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Abstract
Optimizing sustainable renewable energy portfolios is one of the most complicated
decision making problems in energy policy planning. This process involves meeting
the decision maker’s preferences, which can be uncertain, while considering several
conflicting criteria, such as environmental, societal, and economic impact. In this
paper, rather than using existing techniques, a novel multi-objective decision mak-
ing (MODM) model, named fuzzy goal programming with interval target (FGP-IT),
is proposed and constructed based on recent developments and concepts in fuzzy
goal programming (FGP) and revised multi-choice goal programming (RMCGP).
The model deals with decision making problems involving a high level of uncertainty
by offering decision makers a more flexible way to formulate and express their pref-
erences, namely, fuzzy interval target goals. The proposed method is used to optimize
a hypothetical sustainable wind energy portfolio in Algeria. The results show that the
FGP-IT model is capable of assisting decision makers with uncertain preferences in
making such complicated decisions.
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1 Introduction

The increasing complexity of today’s world has forced us to change our approach
to real-life problems to incorporate numerous perspectives—political, environmental,
economic, and technological, among others—as described in 1984 by the physicist
Moravcsik (1984):

“In a nutshell, my point is that an overwhelming fraction of work in the sci-
ence of science, and in fact in many other areas of inquiry, has been carried
out in an implicitly or explicitly one-dimensional framework and therefore with
a correspondingly one-dimensional methodology. It is my contention that this
is a fundamentally incorrect way of looking at problems which, from the very
outset, distorts reality and hence is unable to arrive at truly insightful conclu-
sions. Instead, I claim, one must adopt a multi-dimensional model of reality and
use a methodology befitting this model to achieve meaningful and functional
understanding which then also has some predictive power.”

From this perspective, sustainable development (SD) can be viewed as an approach
that seeks to achieve the optimal balance between oftentimes competing multi-
dimensional factors such as environmental, societal, and economic impact (WCED
1987). However, integrating a multi-dimensional approach into decision making and
policy planning is far from an easy endeavor. The renewable energy (RE) sector pro-
vides a clear example of the conflicts of interest that can arise among different actors in
a sector (Vakulchuk et al. (2020)). It is clear today that energy consumption has a posi-
tive impact on economic growth (Kraft and Kraft (1978), Stern (2004), Dogan (2015),
and Mrabet et al. (2017)). That means surplus energy is key for nations to achieve
their development goals and support economic expansion. However, providing highly
reliable and affordable energy that is also sustainable is challenging because of the
uncertainty surrounding related factors, such as regulations, technological progress,
and climate change (Stock and Tatikonda (2008), Burke et al. (2015), and Barnett et al.
(2020)). An example of regulatory uncertainty is the high potential that energy policy
will change in the future—e.g., because of a global climate agreement—and affect
markets and their participants (Hoffmann et al. (2009)). The risk of new compliance
or pre-compliance regulations, the potential for litigation in emerging markets, and
other related risks raise investor uncertainty and, in particular, reluctance to commit to
multi-year agreements. Uncertainty about future prices and technological progress are
also major obstacles to investment in the RE sector. Finally, the sector’s close relation-
ship to the environment and climate change add further complexity to the problem, as
these factors are very difficult to control for or incorporate into investment planning.
Uncertainty related to future climatic conditions plays a major role in decision making
related to renewable technologies.

If decisions are to be made from a multi-dimensional perspective, policymakers
will require more mathematical tools to tackle these types of decision problems (see,
e.g., Hocine and Kouaissah (2019), Fischer (2019), Hussain et al. (2019) and Hocine
et al. (2020)). In this context, determining the optimal sustainable RE portfolio is a
key factor in energy policies and deserves study. The problem involves meeting the
decision maker’s (DM’s) preferences while considering the indicators of sustainabil-
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ity. However, one of the main issues that make the formulation of this problem difficult
is the uncertainty embedded in DM preferences. In real life, uncertain or fuzzy inter-
val preferences arise in several situations. For example, in RE planning, DMs often
make conservative initial estimates based on the available information and resource
limitations. For instance, a DM might say, “Under our resource limitations, we sug-
gest that the realization time of project ‘X’ will be between approximately 12 and
16 months.” Or they might say, “This project will cost around 350,500 to 400,500
euros.” DMs normally make conservative initial estimates because they anticipate
problems in achieving these goals (e.g., an architect’s reluctance to change specifica-
tions or drawings, harsh weather, or errors in executing project activities). However,
estimates using language like “between approximately” and “around … to …” are
very difficult to model using the existing fuzzy goal programming (FGP) techniques.

Motivated by these concerns, this paper tackles the problem by proposing a novel
model that can overcome this limitation. The model, named fuzzy goal programming
with interval target (FGP-IT), has been formulated to solve fuzzymulti-objective prob-
lems with an interval target (or interval goal). In this respect, the novel approaches
taken by this paper are as follows. From a theoretical point of view, this paper com-
bines two important techniques—FGP and revised multi-choice goal programming
(RMCGP)—to overcome their respective limitations. In particular, it allows FGP to
consider interval target values and thereby be applied in more complicated scenarios.
Moreover, it makes RMCGP suitable for addressing fuzzy type uncertainty problems.
To achieve this aim, it formulates the aspiration levels on the right hand side (RHS) of
the system constraints. It also considers the most common types of fuzzy membership
functions that are generalized to account for interval target values. This model thus
extends the capability of its building blocks to solve a wide range of real-world prob-
lems. To provide a practical perspective, the proposed approach is used to determine the
optimal sustainable wind energy portfolio decision in Algeria. This not only validates
the FGP-IT model but also provides useful insights for policymakers and contributes
to the continuing debate on whether implementing the optimal RE portfolio is a key
step toward SD.

The remainder of this paper is structured as follows. In Sect. 2, we present relevant
literature on multi-criteria models using goal programming (GP) applied to the study
of sustainability and RE. In Sect. 3, we describe the different approaches to modeling
GP problems in uncertain or imprecise environments. Some of the concepts related to
and types of fuzzy interval membership functions related to our proposed formulation
are presented in Sect. 4. The proposed FGP-IT model is developed in Sect. 5. The
application of FGP-IT to optimize sustainable wind energy portfolios in Algeria is laid
out in Sect. 6. Finally, our conclusions and suggestions for future work are presented
in Sect. 7.

2 A review of sustainability and renewable energy goal programming
analysis

Though the literature on SD and RE features an abundance of applications of multi-
attribute decision making (MADM), studies taking multi-objective decision making
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(MODM) approaches were rather limited. This may be because it is relatively easy,
and appears appropriate, to apply MADMmethods to the selection process. However,
when the problem involves not only conflicting criteria but also a deeply uncertain
decision context (i.e., some preferential statements from the DMs that are deeply
uncertain), taking the MODM approach would be a better choice. The importance
of such models is confirmed by several remarkable modeling techniques that tackle
problems under conditions of uncertainty. Furthermore, matureMODMmethods have
been used to construct tailored models to support decision making problems. In other
words, investigating how the field of MODM can be applied to and potentially used
to construct a mathematical model of a RE source selection problem involving con-
flicting criteria and an uncertain goal and goal target is a worthwhile research topic.
For instance, San Cristóbal (2012) studied the problem of planning the expansion of a
RE sector that involves an optimal mix of different types of energy on different Span-
ish lands, where each base type should be planted according to the different criteria
imposed. In this work, the author used a basic GP method combined with network
analysis. Later, Oliveira et al. (2014) reviewed different modeling approaches from
the literature based on coupling input–output analysis with multi-objective models,
which can be particularly useful for policymakers to assess the trade-offs between
the economy-energy-environment-social pillars of SD, a relevant advantage in the
current sluggish economic context. Jayaraman et al. (2015) applied a weighted GP
(WGP) model that integrates optimal workforce allocation to simultaneously satisfy
the 2030 targets for economic development, energy consumption, greenhouse gas
emission reduction, and job growth for the United Arab Emirates (UAE). Zografidou
et al. (2016) studied an optimal design of the Greek RE production network applying
an integer-weighted GP model, taking into account environmental and economic cri-
teria. Also for the UAE, Jayaraman et al. (2017a) developed a stochastic GP (SGP)
model with a satisfaction function that integrates optimal resource (labor) allocation to
simultaneously satisfy contradicting criteria related to economic development, energy
consumption, workforce allocation, and greenhouse gas emissions. Jayaraman et al.
(2017b) then introduced a WGP model involving the criteria of economic develop-
ment (GDP), electricity consumption, greenhouse gas emissions, and total number
of employees to establish the optimal labor allocation to various economic sectors.
Zografidou et al. (2017) produced a RE map for the installation of solar power plants
in Greece using social, financial, and power production aspects. A specific GP model
is developed under the target and structural constraints, and all possible weight com-
binations are examined. Zhuang and Hocine (2018) treated the multi-criteria wind
farm planning problem as a De Novo programming (DNP) problem and used meta-
GP to allocate a large initial construction budget according to electricity generation
guidelines determined based on several locations.

However, complex real-life situations have created grounds for debate as to the
compatibility of these approaches in the presence of uncertainty. Several studies have
attempted to address this issue: Lee et al. (2008) applied the FGP approach to evaluate
the effects of carbon taxes on different industries and simultaneously find an optimal
carbon tax scenario. Bravo and Gonzalez (2009) proposed a stochastic GP (SGP)
model to water use planning. The authors developed a decision support model to help
public water agencies allocate surface water among farmers and authorize the use of
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groundwater for irrigation.Ghosh et al. (2010) formulated a fuzzy non-linearGPmodel
to optimize resources and maximize sales and profit. Daim et al. (2010) developed a
FGP model for assessing the best RE portfolio. More recently, Ghouali et al. (2019)
studied the efficiency of RE base plants in Algeria using a FGP approach. Zamanian
et al. (2019) proposed a FGP model for optimizing the sustainable supply chain by
focusing on environmental and economic costs and revenue. Yu et al. (2019) developed
anoptimal renewable electricity generationmix forChinausing a fuzzymulti-objective
approach. Hocine et al. (2020) proposed a weighted-additive fuzzy multi-choice GP
(WA-FMCGP) model established on a purely commensurable GP basis to aid in the
decision of choosing a suitable location for wind farm expansion, when the decision
involves several (types of) fuzzy yet multi-choice goals (i.e., FMCGs). However, none
of these studies can solve decision making problems involving fuzzy interval targets.
One attempt was proposed byKouaissah and Hocine (2020), who used a fuzzy interval
GP approach to optimize sustainable and RE portfolios. To fill this gap, this paper
contributes to this literature stream and tries to extend the work presented by Hocine
et al. (2018) and (2020) and develop a novel approach to solving decision making
problems featuring fuzzy interval targets.

Basedon these important studies,we conclude that the use ofMODMmethods in the
RE selection process is so far limited to a few works. In particular, FGP is the primary
GP approach that has been used so far for optimizing RE portfolios under uncertainty.
Importantly, few studies focus on RE choices with preferences stated in terms of
fuzzy interval targets or goals. Furthermore, as many previous researchers have noted
(Kouaissah andHocine (2020)), most existing FGPmodels support only a single target
goal. These models cannot fully satisfy DMs measured by membership functions and
are unable to optimize RE portfolios efficiently when the DM is hesitant about his/her
target values. This, however, is the situation presented by many real-life applications,
suggesting that the proposed FGP-IT model may be useful to solve various MODM
problems under high levels of uncertainty and in imprecise environments.

3 Goal programming approaches in the uncertain or imprecise
environment

Supported by a large number of studies, GP has been and still is one of the most widely
used approaches to solvingMODM problems. Based on a philosophy of ‘satisfactory’
or ‘sufficient,’ it is useful for tacklingMODMproblems that involve several conflicting
objectives and, sometimes, incomplete or imprecise decision-relevant information.
GP was originally proposed by Charnes and Cooper (1961) and developed further by
several distinct works such as Lee (1972), Ignizio (1985), Romero (1991), and Tamiz
et al. (1998), among others (Aouni et al. (2012)). The purpose of GP is to minimize the
deviations between the achievement of goals and their aspiration levels. In general, it
can be expressed as the following program (when the achievement function is in the

‘WGP’ form):Min
K∑

i�1
wi [(pi + ni )/Ti ] under the condition that (AX )i + ni − pi �

bi ;X ∈ Csni , pi ≥ 0 (for i� 1,…,K), where bi is the target level for the i-th goal;
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variables ni and pi indicate, respectively, the positive and the negative deviations
from/toward the DM-defined target value bi ; X is the decision vector to be determined;
F denotes the feasible solutions set of constraints; and wi and Ti are, respectively, the
preferential weights and normalization constant of the i-th goal (see Jones and Tamiz
(2010)).

Standard variants of the GP formulation consider the aspiration levels to be precise,
deterministic, and well known. However, when there are multiple goals present, it is
difficult to ask a DM what attainment is desired for each of the goals, and this is
one of the major drawbacks when using GP (Lai and Hwang (1994)). In practice,
there are many decision making situations in which the DM does not have complete
information about some parameters and, in particular, the aspiration levels required
for a GP model. To deal with this situation, several techniques have been proposed for
modeling GP problems with uncertain and imprecise goals. Among those techniques
are FGP, multi-choice GP (MCGP), and its revised version, RMCGP. As this study
constructs the proposed model based on concepts from both RMCGP and FGP, these
building blocks’ models are reviewed.

3.1 Multi-choice goal programming

There is a large evolving literature surrounding the issue of uncertainty in MODM
paradigms. One of the techniques dealing with uncertainties in the GP context is
the MCGP model (Chang (2007)). With MCGP, a DM can consider several target
values for each goal, and the model allows a DM to set multi-choice aspiration levels
(MCALs) for each goal (i.e., many aspiration levels map to one goal). Doing so avoids
underestimations (or overestimations) of the real level that a left hand side (LHS)
criterion function can achieve. During the formulation, binary variables are used on
the RHS to construct the multiplicative terms that can select ‘a suitable choice out of
the multiple choices of aspiration level’ for each goal constraint. According to these,
the mathematical form of a MCGP model is expressed as follows:

(MCGP)

Min
K∑

i = 1

wi (pi + ni )

s.t.

(AX )i + ni − pi �
n∑

j�1

bi Si j (B) i � 1, . . . , K

ni , pi ≥ 0 i � 1, . . . , K

Si j (B) ∈ Ri (x) i � 1, . . . , K

X ∈ Cs
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where wi denotes the weight of the i-th goal; ni and pi are the negative and positive
deviational variables; Sij(B) represents a function of binary serial number; Ri(x) is the
function of resource limitations; and Cs is an optional set of hard or soft constraints
as also found in other mathematical programming approaches (Kwak et al. (2005)).

As mentioned previously, to express the MCALs of a goal, multiplicative terms
of binary variables are involved in the MCGP model. However, this leads to difficult
implementation (when the problem size gets large) and interpretation, i.e., it is not
easily understood by the industrial participants. To tackle this problem, Chang (2008)
proposed the RMCGP model. In the RMCGP method, on the RHS, those aggregated
multiplicative terms controlled by the binary variables are replaced by an interval
aspiration level delimited by the lower and upper bound of each objective function. As
can be read in the abovementioned paper, the RMCGP model can be viewed as one
final solution to the continuous versions of interval GP (IGP), where the aspiration
level yi is a continuous variable bounded the upper gi,max and the lower gi,min (i.e.,
gi,min ≤yi ≤gi,max). In other words, this approach is capable of solving the problem
with a continuous, interval-based MCAL span on the RHS. Based on these concepts,
the general form of a RMCGP model is expressed as follows:

(RMCGP)

Min
K∑

i = 1

[
wi (pi + ni ) + αi (e

+
i + e−

i )
]

s.t.

(AX )i + ni − pi � yi i � 1, . . . , K

yi − e+i + e−
i � gi,min or gi,max i � 1, . . . , K

gi,min ≤ yi ≤ gi,max i � 1, . . . , K

ni , pi , e
+
i , e

−
i ≥ 0 i � 1, . . . , K

X ∈ Cs

where pi and ni are positive and negative deviations attached to the i-th goal, i.e.,
|(AX)i yi |; e+i and e

−
i are the positive and negative deviations attached to |yi gi,max| or

|yi gi,min|, respectively; αi is the weight attached to the sum of the deviation (e+i + e
−
i );

wi is the weight attached to the sum of the deviations (pi + ni ); yi is the continuous
variable with a range of interval values gi,min ≤yi ≤gi,max; and gi,max and gi,min are
the upper and lower bounds of the i-th goal, respectively.

3.2 Fuzzy goal programming

Initially, Narasimhan (1980) incorporated the fuzzy set theory to GP and proposed
the FGP model. Since then, several works related to FGP have been presented in the
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literature. For more details about FGP, see the review by Aouni et al. (2009). To solve
FGP problems, several models based on various approaches have been proposed.
Recently, with the concept of ‘tolerance,’ Yaghoobi et al. (2008) proposed a more
efficient formulation for solving FGP problems. This generalized model uses the most
common linear fuzzy membership functions presented in most real-world problems.
As we will formulate the proposed FGP-IT model partially based on this model, this
FGP model is reviewed here.

Assume that the goals, identified by i, are divided into a number of i0 right-sided
membership functions, a number of i0 left-sided membership functions, a number of
(j0–i0) triangular membership functions, and a number of (K–j0) trapezoidal member-
ship functions. Then, a generalizable FGP model can be represented by the following
algebraic formulations:

(FGP)

Min
i0∑

i = 1

wi
pi

�R
i

+
j0∑

i = i0 + 1

wi
ni
�L

i

+
K∑

i = jo + 1

wi

(
ni
�L

i

+
pi

�R
i

)

s.t.

(AX )i − pi ≤ bi i � 1, . . . , io

(AX )i + ni ≥ bi i � i0 + 1, . . . , jo

(AX )i + ni − pi � b i � j0 + 1, . . . , ko

(AX )i − pi ≤ bui i � k0 + 1, . . . , K

(AX )i + ni ≥ bli i � k0 + 1, . . . , K

μi +
pi

�R
i

� 1 i � 1, . . . , io

μi +
ni
�L

i

� 1 i � i0 + 1, . . . , jo

μi +
ni
�L

i

+
pi

�R
i

� 1 i � j0 + 1, . . . , K

μi , ni , pi ≥ 0 i � 1, . . . , K

X ∈ Cs,

where wi denotes the weight of the i-th fuzzy goal; μi is a model variable that deter-
mines the degree of membership function for the i-th fuzzy goal; ni and pi are the
negative and positive deviational variables; and Cs is as defined previously.

It is obvious that FGP allows only one fuzzy goal target that should be achieved
to satisfy the DM. However, in some cases, the DM is hesitant or reluctant to specify
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only one single target rather than a range of goal targets. In other words, under certain
circumstances, DMs may face situations involving multiple or interval target goals.
The authors believe that this scenario cannot be solved by current FGP approaches.
The optimization process chooses the most suitable target goal from the range of
interval goal targets that highly satisfy the DM. To achieve this aim, the next section
will start with an examination of how the FGP model can be extended and improved
by introducing the fuzzy interval number to the RHS of each fuzzy goal constraint,
enabling the DM to express his/her preferences in terms of fuzzy interval goal targets
and thus increase decision supportability. This will be followed by a discussion about
how the above method can improve the existing fuzzy MCGP (FMCGP) models that
consider MCGP modeling rather than its revised version. In summary, the content
presented in Sect. 4 discusses and extends this section by setting the theoretical ground
for subsequent modeling works.Moreover, in Sect. 4, we emphasize how the proposed
model may improve upon those models that merge both FGP and MCGP.

4 Extended studies and the ground for the proposedmodel

4.1 Membership functions with fuzzy intervals

To express ambiguous or vague information in the decision making process, the fuzzy
sets theory was first introduced by Zadeh (1965). Fuzzy sets have reasonable differ-
ences from crisp (classical) sets. Crisp set A in universeU can be defined by listing all
of its elements denoted as x. Alternatively, a 0–1 valued membership function, μA(x),
which is given below, can be used to define on x.

μA(x) �
{
1, x ∈ A

0, x /∈ A
.

Unlike crisp sets, a fuzzy set Ã in universe U is defined by a membership function,
μ Ã(x), which takes values on interval [0,1]. Therefore, the definition of a fuzzy set
can be viewed as an extended version of the crisp set. While the membership function
takes a value of 0 or 1 from crisp sets, it can take any possible value on the [0,1] interval
from a fuzzy set. In the context of GP, the DMwill be asked by a standard GPmodel to
specify a precise aspiration level for each of the objectives. But as known, in real-life
problems, there are situations during a decision process wherein a DM is unable to
specify all or part of the aspiration levels precisely. Therefore, the FGP method has
been developed rightly for this purpose.

In studies of FGP, there are various ways to express and formulate the base form
of goal fuzziness, each of which leads to a different fuzzy membership function. To
the best of our knowledge, the first work to formulate the FGP problem by taking
the membership function concept was Narasimhan et al. (1981). In subsequent works,
including the listed (FGP) model which involves the ‘tolerance’ concept mentioned in
Sect. 3.2, all these functions are defined on the interval [0,1]. That is, the membership
function has a value of 1 when this goal is fully attained and the DMs are totally
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satisfied, or it has a value in the interval [0,1] otherwise. This should be a main and
common property of the FGP models which use the membership function concept.

However, in reality, the expression andmeasurement of the fuzziness of interval goal
targets should be another focus. When using FGPmodels such as (FGP), given his/her
preference structure, a DM does not always feel it is easy to specify the parameters of
‘the desired attainment’ for a membership function, e.g., the b values set on the RHS
of each fuzzy goal constraint in the (FGP) model. So, in at least some cases, using an
interval value may better serve the purpose (Silva et al. (2013), Mouslim et al. (2014),
Umarusman (2018), and Ho (2019)).

In this study, we consider the situation in which a DM determines his/her aspiration
levels in a fuzzy interval manner and allow him/her a flexible way to express the
fuzziness of interval goal targets in constructing a FGP model, as to obtain a better
solution for decisionmaking. In order to present this clearly, in the rest of this section, a
semanticmodel of the encountered problem is introduced. The FGP-ITmodelwill then
be proposed in Sect. 5. Following symbolic conventions, in this study the following
FGP problemwithK fuzzy goals is considered, which encounters an extended version
of the problem domain considered by the (FGP) model (which enables the ‘fuzziness
of interval targets’):

(Semantic Model)
OPTIMIZE

(AX)i ≤̃
[
gi,min, gi,max

]
i � 1, . . . , i0

(AX)i ≥̃
[
gi,min, gi,max

]
i � i0 + 1, . . . , j0

(AX)i �̃
[
gi,min, gi,max

]
i � j0 + 1, . . . , K

X ∈ Cs,

where OPTIMIZE means finding an optimal decision vector X such that all fuzzy
goals are satisfied;(AX)i is the matrix multiplication form of the criterion function for
the i-th objective, which can be expanded as: (AX)i � ∑n

j�1 ai j x j , i � 1, . . . , K ;.
For i � 1, . . . , K ,

[
gi,min, gi,max

]
represents a continuous span of multiple fuzzy

aspiration levels for a goal in terms of a fuzzy interval number;Cs is an optional set of
hard constraints as found in traditional LP; and the ‘~’ symbol is the fuzzifier operator,
representing the imprecise fashion in which the goals are stated.

We are interested in the form of the support of membership functions that allows
the possibility of setting interval target values. The three types of fuzzy interval mem-
bership function involved here are defined below in Eqs. 1, 2, 3 and their respective
shapes in Figs. 1, 2, 3 (Yaghoobi and Tamiz (2007)). Observe that in these figures, each
yi is an additional decision variable that plays the key role in providing the flexibility
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gmin gmax

or … oror1

Fig. 1 Right fuzzy interval membership function

on the RHS of the corresponding fuzzy goal constraint. These formulations generalize
the classic membership functions and allow DMs to set multiple target values.

μ(AX )i �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (AX )i ≤ yi
1 − (AX )i−yi

�R
i

yi ≤ (AX )i ≤ yi + �R
i i � 1, . . . , i0

0 (AX )i ≥ yi + �R
i

where yi ∈ [
gmin, gmax

]

(1)

μ(AX )i �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 (AX )i ≥ yi
1 − yi−(AX )i

�L
i

yi − �L
i ≤ (AX )i ≤ yi i � i0 + 1, . . . , j0

0 (AX )i ≤ yi − �L
i

where yi ∈ [
gmin, gmax

]

(2)

μ(AX )i �

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 (AX )i ≤ yi − �L
i

1 − yi−(AX )i
�L

i
yi − �L

i ≤ (AX )i ≤ yi

1 − (AX )i−yi
�R

i
yi ≤ (AX )i ≤ yi + �R

i i � j0 + 1, . . . , K

0 (AX )i ≥ yi + �R
i

where yi ∈ [
gmin, gmax

]

(3)

4.2 Related studies

As discussed in Sect. 4.1, in FGP problems the goals are viewed as fuzzy sets, and it
is assumed that their membership functions are known (Lai and Hwang (1994) and
Mirzaee et al. (2018)). However, sometimes the DM may feel it is difficult to spec-
ify his/her membership function parameters and, in particular, those aspiration level
parameters required in the traditional GP context. This should be true, although each
FGP model proved its effectiveness in dealing with uncertainties in real-world deci-
sion problems. In some cases, using the MCAL technique may successfully resolve
such a problem, and this is one of the main reasons to take the MCGP modeling
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gmin gmax

or … oror1

Fig. 2 Left fuzzy interval membership function

12

gmin gmax

or … oror1

Fig. 3 Triangular fuzzy interval membership function

approach (Patro et al. (2018)). In the initial MCGP formulation, the possible MCALs
from which a goal can be chosen are considered to be precise, deterministic, and well
known. However, in many decision contexts, it is hard to determine the fixed values
for these possible MCALs. Therefore, using interval numbers, the RMCGP model
was proposed to ‘glue-up’ these possible MCALs (Chang (2008)), and, later, the
utility-theory-based method involving piece-wised utility function slopes was estab-
lished (Aalaei and Davoudpour (2016) and Attari et al. (2017)). Aside from Chang’s
works, Tabrizi et al. (2012) was the first research paper to formulate the fuzzy MCGP
(FMCGP) approach. In their model, they adopted the max–min approach proposed by
Zimmermann (1978) to solve the FMCGP problem based on only one type of mem-
bership function, which is the triangular membership function. However, before this
model was proposed, such amonotonous treatment ofmembership functions was criti-
cized by many articles, such as Chen and Tsai (2001) and Yaghoobi and Tamiz (2007).
The second work that formulates the FMCGP problem was the model proposed by
Mouslim et al. (2014), named FGP with Multi-Target-Level (FGP-MTL). This model
obtains a solution by trying to maximize the degree of membership function.

These twoFMCGPmodels are constructed based on the initial version of theMCGP
model (i.e., Tabrizi et al. (2012) andMouslim et al. (2014)). Unfortunately, that means
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the possible drawbacks of the MCGP formulation mentioned above are inherited (i.e.,
using the function of binary serial, making it hard to implement) by both models.
Therefore, as can be seen from the semantic model in Sect. 4.1, this study learns the
concept from the RMCGP model, while interval numbers are used to formulate the
fuzziness around the fuzzy goal targets on the right hand side. In other words, such an
approach not only provides alternative ways of conducting FMCGP-relevant research
but also widens the application of the concept of RMCGP. With this modification, the
fuzzy goal target in the FGP model becomes a moveable window that is automatically
adjustable at the solution stage (when the base form of the model was a fuzzy model
taking the membership function concept). This is why the proposed model is called
the fuzzy goal programming with interval target (FGP-IT) model.

5 The proposedmodel: fuzzy goal programming with interval target
(FGP-IT)

According to the concepts discussed in Sect. 4, the FGP-IT model is formulated and
proposed as follows:

(FGP-IT)

Min
i0∑

i = 1

wi
pi

�R
i

+
j0∑

i = i0 + 1

wi
ni
�L

i

+
K∑

i = jo + 1
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(
ni
�L

i

+
pi

�R
i

)

+ αi (e
+
i + e−
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(AX )i − pi ≤ yi i � 1, . . . , i0
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where all variables are defined as in FGP and RMCGP.
In summaryhere, the proposedFGP-ITmodel can be viewed as a continuous version

of other FMCGP models, in which the fuzzy goal targets are not able to be fuzzified
(Tabrizi et al. (2012), Mouslim et al. (2014), Ho (2019), and Mirzaee et al. (2018))
and which are thus discontinuous. Another possible advantage of the proposed model
is suggested by recent trends in GP scholarship, which is moving to address several
types of fuzzy goals for real-world problems. Thus, this extension of classical FGP has
more support and resources to accommodate higher satisfaction levels. The following
real-life application validates and demonstrates the usefulness of the proposed model.

6 Application

6.1 Background

Returning to the topic of renewable energy (RE), as discussed in Sect. 2, Algeria has
recently launched an ambitious program—the National Renewable Energy Action
Plan (NREAP (2017))—to develop RE by developing and expanding the use of inex-
haustible resources, such as solar and wind power. According to the plan, which was
adopted by the government of Algeria in February 2011, the country aims to produce
about 27% of its national electricity from renewable sources by 2030. As wind power
has been one of the fastest-growing RE sources worldwide, the government of Algeria
plans to produce a large portion of its electric power from wind by 2030 and will
thus operate many wind turbines in order to generate the required electricity. Hence
the following question naturally arises: how can the government create the optimal
energy portfolio from the three wind farms while satisfying SD restrictions? Wind
farms must be built in areas with sufficient wind resources, in other words, where
average wind speeds are sufficient. The Sahara desert is one of the windiest areas
on the planet, especially on the western coast, where the Atlantic coastal desert runs
through Western Sahara and Mauritania. According to the Algerian RE development
center, Algeria’s southwestern region has great potential, with speeds exceeding 4 m/s
for the site of Timimoun, 5 m/s for the site of Tindouf, and even 6 m/s for the site of
Adrar, as shown in Fig. 4. The set of three locations being considered to build wind
farms are as follows: Tindouf, Adrar, and Timimoun, as marked in Fig. 5.

6.2 Modeling

In Algeria, the electricity market is headed almost entirely by the national company
SONELGAZ. Suppose that to produce clean electricity, this company plans to build
three hypothetical wind farms of 30 wind turbines, each one with a rated power of
1000 kW (30 MW in total) (Himri et al. (2008)), in three different locations in the
southwestern region of Algeria, namely, Adrar (X1), Timimoun (X2), and Tindouf
(X3), which means the power generated for each station, as shown in Fig. 5. Also,
assume that the material resources that will be used are the same in each region due to
the homogeneous geological nature of the areas (desert nature) selected for the project.
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Fig. 4 Algeria’s annual wind speed ( https://www.cder.dz/spip.php?article1765)

Fig. 5 Potential locations of wind
energy generation

Timimuon

Tindouf Adrar

Timimuon

Tindouf Adrar

In this study, since the FGP-ITmodel proposed in Sect. 5 is to be applied to select the
optimal sustainable wind energy portfolio under an uncertain and imprecise decision
environment, the criteria which will be used in the decision making process should be
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Table 1 Data description of objective functions’ coefficients Source: Himri et al. (2008)

Objectives (or goals) Adrar Timimoun Tindouf

Plant capacity factor (PCF) (%) 38 30 21

Cost of energy (COE) ($/kWh) 0.0309 0.0430 0.0657

Net present value (NPV) ($) 76,125,725 48,843,997 19,712,439

Greenhouse gases avoided (GGA) (tons/year) 48,577 38,406 27,544

Social benefits 7 6.5 6.5

first determined. In reference to the discussion in Sect. 2, the constructs involved in
evaluating the energy supply system here are: technical, economic, environmental, and
social. Five criteria are considered as follows: Plant capacity factor (PCF) (%), Cost
of energy (COE) ($/kWh), Net present value (NPV) ($), Greenhouse gases avoided
(GGA) (tons/year), and Social benefits. These, together with the construct to which a
criterion belongs, are summarized from the existing relevant literature (i.e., Haddah
et al. (2017) and Hocine et al. (2018)).

Therefore, for the decision case, there arefiveobjectives: plant capacity factor (PCF)
(%), cost of energy (COE) ($/kWh), greenhouse gases avoided (GHG) (tons/year), net
present value (NPV) ($), and social benefits. Each objective’s parameters are presented
in Table 1.

Therefore, a multi-objective programming model that considers these objectives
and the observable resource constraints can be semantically expressed as follows:

(M5)

Max z1 � 38 X1 + 30X2 + 21X3 PCF

Min z2 � 0.0309 X1 + 0.0430 X2 + 0.0657 X3 COE

Max z3 � 76 125 725 X1 + 48 843 997 X2 + 19 712 439 X3 N PV

Max z4 � 48577 X1 + 38406 X2 + 27544 X3 GGA

Max z5 � 7X1 + 6.5X2 + 6.5X3 SB

X1 ≥ 95

X2 ≤ 125

X3 ≥ 70

X3 ≤ 120

X1 + X2 ≥ 185

X1 + X3 ≥ 180

X2 + X3 ≥ 190

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Strategic constraints.
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Table 2 The interval-based MCALs and goal types defined on the five fuzzy goal criteria

Goals Type of fuzzy interval goals Tolerance Target levels

Plant capacity factor (PCF) (%) Left 5 [40,70]

Cost of energy (COE) ($/kWh) Right 40 [4000,6000]

Net present value (NPV) ($) Left 10 [100,200]

Greenhouse gases avoided
(GGA)(tons/year)

Left 5000 [50000,120000,30]

Social benefits Left 2 [8,9]

Table 3 The results from solving the problem with FGP-IT model

Solutions Item Electricity generated from each station (MWh/year)

Decision x1 95

Variable x2 105

Values x3 85

Utility in terms of degree of MF μ1 1

μ2 1

μ3 1

μ4 1

μ5 1

6.3 Solving the decision-making problem utilizing FGP-IT model

Suppose that the DM has determined his/her preference-related parameters for the
five fuzzy goal criteria as summarized in Table 1. As suggested by FGP-IT, these
data should be given in a fuzzy interval fashion. As such, suppose that the two ends
of a continuous MCAL span and the type of each goal as well as its ‘tolerance’ are
described in Table 2.

Therefore, applying the proposed FGP-IT model with the given data set using
LINGO (Schrage (2009)), the optimal solution set is obtained in Table 3.

As can be seen, the solution set satisfies the DM in terms of the degree of member-
ship functions. All the goals are fully achieved with 100%. In addition, it is observed
that according to this optimal solution set, the annual gross energy yield, without
losses, from a hypothetical wind farm of 30MW installed capacity at each of the three
locations (Adrar, Timimoun, and Tindouf) would be 95, 105, and 85 MWh, respec-
tively. Furthermore, the most important outcome of producing wind energy at these
sites would be the avoidance of 48,577 tons of greenhouse gases (GHG) entering the
local atmosphere of Adrar each year, and about 1214,425 tons over the lifetime of the
wind power plant. Similarly, at Timimoun and Tindouf, a total of 38,406 and 27,544
tons of GHG emissions would be avoided. This results supports the social acceptabil-
ity goal to achieve and reach the value of 100% of satisfaction. All of these results
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mean that the DM should be very satisfied with the choice suggested by the proposed
model, because the strategic plan should be close to his ideal.

The proposed FGP-IT model, which uses the concept of fuzzy interval membership
functions, should be more efficient and realistic than previous models that use discon-
tinuous fuzzy membership functions (Tabrizi et al. (2012), Mouslim et al. (2014),
Umarusman (2018), and Mirzaee et al. (2018)). According to the modeling results
obtained using FGP-IT, the model may make it possible to achieve some goals more
completely by adjusting the interval window on the RHS of each goal criterion auto-
matically, which will consequently utilize the resources more appropriately and create
a higher satisfaction level for the DM. Based on these observations, the proposed
FGP-IT model should offer a superior solution to traditional FGP approaches.

7 Conclusion

The identification of themost suitable RE source for electricity generation is an impor-
tant issue in the implementation of appropriate RE planning policies. To tackle this
problem, in this study, a FGP-IT model is proposed to optimize the creation of a sus-
tainable wind energy portfolio in Algeria when the decision context involves deep
uncertainty and the overall aim is SD in the country. This was original motivation for
the study. The uncertainty in this situation is deep because, in the decision problem,
there are not only fuzzy goals but also fuzzy interval goal targets. Methodologically,
a main advantage of the proposed model is its ability to deal with problems hav-
ing continuous fuzzy MCALs, which cannot be expressed and formulated by current
FMCGP techniques. At the very least, it provides an alternative way to formulate the
FGP problemwhen the preferences of the DM are described using complex terms such
as “between approximately.” Another advantage of the proposed model is that it can
be easily applied to handle the complexity of real-world decision making problems,
where several main types of membership functions are considered and formulated. At
least, this feature was important for the real-life application modelled and solved in
Sect. 6. Furthermore, this has widened the application of FGP, in that this study has
applied an MODM model for the optimization of a wind energy portfolio problem.
In this sense, as a concluding remark here, we note that the proposed FGP-IT model
should be more effective than other FMCGP formulations and that it has broadened
the model application context of FGP. These promising results may inspire us to con-
duct further studies (e.g., sensitivity analysis, comparison of results with those from
MADM models, etc.), or to apply it to solve other MODM problems, such as those
in the fields of transportation, healthcare planning, supply chain management, and so
on.
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