006) estimated this three-type model using data from eight foreign exchange

markets. They found evidence supporting heterogeneity in the behavior of agents, but not sup-

porting a significant intensity of choice. The latter with a similar finding in Boswijk et al. (2007)

and Amilon (2008) (the three-type case) really casts doubt on the essence of the ABS, namely, the

sensitivity to profit or performance differentials. The estimated model is then applied to forecast

the future exchange rate with different horizons. Using the Diebold–Mariano test (Diebold and

Mariano 1995), they were able to demonstrate that the three-type model can outperform the

26 In fact, the earliest application of the agent-based financial model to forecasting is Izumi and Okatsu

(1996). See also Izumi and Ueda (1999). See Section 4.2.4.
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random walk in most markets with various settings of different horizons or criteria. Nevertheless,

this superiority in forecasting may not be taken seriously since the usual distinction between the

training sample and test (unseen) sample is not made in their study.

Manzan and Westerhoff (2007). In a similar vein, Manzan and Westerhoff (2007) estimated the

two-type models with and without switching using monthly exchange rate data. The adaptive

behavior in this paper is not driven by the profit differential or herding, but it is an exogenous threshold

value that governs the sentiment of the chartist. From the econometrics perspective, they actually

incorporated a threshold autoregressive structure, and hence nonlinearity, into the model. On the other

hand, since this kind of threshold mechanism itself implies an immediate switch once the state variable

passes the threshold, it is equivalent to having an infinitely large intensity of choice in the binary-choice

model (Equation (8)). The estimation results and nonlinearity tests are in favor of the model with a

switch. They then dynamically estimated the proposed two-type model with a rolling window and

made the one-step-ahead forecast accordingly. Using the Diebold–Mariano test, they showed that the

two-type model can outperform the random walk model for two of six currencies.

In not only using the Diebold–Mariano test as a predictability test, Manzan and Westerhoff

(2007) also raised a question about its test power. They treated their agent-based model as a real-

data-generating process, which contains both a linear adjustment process (the fundamentalists)

and a nonlinear switching mechanism (the chartists). These two components can be captured by

the estimation methods proposed by Mark (1995) and Diebold and Nason (1990). It should be

expected that the nice in-sample estimation results could carry over into the out-of-sample fore-

casting for simulated time series and lead to better forecasting accuracy over the random walk.

However, the Diebold–Mariano test cannot well endorse such an improvement, which means that

its test power is quite low.

Prospectives. Even though the forecasting capability of the agent-based model has not been

consolidated, there are reasons to be optimistic. First, the bottom-up mechanism in the agent-

based model behaves as a pool of many agents’ forecasting, which is very similar to what is known

as the prediction markets or information markets. Second, the emergent behavior (the aggregate

behavior) also behaves as a combination of different forecasts, which is, therefore, a kind of

combined forecast. In the literature, evidence of the superiority of the prediction markets over the

poll and other forecasts and evidence of the superiority of the combined forecast over simple

forecasts already exists, while not necessarily overwhelmingly. Therefore, it is anticipated that the

agent-based model under a suitable construction process may lead to some desirable outcomes.

5 Emerging econometrics with agent-based computational econometrics

Most empirically based ACE models only consider how econometrics can help to build or validate

the ACE models. Few have explored whether the other way around may be equally interesting.

In this section, we shall present some thoughts on the reverse direction, that is, instead of an

econometric foundation of ABE, an agent-based foundation of econometrics. In this regard, ACE

can present challenges to econometrics.

5.1 Aggregation problems

Intuitively, ACE can help econometrics because it is a kind of the micro–macro approach. This

micro–macro approach has been reviewed by Stoker (1993) as an approach to address the

aggregation problem. The ACE model, as a computational model, provides us with a greater

flexibility to deal with various levels of aggregation over individuals. Unlike many other

micro–macro models, it does not have to make very stringent assumptions regarding individual

behavior in order to have a tractable aggregation. This advantage enables us to include more

realistic behavioral aspects of individuals into the aggregation, such as learning and interactions.

In the following, by using an agent-based consumption asset-pricing model (Chen et al., 2008), we

shall demonstrate how the ACE model can help solve the aggregation problem.
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5.1.1 Estimation using the individual data

We start with an individual i’s consumption Euler equation as follows:

Dcit ¼ ti þ cirit� 1 þ xit ði ¼ 1; 2; . . . ; IÞ ð24Þ

where Dcit is the consumption growth at time t,

Dcit ¼ log
cit

cit� 1

� �
ð25Þ

In the consumption-based capital asset pricing model (CAPM), ci, under suitable assumptions,

is also known as the elasticity of intertemporal substitution (EIS). rit is the real return on the asset at

t, ti is a constant, and xit is the residual variable. Notice that the heterogeneity of individuals in

terms of ci makes Equation (24) also heterogeneous among agents. Furthermore, the heterogeneity

in terms of investment behavior also makes the rates of return rt facing agents heterogeneous, which

are denoted by rit in Equation (24).

The return facing each individual is determined by his or her chosen portfolio ait ¼ fam;tg
M
m¼ 1,

and can be calculated as follows:

rit ¼ logðRi
tÞ ð26Þ

where

Ri
t ¼

XM
m¼ 1

aim;tRm;t ð27Þ

and

Rm;t �
pm;t þ wm;t

pm;t� 1

ð28Þ

pm,t is the price of the asset m at time t, and wm,t is the dividend paid for the asset m at time t.

To estimate the coefficients ci, we may consider the set of l individual equations as one giant

equation, and estimate the l cis altogether. This is the familiar seemingly unrelated regression

estimation (SURE). SURE can be useful when the error terms ðxitÞ of each equation in (24) are

related. In this case, the shock affecting the consumption of one agent may spill over and affect the

consumption of the other agents. Hence, estimating these equations as a set, using a single large

equation, should improve efficiency. To apply SURE, we rewrite the set of equations (24) into a

single equation as (29):

Dc ¼ G þ rC þ X ð29Þ
where

G ¼

t1

t2

..

.

t30

0
BBBB@

1
CCCCA;Dc ¼

Dc1

Dc2

..

.

Dc30

0
BBBB@

1
CCCCA; r ¼

r1 0 . . . 0

0 r2 . . . 0

..

. ..
. . .

.

0 0 . . . r30

0
BBBB@

1
CCCCA;W ¼

c1

c2

..

.

c30

0
BBBB@

1
CCCCA;X ¼

x1

x2

..

.

x30

0
BBBB@

1
CCCCA

5.1.2 Estimation using the aggregate data

The early econometric work on the estimation of the EIS mainly used only aggregate data

(Hall, 1988). In this section, we also estimate the c based on the aggregate data:

Dct ¼ t þ crt� 1 þ xt ð30Þ

Equation (30) is the Euler consumption equation that is based on the assumption of treating the

whole economy as a single representative agent. This version is the one frequently used in macro-

econometrics. Dct and rt are the corresponding aggregate variables of consumption and returns.

5.1.3 Micro–macro relation

One way to formulate the aggregation problem has to do with the relationship between ŵ (the

individual estimates) based on Equation (29) and ĉ (the aggregate estimate) based on Equation (30).
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For example, if the ci are all identical, say ci 5 1, 8i, we can have EðĉÞ ¼ 1. Furthermore, if we are

informed of the distribution of the ci, what can we further say about EðĉÞ? This is the kind of

aggregation problem which has been generally surveyed in Stoker (1993). Stoker (1993) detailed a

solution called the micro-macro approach. This approach models the comparability of individual

behavioral patterns and aggregate data patterns, removing any mystery induced by the one-sided

focus of studying aggregate data alone or individual data alone. The approach has been further

pursued recently by Gallegati et al. (2006).

Chen et al. (2008) use an agent-based consumption-based CAPMmodel to simulate all artificial

time series required by the individual Euler equation, and they estimate the individuals’ EIS

coefficients through Equation (29). Then they also run the aggregate Euler equations (30) by using

the aggregate data. What surprises them is that the two estimates can be quite distinct. Given the

assumption that ci 5 1 (8i), none of the individual and aggregate Euler equations can recover this

behavioral parameter in a reasonably close range. Most estimated individual cis are around 0.3,

whereas the estimated aggregate c is close to zero.

Elasticity puzzle: real or spurious? If we further assume EIS to be the reciprocal of the coefficient

of risk aversion, then this result implies an unreasonably high risk aversion. The latter conundrum

is also known as the elasticity puzzle (Neely et al., 2001). What, therefore, is shown in Chen et al.

(2008) is that if we follow standard econometric practice with the representative agent framework,

then we can easily obtain this purely spurious result simply because of the negligence of aggre-

gation over interacting heterogeneous boundedly rational agents. This phenomenon has been also

well noticed by Delli Gatti et al. (2007):

‘If agents are heterogeneous, some standard procedures (e.g. cointegration, Granger-causality,

impulse-response functions of structural VARs) lose their significance. Moreover, neglecting

heterogeneity in aggregate equations generates spurious evidence of dynamic structure’ (Delli

Gatti et al., 2007).

ACE as a data-generation mechanism (DGM).Hence, by using ACE in the model as a DGM, we

can examine the behavior of various econometric tests, particularly, those macroeconometric tests,

to see whether they actually behave well when the data are indeed the aggregation over interacting

heterogeneous bounded rational individuals. Since the ACE model can easily accommodate dif-

ferent kinds of learning algorithms and interaction mechanisms, this prompts us to perform a

sensitivity analysis to see whether the ideal behavior of the standard econometrics can be robust to

different micro-underpinnings.

5.2 Imperfect data

ACE can help to test some hypotheses, which are very difficult to test on the real data. This can

happen when the respective real data are not easily available. One example concerns agents’

expectations. In the literature on sunspot equilibria in macroeconomics, there is a concern among

macroeconomists whether something that is totally extrinsic to a system can eventually have

effects on the operation to the system, simply because agents ‘naively’ believe so. Nevertheless,

it is widely shared among macroeconometricians that the direct empirical test of the existence

of sunspot beliefs and sunspot equilibria can be rather difficult due to the lack of observed

data. Some recent progress in this area has been made using the experimental approach (Duffy

& Fisher, 2005), but ACE can provide an alternative way out of the empirical difficulty (Chen

et al., 2008).

ACE models can directly control the interactions among agents as well as their learning

processes, and indirectly define the transmission process of sunspots. Of course, it is hard to know

whether the real counterpart is the same or similar to the one used in a specific ACE model, but at

least we know what the setting is and we can change the setting. This specific setting is equivalent

to the assumption of a theorem, and we can then use standard econometric tests to examine

whether belief matters with respect to different assumptions.
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6 Concluding remarks

This paper provides a first review of the ACE models from an econometric viewpoint. Given the

fast growth of both financial econometrics and agent-based finance, this paper, in many ways,

serves only as a beginning and is by no means exhaustive.

First, the list of stylized facts is not exhaustive. We believe that the exploration of various

financial data that were hardly available before will soon contribute to the lengthening of the list

of stylized facts. Actually one area that we do not cover well concerns the data on the order book

and the recent empirical findings of the order book that have triggered another wave of the

development of ACF models. This is definitely a space, which we should fill in a future study.

Second, the standpoints by which we examine and differentiate various ACF models are also

limited. We focus mainly on the behavioral rules of financial agents. This very suggestive taxonomy

of the literature enables us able to see the minimum condition required to replicate the stylized facts

in terms of the heterogeneity and complexity of behavioral rules. Needless to say, there are other

ingredients, which deserve our further distinctions. The design of a network of interactions is an

example. While most ACF models do implicitly assume a network for interactions (Kirman, 1991;

Cont & Bouchaud, 2000; Iori, 2002), work on the explicit modeling of interactions (Zovko &

Farmer, 2007; Hein et al., 2008) is one area neglected in this survey. Therefore, the extent to which

social networks can contribute to the understanding of stylized facts is also a direction for the future.

Other examples include risk preferences (Shimokawa et al., 2007), asynchronous updating (Boswijk

et al., 2007), information asymmetry (Suominen, 2001), and, finally, institutional constraints

(Farmer et al., 2005).

Despite this incompleteness, it is found that the models with simple heterogeneity and simple

rules (few-type models), in particular the variations of the fundamentalist–chartist model, are

sufficient to replicate a number of stylized facts. A complex extension of this model may gain

additional explanatory power, but so far this power has not been well exploited. In addition, the

simple model makes later econometric estimation much more feasible.

Econometric estimation of agent-based financial market models is an ambitious task. In principle

one can identify various details of agents, such as their beliefs, memory, intensity of choice, risk

perceptions, and risk aversions, etc. It may also help us to infer the underlying fitness function, for

example, profits vs. risk-adjusted profits, from the data. For the few-type model, one can further

discover the evolving market fractions so as to track the mood of the market. Nevertheless, before

we reap the fruits of these models, there is still a long way to go. So far, we have not been assured

that these agent-based financial market models are econometrically significant, and the estimates are

stable. One of the difficulties in front of us is how to effectively tackle the numerical aspects of the

estimation of a complex objective function involving a large number of parameters.

However, the value of agent-based models should not be restricted to just replication or vali-

dation. This is particularly so when the econometrics to support quality validation is still lacking.

Section 5 suggests that treating agent-based models as theoretical models, which behave as many

other stochastic simulation models can help us to examine the power of the established econo-

metric tests. This function can be most valuable when the environment is filled with various

degrees of tainted or missing data. The paper therefore ends up with the message that the agent-

based foundation of econometrics is the next stage to move toward.
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Append ix A: Taxonomy of agent -based computa t iona l f inance mode l s and

s ty l i zed fac t s exp la ined

The appendix gives summary tables (Tables 4–7) of each of 50 agent-based computational finance

(ACF) models surveyed in this article, including the stylized facts replicated or explained by each

of them. In the second column of each table, we also indicate the intellectual origin or ingredients

of each model. The most often seen ones are those that have been surveyed in Section 2, but there

are also a few that are new here. The names of the origin are given in an acronym. Here, we list

these acronyms with their full names. Some of the names given here are very suggestive.

1. ABS: Adaptive belief systems

2. ANT: Ant

3. IM: Ising model

4. IAH: Interactive agent hypothesis

5. GT: Game theory

6. MG: Minority games

7. MS: Microscopic simulation

8. PT: Prospect-theory-based model

9. TM: Threshold model

Table 4 Two-type designs and the stylized facts explained

Models Origin Facts explained Switch

Alfarano et al. (2005) IAH AA, FT, LM, PLBR, VC O

Alfarano et al. (2006) IAH FT, VC O

Amilon (2008) ABS FT, VC O

Boswijk et al. (2007) ABS BC O

Chiarella et al. (2002) ABS FT, VC X

Chiarella et al. (2006) ABS AA, FT, LM, VC O

De Grauwe et al. (2005a) ABS EV, FT, PLBR X

De Grauwe et al. (2005b) ABS AA, AG, FT, PLBR, VC O

de Jong et al. (2009) ABS BC O

Gaunersdorfer and Hommes (2007) ABS AA, EV, FT, VC O

Gilli and Winker (2003) ANT AA, FT, VC O

He and Li (2007) ABS AA, FT, LM, VC X

Hommes (2002) ABS AA, FT, LM, VC O

Kirman and Teyssière (2002) ANT AA, BC, LM, VC O

Levy et al. (2000) MS BC X

Li and Rosser (2004) ABS AA, FT, LM, PLBR, VC O

Manzan and Westerhoff (2005) ABS AA, FT, LM, VC X

Winker and Gilli (2001) ANT AA, FT, VC O

Table 5 Three-type designs and the stylized facts explained

Models Origin Facts explained Switch

Amilon (2008) ABS FT, VC O

Föllmer et al. (2005) ABS BC, FT O

Kaizoji (2003) ABS BC, FT O

Lux (1998) IAH AG, BC, FT O

Lux and Marchesi (1999) IAH AG, FT, PLBR, VC O

Lux and Marchesi (2000) IAH AA, FT, LM, PLBR, VC O

Parke (2007) ABS AA, FT, VC O

Sansone and Garofalo (2007) ABS FT, RLM, VC O

Suominen (2001) GT VC, VVC O
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